
DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Domain Driven Design in
Cloud Native Environments
ISAQB Architecture Gathering, Nov 17, 2022

Tobias Goeschel (he/him)
Sr Solutions Architect, FSI
Amazon Web Services

tgo@amazon.de
@w3ltraumpirat

mailto:tgo@amazon.de

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates. 3

Say hello to Harry.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates. 4

Say hello to Harry.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates. 5

Say hello to Harry.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Say hello to Harry.

6

• German learning course, realized by freiwerk-b for Deutsche Welle

• 100 episodes / 4 games per ep. / 20 different game types

• 30 languages (incl. Arabic/right-to-left)

• Vocabulary trainer

• Fully editable / drag and drop for native speakers / editors

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Say hello to Harry.

7

• Originally planned 2009/10

• Flash (ActionScript 3), Java, Jboss 4, MySQL

• Accessible version in HTML5 (Apache Wicket)

• CRUD based

• Domain specific language, lots of generated code

• 4 devs, but then it was only me

• This was going to be my big breakthrough

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Say hello to Harry.

8

• One year in: Editors hate it.

• Full redesign of the editing app.

• Two years in: It doesn’t scale.

• Full refactor/rewrite with DDD

• Invented an extension to CSS to enable

content positioning

• Project eventually finished in 2014

• Burnout, 45K debt, got a permanent job

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Say hello to Harry.

9

I learned a few things:

• I don’t actually need other people to screw up the code. I can do that

all by myself.

• The who, why and how of software development is almost always

more important than the tooling.

• I quit the generators. And decided to become an expert for Software

Crafting and DDD instead.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Why am I telling you all this?

10

Well, ultimately, it’s how I ended up here.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

A DDD practitioner walks into a bar…

11

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

A DDD practitioner walks into a bar…

12

• ”Architecture” translates to technical artifacts/products

• Everything is distributed

• Everything is an API

• Everything is billed by consumption

• Everything is ideally a managed service

• Everything is serverless

• Everything is automated

• Everything is secure by default

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

A DDD practitioner walks into a bar…

13

• ”Architecture” translates to technical artifacts/products

• Everything is distributed

• Everything is an API

• Everything is billed by consumption

• Everything is ideally a managed service

• Everything is serverless

• Everything is automated

• Everything is secure by default

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Let’s talk about boundaries

14

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Boundaries

15

Bounded Contexts
• Essential building blocks of a system. They influence decisions on

many levels, and have social, technological, and political

dimensions.

• Should always be defined by (ubiquitous) language.

• Assumption: All this is also true for the cloud.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Bounded Contexts

16

• A BCs is one possible technical realization of a (sub-) domain.

• A (sub-) domain can be implemented by one or more BCs, but one BC

should not belong to more than one (sub-) domain.

• Caution: Often not true in legacy / generic / supporting domains!

• One team can own more than one BC, but a BC should not be owned

by more than one team

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Bounded Contexts

17

• Eric Evans/Vaughn Vernon: Implement BCs as modules (packages)

• Microservices: Implement one µS per BC

• Serverless:

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Bounded Contexts

18

• Serverless components are billed by consumption

• They should not be running all the time!

• They must be stateless

• Consider startup times / latency

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Anatomy of a serverless function

19

Extension init Runtime init Function init

Invocation Invocation Invocation

Runtime
shutdown

Extension
shutdown

Function
shutdown

Init

Invoke

Shutdown

Invocation

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Bounded Contexts

20

• Serverless components are billed by consumption

• They should not be running all the time!

• They must be stateless

• Consider startup times / latency

• They should scale automatically – parallelism!

• They should be as small as possible (Single Responsibility Principle)

• Caution: Serverless functions are also billed by # of executions!

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Bounded Contexts

21

• With all these small, auto-scaled, volatile components, how do we implement

context boundaries?

• Options:

• One VPC per BC?

• Not always allowed, and might incur extra cost

• One account per team OR one account per BC?

• Use Landing Zone / Account Factory to self-service

• Caution: Platforms are also a dependency!

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Bounded Contexts

22

But… What about Kubernetes?

• One BC per deployment?

• One BC OR one team per namespace?

• One team per cluster?

• Remember: Platforms are a dependency!

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Let’s talk about boundaries (2)

23

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates. 24

Bounded contexts (usually) cannot exist in isolation.

Integrations

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates. 25

Integrations

A B?

Conformist

Anti Corruption Layer Published Language
Customer / Supplier

Separate Ways
PartnershipOpen / Host Service

Shared Kernel

Octopus

Big Ball of Mud

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates. 26

Bounded contexts (usually) cannot exist in isolation.

• Be aware that integrations are equivalent to contracts.

• A contract regulates both acceptable forms of communication, and

the social dynamics of the team boundary

• Use context maps to figure out the appropriate kind of integration/

nature of contract

Integrations

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates. 27

• Integrations can be implemented as public interfaces (e.g. REST,

GraphQL or RPC) ,or via Messaging / Domain Events.

• Use OpenAPI or similar formats to make contracts explicit.

• Use Consumer Driven Contract Tests for documentation, and to

ensure integration correctness.

• This is a high-level variation of the Ports and Adapters pattern (aka

Hexagonal Architecture).

Integrations

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Let’s talk about boundaries (3)

28

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates. 29

Can small components have even smaller parts? Of course, they can!

• Serverless functions can have layers.

• They work much like package dependencies.

• Caution: These are hard, binary dependencies! This means coupling.

Modules

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Anatomy of a serverless function

30

Invocation Source

Event

Context

Handler

Response /
Callback

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Anatomy of a serverless function

31

Lambda Handler

Try / catch

Input Validation

Success

Failure

Failure

Setup dependencies Product/service initialization

Integration logic

Domain logic

Integration logic

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Modules

32

• Lamba/function (application) code should

• wire dependencies

• take care of event and error handling

• map results to appropriate response outputs

But always call validation and business logic from imported modules

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Anatomy of a serverless function

33

Shared / Generic

Context-specific

Domain Core Layer

Util Layer

Cloud Infrastructure Layer

Function-specific

Handler

Imported modules

Lambda module

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Modules

34

• Create a separate layer for your domain core

• Use Hexagonal Architecture to keep it testable, dependency-free,

and well-encapsulated

• Business logic must be shared only within the same BC.

• If teams share common layers, they should only ever be technical /

cross cutting (e.g., security or infrastructure code)

• Caution: Overindexing on the DRY principle will slow you down.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Let’s talk about boundaries (4)

35

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Take boundaries seriously

36

As the saying goes: Fences make good neighbors

• Teams should not share infrastructure

• Infrastructure should always be maintained as code

• Caution: Deployment pipelines are also infrastructure!

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Take boundaries seriously

37

• Shared infrastructure has implications:

• Increased likelihood of side-effects

• Increased blast radius

• Increased need for negotiation

• Caution: Mind the size and readability

of IaC files

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Take boundaries seriously

38

• Consequently: Align infrastructure with bounded contexts

• Use “Infrastructure as actual code (IaaC)” (Gregor Hohpe)

• Named variables / outputs increase readability

• Avoid ”deployment repositories”

• Include IAM roles/privileges to safeguard context boundaries

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Take boundaries seriously

39

But… What about Kubernetes?

• Align helm charts and deployment descriptors with BC

• Use IaaC to execute deployments and integrate with other components

• Prefer self-service over service-team-provisioned clusters

• Use cluster per team/BC to avoid single point of failure and minimize blast

radius

• Consider serverless container offerings

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Take boundaries seriously

40

• Shared deployment pipelines are a dependency!

• It is okay to use common libraries

• Extract, don’t build from scratch!

• Don’t enforce as standard

• Self-service is a key element of success

• Avoid gate-keeping and non-essential approvals at all costs

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Let’s talk about boundaries (5)

41

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Data also needs context

42

Data can be classified into 3 categories, by usage type:

• Operational data

• Analytical data

• Operationalized analytical data

Different usage types require different architectural choices.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Data also needs context

43

• Operational data is the data generated / used by business applications

• Avoid central data stores, embrace eventual consistency and duplication

• Choose your persistence mechanism per context, by form and access type:

• Structured / curated data used for complex queries: RDBS

• Unstructured data queried by ID or as a collection: KVS / DocDB

• High volume / text search: Indexed search engine

• Machine signals / continuous data flow: Time series DB

• Time projections / drill-down: Event store

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Data also needs context

44

• Operational data needs timely performance:

• Be mindful of compound latency

• Use caches if necessary, but be aware of additional complexity

• Embrace CQRS

• Can be implemented via Domain Events, technical events, polling…

• Trade-off between convenience / maintenance cost / readability

• Rule of thumb: Limit write functions to a single instance, but scale

read functions generously

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Data also needs context

45

• Analytical data is a projection (read model) of the operational data

• Used for business insights by:

• Business analysts (to control/oversee, Data Warehouse)

• Data scientists (to explore / discover, Data Lake)

• Both need data from everywhere

• Datasets must be accessible

• Access must be governed (data protection)

• Content must be documented and searchable

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Data also needs context

46

• Remember: Platforms are a dependency!

• Consequently: Data access should be decentralized

• Dataset scope should align with BC

• Curation of data is team responsibility

• Expose datasets to externals via self-service

• Requires metadata and access management

• This is called Data Mesh (Zhamak Dehghani)

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Data also needs context

47

• Operationalized analytical data is needed for AI/ML based decision making

• Data scientists discover ways to predict outcomes or recognize entities

from patterns

• Models are trained from historical data

• Trained models are operationalized as Domain Services for inference on

incoming operational data, become part of business applications

• At this point, they become a BC team responsibility

• Models incur drift and have to be re-trained

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Data also needs context

48

• Manual model training is slow and error-prone

• Also, it creates a dependency on the data science team!

• Automation (MLOps) is a key enabler

• Caution: ML is often biased and unreliable (Abeba Birhane, @abebab)

• This is even more true for automated workflows

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.© 2022, Amazon Web Services, Inc. or its affiliates.

Let’s talk about boundaries (6)

49

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Low Code / No Code – magic?

50

Low Code / No Code services promise rapid results and “focus on business”

• Visual / haptic interfaces

• Often bring their own GUI / logic / persistence / deployment / hosting

• Caution: Quick results often sacrifice long-term sustainability

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Low Code / No Code – magic?

51

Integrated Low Code application platforms target non-programmers

• They usually offer a one–stop-shop solution from concept to release

• Bias towards CRUD type applications

• Pain points:

• Versioning, refactoring, team integration

• Debugging and observability

• Data maintenance and access control

• Rule of thumb: The more visual, the less extensible.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Step Functions

52

Step Functions are meant to be integrated with serverless applications

• “State machine as a service”, event-based

• Caution: These are usually not equivalent to domain events

• Typical workflow patterns, e.g. pipeline, scatter/gather, human in the loop

• Integrates Lambda with many other services

• Visual interface / AWS Console

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Step Functions

53

• Business logic not explicit/separated

• Business rules in visual form / mixed with

infrastructure code

• ”Magic” usually hides complexity, but doesn’t

make it disappear.

My recommendation: Here be dragons. At least

make sure you align with the bounded context.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

DDD in Cloud Native Environments – TL;DR

54

The fundamental principles of DDD still apply:

• The key enabler for scalable, extensible and evolvable systems is knowing where to set

good boundaries.

• To find them, pay attention to language and context.

• Keep domain logic encapsulated and well-tested.

• Avoid dependencies across teams, unless absolutely essential.

• Do extract platforms and standards, but make them optional.

• Caution: Typing is not the bottleneck!

(But Low Code / No Code can be useful when applied thoughtfully)

This is still difficult. To succeed, be prepared to iterate, inspect, and learn.

DDD IN CLOUD NATIVE ENVIRONMENTS

© 2022, Amazon Web Services, Inc. or its affiliates.

Thank you!

© 2022, Amazon Web Services, Inc. or its affiliates.

Tobias Goeschel
Sr Solutions Architect, FSI
Amazon Web Services

tgo@amazon.de
@w3ltraumpirat

mailto:tgo@amazon.de

