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Me, myself and I

n Developer
n Developer advocate
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Disclaimer

n Contains a lot of controversy 
inside
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The sad state we’re in

n Monolith = bad
n Microservices = good
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What are microservices anyway?

“In short, the microservice architectural style is an 
approach to developing a single application as a 
suite of small services, each running in its own 
process and communicating with lightweight 
mechanisms, often an HTTP resource API. These 
services are built around business capabilities and 
independently deployable by fully automated 
deployment machinery. There is a bare minimum of 
centralized management of these services, which 
may be written in different programming languages 
and use different data storage technologies.”

-- https://martinfowler.com/articles/microservices.html
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Characteristics of microservices

n Componentization via Services
n Organized around Business Capabilities
n Smart endpoints and dumb pipes
n Decentralized Governance
n Decentralized Data Management
n Infrastructure Automation
n Design for failure
n Evolutionary Design
n Products not Projects
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Conway’s Law

“Any organization that designs 
a system (defined broadly) will 
produce a design whose 
structure is a copy of the 
organization’s communication 
structure.”

-- Melvin E. Conway
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Reversing Conway’s Law
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Amazon Web Services, a poster child for microservices

“We try to create teams that are no 
larger than can be fed by two 
pizzas,” said Bezos. “We call that 
the two-pizza team rule.”

-- https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/two-pizza-teams.html
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Whose organization is like this?
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A recipe for failure

1. An architect/lead reads about 
microservices

2. Remembers only the benefits
3. Applies only the technical 

aspects
4. Leaves for another job with a 

shinier CV 
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What’s the main reason behind microservices?

Benefits Costs

• Strong Module Boundaries

• Independent Deployment

• Technology Diversity

• Distribution

• Eventual Consistency

• Operational Complexity
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Strong module boundaries

n Many other ways to enforce 
boundaries

n With less downsides
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Technology diversity

n Satisfies some people’s 
aspirations

n Doesn’t help the organization 
as a whole
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Lead time, one of the Golden DevOps metrics

Specification Implementation Deployment
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How did we manage releases “back in the days”?

n Unfrequent releases
• Release trains

n You don’t want to miss the 
train!
• Bugfixes are allowed
• Shove feature into a bugfix
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It’s not possible to release often and test monoliths well
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The real problem

n Not all parts of an app change 
at the same speed

n Some are more stable than 
others

n Reasons for change
• Business “requirement”
• Law
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Rules engine

A business rules engine is a software system 
that executes one or more business rules in a 
runtime production environment. The rules 
might come from legal regulation, company 
policy, or other sources. A business rule system 
enables these company policies and other 
operational decisions to be defined, tested, 
executed and maintained separately from 
application code.

-- https://en.wikipedia.org/wiki/Business_rules_engine
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Characteristics of rules engines

n No release
n The business changes the 

rules how often they want
n With great power comes great 

responsibility
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Isolate the quick-changing part

n Alternative implementations:
• Rules engine
• Microservice
• Serverless function
• Something else?
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“Chop” the part
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Example: an e-commerce shop

n Business wants to push some 
products
• Too much stock
• End-of-season leftovers
• High margin product
• Flagship product
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Sell more by lowering price

n Pricing should be very flexible
n Impossible to model pricing 

options ahead of time
n “Chop” the pricing engine
• Don’t break the clients!
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Thanks for your attention!

n @nicolas_frankel
n https://bit.ly/chop-monolith/
n https://blog.frankel.ch/choppi

ng-monolith/
n https://apisix.apache.org/


