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Say hello to Harry.







DDD IN CLOUD NATIVE ENVIRONMENTS

Say hello to Harry.

German learning course, realized by freiwerk-b for Deutsche Welle

100 episodes / 4 games per ep. / 20 different game types

30 languages (incl. Arabic/right-to-left)

Vocabulary trainer

Fully editable / drag and drop for native speakers / editors
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DDD IN CLOUD NATIVE ENVIRONMENTS

Say hello to Harry.

* Originally planned 2009/10

* Flash (ActionScript 3), Java, Jboss 4, MySQL

* Accessible version in HTML5 (Apache Wicket)

« CRUD based

- Domain specific language, lots of generated code
« 4 devs, but then it was only me

« This was going to be my big breakthrough

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Say hello to Harry.

« One year in: Editors hate it.
 Full redesign of the editing app.

« Two years in: It doesn't scale.
e Full refactor/rewrite with DDD
 Invented an extension to CSS to enable

content positioning
* Project eventually finished in 2014
« Burnout, 45K debt, got a permanent job

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Say hello to Harry.

| learned a few things:

* | don't actually need other people to screw up the code. | can do that
all by myself.

« The who, why and how of software development is atmest always
more important than the tooling.

| quit the generators. And decided to become an expert for Software

Crafting and DDD instead.

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Why am | telling you all this?

Well, ultimately, it's how | ended up here. pr—
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DDD IN CLOUD NATIVE ENVIRONMENTS

A DDD practitioner walks into a bar...

* "Architecture” translates to technical artifacts/products
« Everything is distributed

« Everything is an API

« Everything is billed by consumption

* Everything is ideally a managed service

« Everything is serverless

« Everything is automated

« Everything is secure by default

12



DDD IN CLOUD NATIVE ENVIRONMENTS

A DDD practitioner walks into a bar...

« "Architecture” translatesto t
« Everything is distributed
« Everything is an API

« Everything is billed by cons
« Everything is ideally a ma
« Everything is serverless

« Everything is automated

« Everything is secure by default
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Let’s talk about boundari‘
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DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

* A BCs is one possible technical realization of a (sub-) domain.
* A (sub-) domain can be implemented by one or more BCs, but one BC
should not belong to more than one (sub-) domain.
Often not true in legacy / generic / supporting domains!
* One team can own more than one BC, but a BC should not be owned

by more than one team
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DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

 Eric Evans/Vaughn Vernon: Implement BCs as modules (packages)
* Microservices: Implement one pS per BC

 Serverless:

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

« Serverless components are billed by consumption
» They should not be running all the time!
* They must be stateless

« Consider startup times / latency

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Anatomy of a serverless function

Function init .

= Invocation Invocation

Shutdown Function Runtime

shutdown shutdown

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

« Serverless components are billed by consumption

» They should not be running all the time!

They must be stateless

Consider startup times / latency

They should scale automatically — parallelism!

They should be as small as possible (Single Responsibility Principle)

Serverless functions are also billed by # of executions!

aws
>

20



DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

« With all these small, auto-scaled, volatile components, how do we implement
context boundaries?
* Options:
 One VPC per BC?
* Not always allowed, and might incur extra cost
 One account per team OR one account per BC?
« Use Landing Zone / Account Factory to self-service

Platforms are also a dependency!

N 2) © 2022, Amazon Web Services, Inc . or its affiliates. 21



DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

But... What about Kubernetes?

 One BC per deployment?

* One BC OR one team per namespace?
* One team per cluster?

Platforms are a dependency!

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Integrations

Anti Corruption Layer
Conformist

Shared Kernel

Octopus

aws
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Big Ball of Mud

Open / Host Service

© 2022, Amazon Web Services, Inc. or its affiliates.

Published Language

Partnership

Customer / Supplier

Separate Ways
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DDD IN CLOUD NATIVE ENVIRONMENTS

Integrations

 Integrations can be implemented as public interfaces (e.g. REST,
GraphQL or RPC) ,or via Messaging / Domain Events.

« Use OpenAPI or similar formats to make contracts explicit.

 Use Consumer Driven Contract Tests for documentation, and to
ensure integration correctness.

 This is a high-level variation of the Ports and Adapters pattern (aka

Hexagonal Architecture).

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Anatomy of a serverless function

Event

Context

Invocation Source

Response /
Callback

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Anatomy of a serverless function

Setup dependencies

Lambda Handler
Try / catch
Input Validation

Success

Failure

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Modules

* Lamba/function (application) code should
- wire dependencies
 take care of event and error handling
« map results to appropriate response outputs

But always call validation and business logic from imported modules

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Anatomy of a serverless function

aws
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Function-specific

Handler

Context-specific

Domain Core Layer

Shared / Generic

Util Layer

Cloud Infrastructure Layer

Lambda module

Imported modules



DDD IN CLOUD NATIVE ENVIRONMENTS

Modules

* Create a separate layer for your domain core
« Use Hexagonal Architecture to keep it testable, dependency-free,
and well-encapsulated
« Business logic must be shared only within the same BC.
 If teams share common layers, they should only ever be technical /
cross cutting (e.qg., security or infrastructure code)

Overindexing on the DRY principle will slow you down.

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Take boundaries seriously

* Shared infrastructure has implications:
 Increased likelihood of side-effects
* Increased blast radius
 Increased need for negotiation
Mind the size and readability
of IaC files

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Take boundaries seriously

« Consequently: Align infrastructure with bounded contexts
* Use “Infrastructure as actual code (1aaC)"” (Gregor Hohpe)
 Named variables / outputs increase readability
* Avoid "deployment repositories”

 Include IAM roles/privileges to safeguard context boundaries

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Take boundaries seriously

But... What about Kubernetes?
 Align helm charts and deployment descriptors with BC
« Use laaC to execute deployments and integrate with other components
* Prefer self-service over service-team-provisioned clusters
« Use cluster per team/BC to avoid single point of failure and minimize blast
radius

« Consider serverless container offerings

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Take boundaries seriously

« Shared deployment pipelines are a dependency!
|t is okay to use common libraries
« Extract, don't build from scratch!
* Don't enforce as standard
« Self-service is a key element of success

« Avoid gate-keeping and non-essential approvals at all costs

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

« Operational data is the data generated / used by business applications

« Avoid central data stores, embrace eventual consistency and duplication

* Choose your persistence mechanism per context, by form and access type:

aws
>

Structured / curated data used for complex queries: RDBS
Unstructured data queried by ID or as a collection: KVS / DocDB
High volume / text search: Indexed search engine

Machine signals / continuous data flow: Time series DB

Time projections / drill-down: Event store

© 2022, Amazon Web Services, Inc. or its affiliates.
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DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

« Operational data needs timely performance:
« Be mindful of compound latency
« Use caches if necessary, but be aware of additional complexity
« Embrace CQRS
« Can be implemented via Domain Events, technical events, polling...
« Trade-off between convenience / maintenance cost / readability
« Rule of thumb: Limit write functions to a single instance, but scale

read functions generously
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DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

« Analytical data is a projection (read model) of the operational data
« Used for business insights by:
« Business analysts (to control/oversee, Data Warehouse)
« Data scientists (to explore / discover, Data Lake)
« Both need data from everywhere
« Datasets must be accessible
« Access must be governed (data protection)

« Content must be documented and searchable

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

Platforms are a dependency!
« Consequently: Data access should be decentralized
« Dataset scope should align with BC
« Curation of data is team responsibility
« Expose datasets to externals via self-service
« Requires metadata and access management

« This is called Data Mesh (Zhamak Dehghani)

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

- Operationalized analytical data is needed for Al/ML based decision making
« Data scientists discover ways to predict outcomes or recognize entities
from patterns
* Models are trained from historical data

* Trained models are operationalized as Domain Services for inference on
incoming operational data, become part of business applications
« At this point, they become a BC team responsibility

« Models incur drift and have to be re-trained

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

* Manual model training is slow and error-prone
* Also, it creates a dependency on the data science team!
« Automation (MLOps) is a key enabler
ML is often biased and unreliable (Abeba Birhane, @abebab)

 This is even more true for automated workflows

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Low Code / No Code - magic?

Integrated Low Code application platforms target non-programmers
* They usually offer a one-stop-shop solution from concept to release
« Bias towards CRUD type applications
e Pain points:
« Versioning, refactoring, team integration
« Debugging and observability
« Data maintenance and access control

The more visual, the less extensible.

aws
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DDD IN CLOUD NATIVE ENVIRONMENTS

Step Functions

Step Functions are meant to be integrated with serverless applications

“State machine as a service”, event-based

These are usually not equivalent to domain events

Typical workflow patterns, e.g. pipeline, scatter/gather, human in the loop

Integrates Lambda with many other services

Visual interface / AWS Console

N 2) © 2022, Amazon Web Services, Inc . or its affiliates. 52



DDD IN CLOUD NATIVE ENVIRONMENTS

Step Functions

« Business logic not explicit/separated

« Business rules in visual form / mixed with
infrastructure code

« "Magic” usually hides complexity, but doesn’'t

make it disappear.

Here be dragons. At least

make sure you align with the bounded context.
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DDD in Cloud Native Environments -

The fundamental principles of DDD still apply:

The key enabler for scalable, extensible and evolvable ;ystems is knowing where to set

good boundaries. >
- To find th |

y attention to.language and conte

Keep domain logi(:‘“fencapsulated and well-tested.

Avoid dependencies across teams, unless absolutel;s

» Do extract platforms and standards, but make them optional.

Caution: Typing is not the bottleneck!

But Low Code / No Code can be useful when applied thoughtfully)

This is still difficult. To succeed, be prepared to iterate, inspect, and learn.
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Thank you!

Tobias Goeschel

Sr Solutions Architect, FSI
Amazon Web Services

tgo@amazon.de
@w3ltraumpirat

© 2022, Amazon Web Services, Inc. or its affiliates.



mailto:tgo@amazon.de

