#WISSENTEILEN

@_openKnowledge | @mobileLarson

Al and Architecture

Lars Röwekamp | open knowledge GmbH

Lars Röwekamp

@mobileLarson

<

<

<

<

CIO New Technologies OPEN KNOWLEDGE

How to

use

Artificial

Intelligence?

ML Voodoo

ML Voodoo Maturity Level

JPEN

KNOW

LEDGE

ML Voodoo Level 2 "only"

Modeling

ML for Production by Example: Sales Forecast*

*Grocery Shopping Chain

OFFENKUNDIGGUT

ML for Production by Example ...

SALES FORECAST

Based on **historical data** from several stores, sales figures are to be **predicted for the future**.

Business Understanding

"Sorry, what was the Question?"

Problem Statement & Target Definition

Business Understanding by Example

Problem Statement - SALES FORECAST

"Often there is too much or too little goods in stock." "Lots of perishable goods are thrown away in the evening." "Marketing campaigns are not effective (enough)." *"Turnover is okay, but it's not predictable." "Staffing is often less than optimal."*

Business Understanding by Example

Business Goals- SALES FORECAST

A sales forecast is to be created, which supports the planning of sales per store*, as well as the planning of marketing campaigns**.

* ... and thus indirectly also procurement and warehousing

** ... such as promotions or introduction of new product

Business Understanding by Example

Analytical Goals - SALES FORECAST

A machine learning solution should predict the sales per store for the period of 6 weeks, with an accuracy of [X]%.

ATTENTION:

A concrete value is important here. Infortunately, "as accurate as possible" is of little help for later validation and quality analysis of the model!

Data Understanding

"The Truth is in the Data!"

Collect, examine & evaluate

ML4Prod Process

Data Understanding

Data Understanding by Example

IFDGF

Collect & describe data - SALES FORECAST

Sales reports* and other data** on the POS from the last three years serve as the basis for the initial analysis..

* Sales per store per day

Data Understanding by Example

Collect & describe data

The sales report and POS data are examined in more detail with the help of an **exploratory data analysis** (EDA).

The focus is on the question of **which variables have a direct or indirect influence** on sales.

Data Understanding by Example

C→ Shape of train dataset is (1017209, 9).

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1017209 entries, 0 to 1017208 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype		
0	Store	1017209 non-null	int64		
1	DayOfWeek	1017209 non-null	int64		
2	Date	1017209 non-null	datetime64[ns]		
3	Sales	1017209 non-null	int64		
4	Customers	1017209 non-null	int64		
5	Open	1017209 non-null	int64		
6	Promo	1017209 non-null	int64		
7	StateHoliday	1017209 non-null	object		
8	SchoolHoliday	1017209 non-null	int64		
dtypes: datetime64[ns](1), int64(7), object(1)					
memory usage: 69.8+ MB					

(>1 mio data records)

➡ Shape of train dataset is (1115, 10).

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1115 entries, 0 to 1114 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype		
0	Store	1115 non-null	int64		
1	StoreType	1115 non-null	object		
2	Assortment	1115 non-null	object		
3	CompetitionDistance	1112 non-null	float64		
4	CompetitionOpenSinceMonth	761 non-null	float64		
5	CompetitionOpenSinceYear	761 non-null	float64		
6	Promo2	1115 non-null	int64		
7	Promo2SinceWeek	571 non-null	float64		
8	Promo2SinceYear	571 non-null	float64		
9	PromoInterval	571 non-null	object		
dtypes: float64(5), int64(2), object(3)					
memory usage: 87.2+ KB					

Store Data

(ca. 1100 data records)

Sales Data Shape of train dataset is (1017209, 9) (>1 Mio Data Records) <class 'pandas.core.frame.DataFrame'> RangeIndex: 1017209 entries, 0 to 1017208 Data columns (total 9 columns): SALES! Non-Null Count Column Dtype Target Variable 1017209 non-null int64 Store DayOfWeek 1017209 non-null int64 1017209 non-null datetime64[ns] Date 1017209 non-null Sales int64 Customers 1017209 non-null int64 INT64? Open 1 1017209 non-null int64

Promo

StateHoliday

memory usage: 69.8+ MB

1017209 non-null

1017209 non-null

SchoolHoliday 1017209 non-null int64

dtypes: datetime64[ns](1), int64(7), object(1)

int64

object

Which values/ranges are possible? And what do they mean??

> 1 MIO Data Records Lots of data! Very nice.

> DATETIME? For sorting the "Time Series". But is there any more info in there?

OBJECT? Inconvenient for ML!

> **JPEN** KNOW

IFDGF

Data Understanding by Example

Data Understanding

IFDGF

Product Sales "Correlations"

Product Sales "Correlations"

Product Sales "Customer"

As suspected, there is a high correlation between Sales and Customer.

Product Sales "Promo"

Average value for SALES and CUSTOMERS is significantly higher for PROMO = 1 than for PROMO = 0.

Product Sales "Correlations"

Product Sales "Weekday"

Product Sales "Weekday"

Product Sales "Weekday"

Product Sales "Seasons"

Data Understanding by Example

Collect & describe data - SALES FORECAST

In addition to **sales reports** from individual POS, there are **numerous other sources** that can be used for ML-based forecasting to paint a more accurate picture.

E-Commerce Sales Data Sales Transactions Purchchase Orders Inventory POS Information Loyality Cards Customer Service	Unstructured
Weather 3rd Party syndicated Data Macroeconomic Indicators Government Census Customer POS Information Household Panel Data	Data Sources

Structured Data Sources

Structured	E-Commerce Sales Data Sales Transactions Purchchase Orders Inventory POS Information Loyality Cards Customer Service	Websites Reviews Marketing Campaigns (Mobile) Apps In-Store Devices Texts CRM Data	Unstructured Data Sources
Data Sources	Weather 3rd Party syndicated Data Macroeconomic Indicators Government Census Customer POS Information Household Panel Data		

External Data Sources

	E-Commerce Sales Data Sales Transactions Purchchase Orders Inventory POS Information Loyality Cards Customer Service	Websites Reviews Marketing Campaigns (Mobile) Apps In-Store Devices Texts CRM Data	Unstructured
>	Weather 3rd Party syndicated Data Macroeconomic Indicators Government Census Customer POS Information Household Panel Data	Social Media Click Streams Internet of Things Geolocation Devices Digital Personal Assistants Videos	Data Sources

JPEN Know

LEDGE

Structured Data Sources

E-Commerce Sales Data Sales Transactions Purchchase Orders Inventory POS Information Loyality Cards Customer Service	Websites Reviews Marketing Campaigns (Mobile) Apps In-Store Devices Texts CRM Data	Unstructured
Weather 3rd Party syndicated Data Macroeconomic Indicators Government Census Customer POS Information Household Panel Data	Social Media Click Streams Internet of Things Geolocation Devices Digital Personal Assistants Videos	Data Sources

Structured Data Sources

Product Sales "Merge Data "

□→ Shape of train dataset is (1017209, 9).

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1017209 entries, 0 to 1017208 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype	
0	Store	1017209 non-null	int64	
1	DayOtWeek	101/209 non-null	1NT64	
2	Date	1017209 non-null	datetime64[ns]	
3	Sales	1017209 non-null	int64	
4	Customers	1017209 non-null	int64	
5	0pen	1017209 non-null	int64	
6	Promo	1017209 non-null	int64	
7	StateHoliday	1017209 non-null	object	
8	SchoolHoliday	1017209 non-null	int64	
dtypes: datetime64[ns](1), int64(7), object(1)				
nemory usage: 69.8+ MB				

Sales Data (>1 Mio Data Records) □→ Shape of train dataset is (1115, 10).

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1115 entries, 0 to 1114
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Store	1115 non-null	int64
1	StoreType	1115 non-null	object
2	Assortment	1115 non-null	object
3	CompetitionDistance	1112 non-null	float64
4	CompetitionOpenSinceMonth	761 non-null	float64
5	CompetitionOpenSinceYear	761 non-null	float64
6	Promo2	1115 non-null	int64
7	Promo2SinceWeek	571 non-null	float64
8	Promo2SinceYear	571 non-null	float64
9	PromoInterval	571 non-null	object
dtypes: float64(5), int64(2), object(3)			
memory usage: 87.2+ KB			

Store Data (ca. 1100 Data Records)

Data Understanding by Example

Collect & describe data - SALES FORECAST

The data must be analyzed in advance for many **quality factors**:

Availability, Completeness, Accuracy, Validity, Consistency, Relevance, Granularity, Cost

Data Preparation

"Quantity is not equal to Quality!"

Select, transform & clean data

Data Preparation Process

Data Preparation Process

Data Preparation Process

Data

Collection

- define data
- collect and combine data

- format
- validate

Data

Preprocessing

- clean
- sample
- type
- refine

Transformation* *aka Feature Engineering / Selection

Data

- scale
- normalize
- split

. . .

- aggregate
- encode

Data Preparation

What exactly are these **features**?

What does Feature Engineering mean?

And what is the difference to Feature Selection?

Data Preparation

Feature Engineering / Selection

YOU: "But that sounds **damn elaborate**! Does it have to be? We're dealing with **artificial intelligence**, after all! Surely the model can do that on its own, right?"

ME: "YES and NO! Feature Engineering / Selection is an **essential part of the ML4Prod pipeline** to optimize the model. In this way, we give the model hints on what it should pay attention to."

Sales Prediction without additional Features

Sales Prediction with additional Features

Data Preparation

The Art of Feature Engineering & Selection

"As many as necessary and as few as possible."

- as many as necessary leads to good results
- as few as possible leads to good performance

Data Preparation

Feature Selection for everyone?

"There is a tool for it …"

- FeatureTools*
- FeatureSelector**

*https://www.featuretools.com

"Which model suits me best?"

Select, train & evaluate model

Germanys Next Top Model?

Easier said than done! Where is the best place to start? And how?

JPEN

KNOW

LEDGE

OFFENKUNDIG**GUT**

LEDGE

OFFEN KUNDIGGUT

ML Regressors

If **values for the future** are to be predicted on the basis of values from the past, **regression algorithms** are usually used.

scikit-lean Algorithm Cheat-Sheet

scikit-lean Algorithm Cheat-Sheet

Quelle: https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Analysis & Modeling by Example

Models on the shortlist (Regressors)

- SGD Regressor (linear Regressor)
- Decission Tree Regressor (single Decision Tree)
- Random Forest Regressor (multiple parallel Decision Trees)
- xgBoost Regressor (multiple sequential Decision Trees)

Analysis & Modeling by Example

Quelle: https://www.datasciencecentral.com/linear-machine-learning-and-probabilistic-approaches-for-time/

" Is GOOD also GOD enough?"

Model Quality vs. Project Goal

QA & Validation by Example

QA & Validation by Example

QA & Validation by Example

OFFENKUNDIG**GUT**

QA & Validation by Example

"A machine learning solution should predict sales per store for the period of 6 weeks, with an accuracy of IXI%."

Quelle: https://towardsdatascience.com/a-short-introduction-to-model-selection-bb1bb9c73376

Challenge of the "right" data split

To evaluate the prediction quality (aka performance) of the trained model, the training score and the test score are compared.

To ensure that the selected data split did not lead to a good result by accident, several **cross-validations** are performed.

Cross-Validation

Testing the ML model performance with different splits :

- Hold-out
- K-folds*
- Leave-x-out**
- Time Series CV

* x = "one" oder "p"

JPEN Know Ledge

Total dataset
Train Test

Hold-out

Cross-Validation

Test
(1)
(2)
(2)

K-Folds

K = 10

Training

(10)

QA & Validation

Leave-out

QA & Validation by Example

QA & Validation by Example

Deployment & Operation

"ATTENTION! This is not an exercise!"

Model Deployment & Performance Monitoring

Deployment & Operation

"Change is the only constant in life."

Heraclitus, Greek philosopher

Deployment & Operation

Model decay over time

Regulary updated model

LEDGE

CONTINUOUS DELIVERY

"...the ability to **get changes of all types** — including new features, configuration changes, bug fixes, and experiments — **into production**, or into the hands of users, safely and quickly in a sustainable way."

Jez Humble & Dave Farley

Deployment & Operation by Example

MLops aka CI / CD Pipeline for Changes

Data	Model	Code
Schema	Algorithms	Business Needs
Sampling over Time	More Training	Bug Fixes
Volume	Experiments	Configuration

The 3 axis of change in ML apps – data, model, and code – and a few reasons for them to change.

Stack of Test Pyramids

Example of how to combine different test pyramids for data, model, and code in CD4ML

Source: https://martinfowler.com/articles/cd4ml.html

Deployment & Operation by Example

Monitoring the Model Model Performance Model Input/Output Distribution Model Learning Curves **Model Evaluation Metrics** Model QA Results Hardware Metrics CI/CD Pipeline for ML

ML Monitoring

Take aways!

Time for Questions? YES!

#WISSENTEILEN

by open knowledge GmbH

Thank You!

Lars Röwekamp, CIO New Technologies @_openKnowledge | @mobileLarson

USED IMAGES

Folie 01: © Merena, iStockphoto.com Folie 20: © Photoplotnikov, iStockphoto.com

All other pictures, drawings and icons originate from

- pexels.com,
- pixabay.com,
- unsplash.com,
- flaticon.com
- or were made by my own.