dWS

\./‘7

Domain Driven Design in
Cloud Native Environment

ISAQB Architecture Gathering, Nov 17, 2022

Tobias Goeschel (he/him)

Sr Solutions Architect, FSI
Amazon Web Services

tgo@amazon.de
@w3ltraumpirat

mailto:tgo@amazon.de

Say hello to Harry.

DDD IN CLOUD NATIVE ENVIRONMENTS

Say hello to Harry.

German learning course, realized by freiwerk-b for Deutsche Welle

100 episodes / 4 games per ep. / 20 different game types

30 languages (incl. Arabic/right-to-left)

Vocabulary trainer

Fully editable / drag and drop for native speakers / editors

aws
>

DDD IN CLOUD NATIVE ENVIRONMENTS

Say hello to Harry.

* Originally planned 2009/10

* Flash (ActionScript 3), Java, Jboss 4, MySQL

* Accessible version in HTML5 (Apache Wicket)

« CRUD based

- Domain specific language, lots of generated code
« 4 devs, but then it was only me

« This was going to be my big breakthrough

aws
>

DDD IN CLOUD NATIVE ENVIRONMENTS

Say hello to Harry.

« One year in: Editors hate it.
 Full redesign of the editing app.

« Two years in: It doesn't scale.
e Full refactor/rewrite with DDD
 Invented an extension to CSS to enable

content positioning
* Project eventually finished in 2014
« Burnout, 45K debt, got a permanent job

aws
~—

mazon Web Services, Inc. or its affiliates.

DDD IN CLOUD NATIVE ENVIRONMENTS

Say hello to Harry.

| learned a few things:

* | don't actually need other people to screw up the code. | can do that
all by myself.

« The who, why and how of software development is atmest always
more important than the tooling.

| quit the generators. And decided to become an expert for Software

Crafting and DDD instead.

aws
>

DDD IN CLOUD NATIVE ENVIRONMENTS

Why am | telling you all this?

Well, ultimately, it's how | ended up here. pr—

Tobias

@ -

“r)
v HE) o

tgo@

dWS

_/‘7

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. 10

NMENTS
CLOUD NATIVE ENVIRO
DDD IN

into a bar...
DD practitioner walks in
AD

awg’

its affiliates.
Web Services, Inc. or

Amazon

© 2022,

Aws Privateg jny

a-...

AVallability zone A
Ubnet 4

‘"ﬂresstg,ess

Fitering
(2]

AWS Far, gate
Bastion

Shiny trafr

RStUGlo trare

Private subnes 5

Egress
Filtering

AWS Fargage AWS Fargage
i RStugio

g

AMazon Route 5,

/

AWS Transge, Fa

Amazon gpg

mily

AVa3bilty 74y o

Ingress/eg,y o

Public subner 5
Filtering

E—

AWS Fargare
Bastion

NAT Gaterygy

Rstudio tragp

Shiny tragpe

Private

Amazon gcg

Egress.
Filtering

AWS Fargare AWS Farg
Rstugio Shiny

NS Moung

DDD IN CLOUD NATIVE ENVIRONMENTS

A DDD practitioner walks into a bar...

* "Architecture” translates to technical artifacts/products
« Everything is distributed

« Everything is an API

« Everything is billed by consumption

* Everything is ideally a managed service

« Everything is serverless

« Everything is automated

« Everything is secure by default

12

DDD IN CLOUD NATIVE ENVIRONMENTS

A DDD practitioner walks into a bar...

« "Architecture” translatesto t
« Everything is distributed
« Everything is an API

« Everything is billed by cons
« Everything is ideally a ma
« Everything is serverless

« Everything is automated

« Everything is secure by default

13

Let’s talk about boundari‘

aws
~—

al building blocks of a system They influence decision

wy levels, and I‘uesoaal tecy
..;' lf

‘ alwayS be defined r‘ AL
| R N

and polltlc

DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

* A BCs is one possible technical realization of a (sub-) domain.
* A (sub-) domain can be implemented by one or more BCs, but one BC
should not belong to more than one (sub-) domain.
Often not true in legacy / generic / supporting domains!
* One team can own more than one BC, but a BC should not be owned

by more than one team

aws
>

16

DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

 Eric Evans/Vaughn Vernon: Implement BCs as modules (packages)
* Microservices: Implement one pS per BC

 Serverless:

aws

N 2) © 2022, Amazon Web Services, Inc. or its affiliates.

17

DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

« Serverless components are billed by consumption
» They should not be running all the time!
* They must be stateless

« Consider startup times / latency

aws

N 2) © 2022, Amazon Web Services, Inc . or its affiliates.

18

DDD IN CLOUD NATIVE ENVIRONMENTS

Anatomy of a serverless function

Function init .

= Invocation Invocation

Shutdown Function Runtime

shutdown shutdown

aws

N >} 19 © 2022, Amazon Web Services, Inc. or its affiliates.

Extension

shutdown

DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

« Serverless components are billed by consumption

» They should not be running all the time!

They must be stateless

Consider startup times / latency

They should scale automatically — parallelism!

They should be as small as possible (Single Responsibility Principle)

Serverless functions are also billed by # of executions!

aws
>

20

DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

« With all these small, auto-scaled, volatile components, how do we implement
context boundaries?
* Options:
 One VPC per BC?
* Not always allowed, and might incur extra cost
 One account per team OR one account per BC?
« Use Landing Zone / Account Factory to self-service

Platforms are also a dependency!

N 2) © 2022, Amazon Web Services, Inc . or its affiliates. 21

DDD IN CLOUD NATIVE ENVIRONMENTS

Bounded Contexts

But... What about Kubernetes?

 One BC per deployment?

* One BC OR one team per namespace?
* One team per cluster?

Platforms are a dependency!

aws

N

© 2022, Amazon Web Services, Inc. or its affiliates.

22

Let’s talk about boundari‘

aws
~—

£

R R) -7ERG Y T T

R 5 T P) WIS

TR T AR A TR A
YT TN T Y TS R

| _J ey | i

DDD IN CLOUD NATIVE ENVIRONMENTS

Integrations

Anti Corruption Layer
Conformist

Shared Kernel

Octopus

aws
~—

Big Ball of Mud

Open / Host Service

© 2022, Amazon Web Services, Inc. or its affiliates.

Published Language

Partnership

Customer / Supplier

Separate Ways

25

BT
. . SHECH £
ded cont (usually) cannot exist in isolation.

Be auamhatln,tegﬁatlons are equivalent t contrac
comml'ncatlon and |

integration/

| RS) YIS T P

A contract-regutates-both acceptableform |

| T VL Ul A D

he-social dynamics-of the team bounda

e Y

se context' maps to figure out the appropriate kind

ature of contract

DDD IN CLOUD NATIVE ENVIRONMENTS

Integrations

 Integrations can be implemented as public interfaces (e.g. REST,
GraphQL or RPC) ,or via Messaging / Domain Events.

« Use OpenAPI or similar formats to make contracts explicit.

 Use Consumer Driven Contract Tests for documentation, and to
ensure integration correctness.

 This is a high-level variation of the Ports and Adapters pattern (aka

Hexagonal Architecture).

aws

N 2) © 2022, Amazon Web Services, Inc . or its affiliates.

Let’s talk about boundari‘

aws
~—

|ke,:)ackage dé’pM!hi ies '"' ‘ ‘

- &

@em%‘d Menu

DDD IN CLOUD NATIVE ENVIRONMENTS

Anatomy of a serverless function

Event

Context

Invocation Source

Response /
Callback

aws

N >) 30 © 2022, Amazon Web Services, Inc. or its affiliates.

DDD IN CLOUD NATIVE ENVIRONMENTS

Anatomy of a serverless function

Setup dependencies

Lambda Handler
Try / catch
Input Validation

Success

Failure

aws

N 2) 31 © 2022, Amazon Web Services, Inc. or its affiliates.

Product/service initialization

Integration logic

Domain logic

Integration logic

DDD IN CLOUD NATIVE ENVIRONMENTS

Modules

* Lamba/function (application) code should
- wire dependencies
 take care of event and error handling
« map results to appropriate response outputs

But always call validation and business logic from imported modules

aws

N 2) © 2022, Amazon Web Services, Inc . or its affiliates.

32

DDD IN CLOUD NATIVE ENVIRONMENTS

Anatomy of a serverless function

aws
~—

Function-specific

Handler

Context-specific

Domain Core Layer

Shared / Generic

Util Layer

Cloud Infrastructure Layer

Lambda module

Imported modules

DDD IN CLOUD NATIVE ENVIRONMENTS

Modules

* Create a separate layer for your domain core
« Use Hexagonal Architecture to keep it testable, dependency-free,
and well-encapsulated
« Business logic must be shared only within the same BC.
 If teams share common layers, they should only ever be technical /
cross cutting (e.qg., security or infrastructure code)

Overindexing on the DRY principle will slow you down.

aws

N 2) © 2022, Amazon Web Services, Inc . or its affiliates.

34

Let’s talk about boundari‘

aws
~—

@t - @ide

b "
-

3
—
[)

As the saying goes: Feigcés h

akelgood neiqgr

-y

|

!
|

Teams should n*h re infra

lmmlmmunmuumnmmmf (T m\ Mmﬂ HH' I

———

DDD IN CLOUD NATIVE ENVIRONMENTS

Take boundaries seriously

* Shared infrastructure has implications:
 Increased likelihood of side-effects
* Increased blast radius
 Increased need for negotiation
Mind the size and readability
of IaC files

aws
>

37

DDD IN CLOUD NATIVE ENVIRONMENTS

Take boundaries seriously

« Consequently: Align infrastructure with bounded contexts
* Use “Infrastructure as actual code (1aaC)"” (Gregor Hohpe)
 Named variables / outputs increase readability
* Avoid "deployment repositories”

 Include IAM roles/privileges to safeguard context boundaries

aws
>

38

DDD IN CLOUD NATIVE ENVIRONMENTS

Take boundaries seriously

But... What about Kubernetes?
 Align helm charts and deployment descriptors with BC
« Use laaC to execute deployments and integrate with other components
* Prefer self-service over service-team-provisioned clusters
« Use cluster per team/BC to avoid single point of failure and minimize blast
radius

« Consider serverless container offerings

aws

N 2) © 2022, Amazon Web Services, Inc . or its affiliates.

39

DDD IN CLOUD NATIVE ENVIRONMENTS

Take boundaries seriously

« Shared deployment pipelines are a dependency!
|t is okay to use common libraries
« Extract, don't build from scratch!
* Don't enforce as standard
« Self-service is a key element of success

« Avoid gate-keeping and non-essential approvals at all costs

aws

N 2) © 2022, Amazon Web Services, Inc . or its affiliates.

40

Let’s talk about boundari‘

aws
~—

assitied 1nto 5.

PErdtioriat datd

'o'peratnonauzéd analy’*.“cal da"f?-'j*"";?' L

W I

:
- i -_-Af»‘.»,‘-
T 8 B
: ‘r:—.T' 2
th s

ol L
i

C e

7 N
=

DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

« Operational data is the data generated / used by business applications

« Avoid central data stores, embrace eventual consistency and duplication

* Choose your persistence mechanism per context, by form and access type:

aws
>

Structured / curated data used for complex queries: RDBS
Unstructured data queried by ID or as a collection: KVS / DocDB
High volume / text search: Indexed search engine

Machine signals / continuous data flow: Time series DB

Time projections / drill-down: Event store

© 2022, Amazon Web Services, Inc. or its affiliates.

43

DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

« Operational data needs timely performance:
« Be mindful of compound latency
« Use caches if necessary, but be aware of additional complexity
« Embrace CQRS
« Can be implemented via Domain Events, technical events, polling...
« Trade-off between convenience / maintenance cost / readability
« Rule of thumb: Limit write functions to a single instance, but scale

read functions generously

aws
>

DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

« Analytical data is a projection (read model) of the operational data
« Used for business insights by:
« Business analysts (to control/oversee, Data Warehouse)
« Data scientists (to explore / discover, Data Lake)
« Both need data from everywhere
« Datasets must be accessible
« Access must be governed (data protection)

« Content must be documented and searchable

aws

N 2) © 2022, Amazon Web Services, Inc . or its affiliates.

45

DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

Platforms are a dependency!
« Consequently: Data access should be decentralized
« Dataset scope should align with BC
« Curation of data is team responsibility
« Expose datasets to externals via self-service
« Requires metadata and access management

« This is called Data Mesh (Zhamak Dehghani)

aws
>

46

DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

- Operationalized analytical data is needed for Al/ML based decision making
« Data scientists discover ways to predict outcomes or recognize entities
from patterns
* Models are trained from historical data

* Trained models are operationalized as Domain Services for inference on
incoming operational data, become part of business applications
« At this point, they become a BC team responsibility

« Models incur drift and have to be re-trained

aws
N

v

© 2022, Amazon Web Services, Inc. or its affiliates.

DDD IN CLOUD NATIVE ENVIRONMENTS

Data also needs context

* Manual model training is slow and error-prone
* Also, it creates a dependency on the data science team!
« Automation (MLOps) is a key enabler
ML is often biased and unreliable (Abeba Birhane, @abebab)

 This is even more true for automated workflows

aws
>

48

Let’s talk about boundari‘

aws
~—

Low Code / No Code - magic?

L

Low Code / No Code services promise’re plgﬁ ults and “focus on business”
4 = :
- ﬁ _
. Visual / haptic interfaces g Y L.

/ logic per5|s er « %/ hosting

ic?; -~
en sacrifice long LErmTSL staina |l|ty o] x

« Often bring their o

Quick res

++ = 1%

DDD IN CLOUD NATIVE ENVIRONMENTS

Low Code / No Code - magic?

Integrated Low Code application platforms target non-programmers
* They usually offer a one-stop-shop solution from concept to release
« Bias towards CRUD type applications
e Pain points:
« Versioning, refactoring, team integration
« Debugging and observability
« Data maintenance and access control

The more visual, the less extensible.

aws

N 2) © 2022, Amazon Web Services, Inc . or its affiliates.

51

DDD IN CLOUD NATIVE ENVIRONMENTS

Step Functions

Step Functions are meant to be integrated with serverless applications

“State machine as a service”, event-based

These are usually not equivalent to domain events

Typical workflow patterns, e.g. pipeline, scatter/gather, human in the loop

Integrates Lambda with many other services

Visual interface / AWS Console

N 2) © 2022, Amazon Web Services, Inc . or its affiliates. 52

DDD IN CLOUD NATIVE ENVIRONMENTS

Step Functions

« Business logic not explicit/separated

« Business rules in visual form / mixed with
infrastructure code

« "Magic” usually hides complexity, but doesn’'t

make it disappear.

Here be dragons. At least

make sure you align with the bounded context.

N 2) © 2022, Amazon Web Services, Inc. or its affiliates. 53

DDD in Cloud Native Environments -

The fundamental principles of DDD still apply:

The key enabler for scalable, extensible and evolvable ;ystems is knowing where to set

good boundaries. >
- To find th |

y attention to.language and conte

Keep domain logi(:‘“fencapsulated and well-tested.

Avoid dependencies across teams, unless absolutel;s

» Do extract platforms and standards, but make them optional.

Caution: Typing is not the bottleneck!

But Low Code / No Code can be useful when applied thoughtfully)

This is still difficult. To succeed, be prepared to iterate, inspect, and learn.

dWS

\./7

Thank you!

Tobias Goeschel

Sr Solutions Architect, FSI
Amazon Web Services

tgo@amazon.de
@w3ltraumpirat

© 2022, Amazon Web Services, Inc. or its affiliates.

mailto:tgo@amazon.de

