
@nicolas_frankel

Chopping the monolith



@nicolas_frankel

Me, myself and I

n Developer
n Developer advocate



@nicolas_frankel

Disclaimer

n Contains a lot of controversy 
inside



@nicolas_frankel

The sad state we’re in

n Monolith = bad
n Microservices = good



@nicolas_frankel

What are microservices anyway?

“In short, the microservice architectural style is an 
approach to developing a single application as a 
suite of small services, each running in its own 
process and communicating with lightweight 
mechanisms, often an HTTP resource API. These 
services are built around business capabilities and 
independently deployable by fully automated 
deployment machinery. There is a bare minimum of 
centralized management of these services, which 
may be written in different programming languages 
and use different data storage technologies.”

-- https://martinfowler.com/articles/microservices.html



@nicolas_frankel

Characteristics of microservices

n Componentization via Services
n Organized around Business Capabilities
n Smart endpoints and dumb pipes
n Decentralized Governance
n Decentralized Data Management
n Infrastructure Automation
n Design for failure
n Evolutionary Design
n Products not Projects



@nicolas_frankel

Conway’s Law

“Any organization that designs 
a system (defined broadly) will 
produce a design whose 
structure is a copy of the 
organization’s communication 
structure.”

-- Melvin E. Conway



@nicolas_frankel

Reversing Conway’s Law



@nicolas_frankel

Amazon Web Services, a poster child for microservices

“We try to create teams that are no 
larger than can be fed by two 
pizzas,” said Bezos. “We call that 
the two-pizza team rule.”

-- https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/two-pizza-teams.html



@nicolas_frankel

Whose organization is like this?



@nicolas_frankel

A recipe for failure

1. An architect/lead reads about 
microservices

2. Remembers only the benefits
3. Applies only the technical 

aspects
4. Leaves for another job with a 

shinier CV 



@nicolas_frankel

What’s the main reason behind microservices?

Benefits Costs

• Strong Module Boundaries

• Independent Deployment

• Technology Diversity

• Distribution

• Eventual Consistency

• Operational Complexity



@nicolas_frankel

Strong module boundaries

n Many other ways to enforce 
boundaries

n With less downsides



@nicolas_frankel

Technology diversity

n Satisfies some people’s 
aspirations

n Doesn’t help the organization 
as a whole



@nicolas_frankel

Lead time, one of the Golden DevOps metrics

Specification Implementation Deployment



@nicolas_frankel

How did we manage releases “back in the days”?

n Unfrequent releases
• Release trains

n You don’t want to miss the 
train!
• Bugfixes are allowed
• Shove feature into a bugfix



@nicolas_frankel

It’s not possible to release often and test monoliths well



@nicolas_frankel

The real problem

n Not all parts of an app change 
at the same speed

n Some are more stable than 
others

n Reasons for change
• Business “requirement”
• Law



@nicolas_frankel

Rules engine

A business rules engine is a software system 
that executes one or more business rules in a 
runtime production environment. The rules 
might come from legal regulation, company 
policy, or other sources. A business rule system 
enables these company policies and other 
operational decisions to be defined, tested, 
executed and maintained separately from 
application code.

-- https://en.wikipedia.org/wiki/Business_rules_engine



@nicolas_frankel

Characteristics of rules engines

n No release
n The business changes the 

rules how often they want
n With great power comes great 

responsibility



@nicolas_frankel

Isolate the quick-changing part

n Alternative implementations:
• Rules engine
• Microservice
• Serverless function
• Something else?



@nicolas_frankel https://microservices.io/patterns/refactoring/strangler-application.html



@nicolas_frankel

“Chop” the part



@nicolas_frankel

Example: an e-commerce shop

n Business wants to push some 
products
• Too much stock
• End-of-season leftovers
• High margin product
• Flagship product



@nicolas_frankel

Sell more by lowering price

n Pricing should be very flexible
n Impossible to model pricing 

options ahead of time
n “Chop” the pricing engine
• Don’t break the clients!



@nicolas_frankel

Thanks for your attention!

n @nicolas_frankel
n https://bit.ly/chop-monolith/
n https://blog.frankel.ch/choppi

ng-monolith/
n https://apisix.apache.org/


