
Building a Console Application in Haskell

Rebecca Skinner

2022-12-07

Prelude

Hello, World

▶ About Me: Rebecca Skinner
▶ Lead Software Engineer at Mercury
▶ Author of Effective Haskell

▶ @cercerilla on Twitter and Cohost
▶ https://rebeccaskinner.net
▶ https://github.com/rebeccaskinner/

https://rebeccaskinner.net
https://github.com/rebeccaskinner/

Effective Haskell

https://tinyurl.com/2744kfu7

Now in Beta!

About This Talk

During this talk we’ll build basic command line tool in Haskell. As we go,
you’ll:

▶ Learn how Haskell programs use IO actions to deal with the real
world

▶ Find out how to do simple terminal and file IO
▶ See examples of how to mix IO and pure functional code effectively
▶ Follow along with implementing pure functional code to work with

text

Most importantly: You’ll get an intuition for how to think about building
Haskell programs that can serve as a basis for future learning.

HCat

HCat: A Haskell Pager

▶ Get a file name from the
command line

▶ Print the contents of the
file to the screen one page
at a time

▶ After showing a page of
text, wait for user input

▶ Format each page so it fits
on the screen

▶ Allow the user to quit at
any time

Starting a New Project

Building HCat

Setting Up Your Development Environment

Installation Use ghcup to install Haskell.

Build Tooling Use cabal to create one project per application you are
building

Editor If you already use emacs or vim keep using them,
otherwise vscode

REPL ghci should be your best friend when you’re learning
Haskell.

Docs Learn hoogle early, and use it often

IDE Tooling HLS with vscode will give you the most IDE-like
experience

Testing Test manually with ghci or use hspec but only test pure
functions.

Linting Use hlint, but feel free to ignore anything you don’t
understand

Setting Up Your Development Environment

Installation Use ghcup to install Haskell.

Build Tooling Use cabal to create one project per application you are
building

Editor If you already use emacs or vim keep using them,
otherwise vscode

REPL ghci should be your best friend when you’re learning
Haskell.

Docs Learn hoogle early, and use it often

IDE Tooling HLS with vscode will give you the most IDE-like
experience

Testing Test manually with ghci or use hspec but only test pure
functions.

Linting Use hlint, but feel free to ignore anything you don’t
understand

Setting Up Your Development Environment

Installation Use ghcup to install Haskell.

Build Tooling Use cabal to create one project per application you are
building

Editor If you already use emacs or vim keep using them,
otherwise vscode

REPL ghci should be your best friend when you’re learning
Haskell.

Docs Learn hoogle early, and use it often

IDE Tooling HLS with vscode will give you the most IDE-like
experience

Testing Test manually with ghci or use hspec but only test pure
functions.

Linting Use hlint, but feel free to ignore anything you don’t
understand

Setting Up Your Development Environment

Installation Use ghcup to install Haskell.

Build Tooling Use cabal to create one project per application you are
building

Editor If you already use emacs or vim keep using them,
otherwise vscode

REPL ghci should be your best friend when you’re learning
Haskell.

Docs Learn hoogle early, and use it often

IDE Tooling HLS with vscode will give you the most IDE-like
experience

Testing Test manually with ghci or use hspec but only test pure
functions.

Linting Use hlint, but feel free to ignore anything you don’t
understand

Setting Up Your Development Environment

Installation Use ghcup to install Haskell.

Build Tooling Use cabal to create one project per application you are
building

Editor If you already use emacs or vim keep using them,
otherwise vscode

REPL ghci should be your best friend when you’re learning
Haskell.

Docs Learn hoogle early, and use it often

IDE Tooling HLS with vscode will give you the most IDE-like
experience

Testing Test manually with ghci or use hspec but only test pure
functions.

Linting Use hlint, but feel free to ignore anything you don’t
understand

Setting Up Your Development Environment

Installation Use ghcup to install Haskell.

Build Tooling Use cabal to create one project per application you are
building

Editor If you already use emacs or vim keep using them,
otherwise vscode

REPL ghci should be your best friend when you’re learning
Haskell.

Docs Learn hoogle early, and use it often

IDE Tooling HLS with vscode will give you the most IDE-like
experience

Testing Test manually with ghci or use hspec but only test pure
functions.

Linting Use hlint, but feel free to ignore anything you don’t
understand

Setting Up Your Development Environment

Installation Use ghcup to install Haskell.

Build Tooling Use cabal to create one project per application you are
building

Editor If you already use emacs or vim keep using them,
otherwise vscode

REPL ghci should be your best friend when you’re learning
Haskell.

Docs Learn hoogle early, and use it often

IDE Tooling HLS with vscode will give you the most IDE-like
experience

Testing Test manually with ghci or use hspec but only test pure
functions.

Linting Use hlint, but feel free to ignore anything you don’t
understand

Setting Up Your Development Environment

Installation Use ghcup to install Haskell.

Build Tooling Use cabal to create one project per application you are
building

Editor If you already use emacs or vim keep using them,
otherwise vscode

REPL ghci should be your best friend when you’re learning
Haskell.

Docs Learn hoogle early, and use it often

IDE Tooling HLS with vscode will give you the most IDE-like
experience

Testing Test manually with ghci or use hspec but only test pure
functions.

Linting Use hlint, but feel free to ignore anything you don’t
understand

Setting Up Your Development Environment

Installation Use ghcup to install Haskell.

Build Tooling Use cabal to create one project per application you are
building

Editor If you already use emacs or vim keep using them,
otherwise vscode

REPL ghci should be your best friend when you’re learning
Haskell.

Docs Learn hoogle early, and use it often

IDE Tooling HLS with vscode will give you the most IDE-like
experience

Testing Test manually with ghci or use hspec but only test pure
functions.

Linting Use hlint, but feel free to ignore anything you don’t
understand

Creating A New Project

It’s best to create a new project for each application. Avoid globally
installed dependencies.

user@host$ cabal init --interactive

As a rule of thumb, each project should define:

▶ One library, named after the project. This is where most of your
code will live

▶ One (or, occasionally, more than one) executable. These usually
have very little code

▶ A test suite
▶ Optionally, benchmarks

Creating A New Project

It’s best to create a new project for each application. Avoid globally
installed dependencies.

user@host$ cabal init --interactive

As a rule of thumb, each project should define:

▶ One library, named after the project. This is where most of your
code will live

▶ One (or, occasionally, more than one) executable. These usually
have very little code

▶ A test suite
▶ Optionally, benchmarks

Creating A New Project

It’s best to create a new project for each application. Avoid globally
installed dependencies.

user@host$ cabal init --interactive

As a rule of thumb, each project should define:

▶ One library, named after the project. This is where most of your
code will live

▶ One (or, occasionally, more than one) executable. These usually
have very little code

▶ A test suite
▶ Optionally, benchmarks

Dependencies

You can browse available packages on hackage. To add a new
dependency to your project, add it to your cabal file.

library
hs-source-dirs: src
exposed-modules: HCat
build-depends: base, directory, process
ghc-options: -Wall
default-language: Haskell2010

Executables and Libraries

It’s common to have a very minimal executable:

module Main where
import HCat (runHCat)

main :: IO ()
main = runHCat

Plus a library is where most code is implemented:

module HCat (runHCat) where

runHCat :: IO ()
runHCat = print "stub"

Why?
▶ Testability
▶ Easy Refactoring
▶ Low overhead to add additional executables

Executables and Libraries

It’s common to have a very minimal executable:

module Main where
import HCat (runHCat)

main :: IO ()
main = runHCat

Plus a library is where most code is implemented:

module HCat (runHCat) where

runHCat :: IO ()
runHCat = print "stub"

Why?
▶ Testability
▶ Easy Refactoring
▶ Low overhead to add additional executables

Executables and Libraries

It’s common to have a very minimal executable:

module Main where
import HCat (runHCat)

main :: IO ()
main = runHCat

Plus a library is where most code is implemented:

module HCat (runHCat) where

runHCat :: IO ()
runHCat = print "stub"

Why?

▶ Testability
▶ Easy Refactoring
▶ Low overhead to add additional executables

Executables and Libraries

It’s common to have a very minimal executable:

module Main where
import HCat (runHCat)

main :: IO ()
main = runHCat

Plus a library is where most code is implemented:

module HCat (runHCat) where

runHCat :: IO ()
runHCat = print "stub"

Why?
▶ Testability
▶ Easy Refactoring
▶ Low overhead to add additional executables

Writing Our First Version

Let’s start with an MVP. We’ll make a program like echo that:

▶ reads the contents of a file
▶ then prints the contents to the screen

There’s just one problem: Haskell is a pure functional language. Doesn’t
that mean no side effects?

Writing Our First Version

Let’s start with an MVP. We’ll make a program like echo that:

▶ reads the contents of a file
▶ then prints the contents to the screen

There’s just one problem: Haskell is a pure functional language. Doesn’t
that mean no side effects?

Understanding IO

The Trouble with IO

Haskell is a pure functional language, but most of the things we want our
programs to do revolve around side effects!

▶ Reading and writing files

▶ Printing text to the screen

▶ Handling user input

The Trouble with IO

Haskell is a pure functional language, but most of the things we want our
programs to do revolve around side effects!

▶ Reading and writing files

▶ Printing text to the screen

▶ Handling user input

The Trouble with IO

Haskell is a pure functional language, but most of the things we want our
programs to do revolve around side effects!

▶ Reading and writing files

▶ Printing text to the screen

▶ Handling user input

The Trouble with IO

Haskell is a pure functional language, but most of the things we want our
programs to do revolve around side effects!

▶ Reading and writing files

▶ Printing text to the screen

▶ Handling user input

A True Color Photo of Side Effects

A side effect in its natural environment.

Can We Have a Little Bit of IO?

What if we cheat just a little?

writeReadFile =
let

_ = writeFile "example.txt" "Hello, Haskell"
fileContents = readFile "example.txt"

in print fileContents

▶ Nothing will happen until we evaluate writeReadFile

▶ When we evaluate writeReadFile we’ll get whatever random
contents were in example.txt

▶ We won’t ever write "Hello, Haskell" to the file, because we’re not
using result of writeFile!

Can We Have a Little Bit of IO?

What if we cheat just a little?

writeReadFile =
let

_ = writeFile "example.txt" "Hello, Haskell"
fileContents = readFile "example.txt"

in print fileContents

▶ Nothing will happen until we evaluate writeReadFile

▶ When we evaluate writeReadFile we’ll get whatever random
contents were in example.txt

▶ We won’t ever write "Hello, Haskell" to the file, because we’re not
using result of writeFile!

Can We Have a Little Bit of IO?

What if we cheat just a little?

writeReadFile =
let

_ = writeFile "example.txt" "Hello, Haskell"
fileContents = readFile "example.txt"

in print fileContents

▶ Nothing will happen until we evaluate writeReadFile

▶ When we evaluate writeReadFile we’ll get whatever random
contents were in example.txt

▶ We won’t ever write "Hello, Haskell" to the file, because we’re not
using result of writeFile!

Can We Have a Little Bit of IO?

What if we cheat just a little?

writeReadFile =
let

_ = writeFile "example.txt" "Hello, Haskell"
fileContents = readFile "example.txt"

in print fileContents

▶ Nothing will happen until we evaluate writeReadFile

▶ When we evaluate writeReadFile we’ll get whatever random
contents were in example.txt

▶ We won’t ever write "Hello, Haskell" to the file, because we’re not
using result of writeFile!

Can We Have a Little Bit of IO?

What if we cheat just a little?

writeReadFile =
let

_ = writeFile "example.txt" "Hello, Haskell"
fileContents = readFile "example.txt"

in print fileContents

▶ Nothing will happen until we evaluate writeReadFile

▶ When we evaluate writeReadFile we’ll get whatever random
contents were in example.txt

▶ We won’t ever write "Hello, Haskell" to the file, because we’re not
using result of writeFile!

Let’s Dream of a Better Way

Let’s dream up a better way

IO, the Lazy Way

If we want to be lazy, we need to work for it by making sure every new
side effect must depend on the previous one.

Sometimes Things Are Easy

In some cases, there is a natural dependency between side effects:

▶ Reading a file, then printing the contents

More often, there isn’t an obvious dependency:

▶ Writing a log message before opening a file
▶ Writing data to a file, then reading the contents
▶ Printing a message to the screen then waiting on user input

Sometimes Things Are Easy

In some cases, there is a natural dependency between side effects:

▶ Reading a file, then printing the contents

More often, there isn’t an obvious dependency:

▶ Writing a log message before opening a file
▶ Writing data to a file, then reading the contents
▶ Printing a message to the screen then waiting on user input

Sometimes Things Are Easy

In some cases, there is a natural dependency between side effects:

▶ Reading a file, then printing the contents

More often, there isn’t an obvious dependency:

▶ Writing a log message before opening a file
▶ Writing data to a file, then reading the contents
▶ Printing a message to the screen then waiting on user input

Sometimes Things Are Easy

In some cases, there is a natural dependency between side effects:

▶ Reading a file, then printing the contents

More often, there isn’t an obvious dependency:

▶ Writing a log message before opening a file
▶ Writing data to a file, then reading the contents
▶ Printing a message to the screen then waiting on user input

A Pointer To The Real World

We needed to sequence our side effects correctly because there’s an
implicit data dependency we haven’t considered: the state of the real
world.

data RealWorld

A Pointer To The Real World

We needed to sequence our side effects correctly because there’s an
implicit data dependency we haven’t considered: the state of the real
world.

data RealWorld

Welcome to the Real World

We can use a reference to the RealWorld to add a dependency between
all of our calls:

writeReadFile world0 =
let

(world1, _) = writeFile world0 "example.txt" "Hello, Haskell"
(world2, fileContents) = readFile world1 "example.txt"

in print world2 fileContents

But it sucks.

Welcome to the Real World

We can use a reference to the RealWorld to add a dependency between
all of our calls:

writeReadFile world0 =
let

(world1, _) = writeFile world0 "example.txt" "Hello, Haskell"
(world2, fileContents) = readFile world1 "example.txt"

in print world2 fileContents

But it sucks.

Welcome to the Real World

We can use a reference to the RealWorld to add a dependency between
all of our calls:

writeReadFile world0 =
let

(world1, _) = writeFile world0 "example.txt" "Hello, Haskell"
(world2, fileContents) = readFile world1 "example.txt"

in print world2 fileContents

But it sucks.

Typing IO Operations

Let’s make a type!

Typing IO Operations

data SideEffect a =
SideEffect { runSideEffects :: RealWorld -> (RealWorld, a) }

Side Effects Are Programs

Think of SideEffect a as a program that returns a value of type a.

SideEffect String : A program that runs and outputs a String

SideEffect Int : A program that runs and outputs an Int

SideEffect programs are not pure functional programs. They rely on,
and change, the RealWorld.

Side Effect Examples

Let’s look at some examples of SideEffect programs. We’ll imagine
some internal helper functions that will do the unsafe low level IO
operations:

readFile :: FilePath -> SideEffect String
readFile filename = SideEffect $ \realWorld ->

let (realWorld', contents) = internalReadFile filename realWorld
in (realWorld', contents)

writeFile :: FilePath -> String -> SideEffect ()
writeFile filename contents = SideEffect $ \realWorld ->

let realWorld' = internalWriteFile filename contents realWorld
in (realWorld', ())

print :: String -> SideEffect ()
print message = SideEffect $ \realWorld ->

let realWorld' = internalPrint message realWorld
in (realWorld', ())

Combining Side Effects

A SideEffect program can do things that have side effects, like reading
from and writing to files, but that’s pretty limiting. We can do a lot more
if we can have a SideEffect program that executes other SideEffect
programs and uses the results.

data SideEffect a =
SideEffect { runSideEffects :: RealWorld -> (RealWorld, a) }

joinSideEffects :: SideEffect (SideEffect a) -> SideEffect a
joinSideEffects outerSideEffect = SideEffect $ \world ->

let (world', innerSideEffect) = runSideEffects outerSideEffect world
in runSideEffects innerSideEffect world'

First One, Then The Other

Most of the time, we want to write a SideEffect program that does one
side effect and then does another one. It turns out that this is just
another way of saying that we have one SideEffect program that calls
the first effect, and uses it’s value to call the second one:

data SideEffect a =
SideEffect { runSideEffects :: RealWorld -> (RealWorld, a) }

sequenceSideEffects :: SideEffect a -> (a -> SideEffect b) -> SideEffect b
sequenceSideEffects sideEffect makeNextSideEffect =

joinSideEffects $ SideEffect $ \world ->
let (world', val) = runSideEffects sideEffect world
in (world', makeNextSideEffect val)

Write, Read, Print

Let’s to to write our program again, using the things we’ve just built:

writeReadFile :: SideEffect ()
writeReadFile =

writeFile "example.txt" "Hello, Haskell"
`sequenceSideEffects` (_ -> readFile "example.txt")
`sequenceSideEffects` (\contents -> print contents)

How does this version compare?

▶ Every side effect depends on its predecessor, so they all happen in
the right order

▶ Our code is focused on the work it needs to do, without having to
explicitly pass around references to the real world

▶ Our code program is still a pure functional program. Instead of doing
side effects directly, we generate a program that would have side
effects if it were run. The programs themselves are still pure values.

Write, Read, Print

Let’s to to write our program again, using the things we’ve just built:

writeReadFile :: SideEffect ()
writeReadFile =

writeFile "example.txt" "Hello, Haskell"
`sequenceSideEffects` (_ -> readFile "example.txt")
`sequenceSideEffects` (\contents -> print contents)

How does this version compare?

▶ Every side effect depends on its predecessor, so they all happen in
the right order

▶ Our code is focused on the work it needs to do, without having to
explicitly pass around references to the real world

▶ Our code program is still a pure functional program. Instead of doing
side effects directly, we generate a program that would have side
effects if it were run. The programs themselves are still pure values.

Write, Read, Print

Let’s to to write our program again, using the things we’ve just built:

writeReadFile :: SideEffect ()
writeReadFile =

writeFile "example.txt" "Hello, Haskell"
`sequenceSideEffects` (_ -> readFile "example.txt")
`sequenceSideEffects` (\contents -> print contents)

How does this version compare?

▶ Every side effect depends on its predecessor, so they all happen in
the right order

▶ Our code is focused on the work it needs to do, without having to
explicitly pass around references to the real world

▶ Our code program is still a pure functional program. Instead of doing
side effects directly, we generate a program that would have side
effects if it were run. The programs themselves are still pure values.

Write, Read, Print

Let’s to to write our program again, using the things we’ve just built:

writeReadFile :: SideEffect ()
writeReadFile =

writeFile "example.txt" "Hello, Haskell"
`sequenceSideEffects` (_ -> readFile "example.txt")
`sequenceSideEffects` (\contents -> print contents)

How does this version compare?

▶ Every side effect depends on its predecessor, so they all happen in
the right order

▶ Our code is focused on the work it needs to do, without having to
explicitly pass around references to the real world

▶ Our code program is still a pure functional program. Instead of doing
side effects directly, we generate a program that would have side
effects if it were run. The programs themselves are still pure values.

That’s Not All

Before we get back to HCat

One more thing

That’s Not All

Before we get back to HCat

One more thing

That’s No Side Effect

That’s No Side Effect

It turns out our imaginary SideEffect type isn’t entirely imaginary.

▶ Instead of SideEffect a we say IO a

▶ Instead of sequenceSideEffects we say »=

▶ Instead of SideEffect program we say IO action

writeReadFile :: IO ()
writeReadFile =

writeFile "example.txt" "Hello, Haskell"
>>= (_ -> readFile "example.txt")
>>= print

That’s No Side Effect

It turns out our imaginary SideEffect type isn’t entirely imaginary.
▶ Instead of SideEffect a we say IO a

▶ Instead of sequenceSideEffects we say »=

▶ Instead of SideEffect program we say IO action

writeReadFile :: IO ()
writeReadFile =

writeFile "example.txt" "Hello, Haskell"
>>= (_ -> readFile "example.txt")
>>= print

That’s No Side Effect

It turns out our imaginary SideEffect type isn’t entirely imaginary.
▶ Instead of SideEffect a we say IO a

▶ Instead of sequenceSideEffects we say »=

▶ Instead of SideEffect program we say IO action

writeReadFile :: IO ()
writeReadFile =

writeFile "example.txt" "Hello, Haskell"
>>= (_ -> readFile "example.txt")
>>= print

That’s No Side Effect

It turns out our imaginary SideEffect type isn’t entirely imaginary.
▶ Instead of SideEffect a we say IO a

▶ Instead of sequenceSideEffects we say »=

▶ Instead of SideEffect program we say IO action

writeReadFile :: IO ()
writeReadFile =

writeFile "example.txt" "Hello, Haskell"
>>= (_ -> readFile "example.txt")
>>= print

That’s No Side Effect

It turns out our imaginary SideEffect type isn’t entirely imaginary.
▶ Instead of SideEffect a we say IO a

▶ Instead of sequenceSideEffects we say »=

▶ Instead of SideEffect program we say IO action

writeReadFile :: IO ()
writeReadFile =

writeFile "example.txt" "Hello, Haskell"
>>= (_ -> readFile "example.txt")
>>= print

To do List

Writing a long chain of calls to »= gets tiresome. Instead we can use do
notation:

writeReadFile :: IO ()
writeReadFile = do

writeFile "example.txt" "Hello, Haskell"
contents <- readFile "example.txt"
print contents

▶ Each line in a do block corresponds to »=

▶ The <- arrow names the output of an IO action

▶ When we run a Haskell program, the initial state of the real world is
used to run an IO action named main.

To do List

Writing a long chain of calls to »= gets tiresome. Instead we can use do
notation:

writeReadFile :: IO ()
writeReadFile = do

writeFile "example.txt" "Hello, Haskell"
contents <- readFile "example.txt"
print contents

▶ Each line in a do block corresponds to »=

▶ The <- arrow names the output of an IO action

▶ When we run a Haskell program, the initial state of the real world is
used to run an IO action named main.

To do List

Writing a long chain of calls to »= gets tiresome. Instead we can use do
notation:

writeReadFile :: IO ()
writeReadFile = do

writeFile "example.txt" "Hello, Haskell"
contents <- readFile "example.txt"
print contents

▶ Each line in a do block corresponds to »=

▶ The <- arrow names the output of an IO action

▶ When we run a Haskell program, the initial state of the real world is
used to run an IO action named main.

To do List

Writing a long chain of calls to »= gets tiresome. Instead we can use do
notation:

writeReadFile :: IO ()
writeReadFile = do

writeFile "example.txt" "Hello, Haskell"
contents <- readFile "example.txt"
print contents

▶ Each line in a do block corresponds to »=

▶ The <- arrow names the output of an IO action

▶ When we run a Haskell program, the initial state of the real world is
used to run an IO action named main.

HCat

Return of the HCat

Back To The Code

Now that we understand how to write code that has side effects and
interacts with the real world, let’s put it to practice with an MVP:

module Main where

runHCat :: IO ()
main = readFile "example.txt" >>= putStrLn

Back To The Code

Now that we understand how to write code that has side effects and
interacts with the real world, let’s put it to practice with an MVP:

module Main where

runHCat :: IO ()
main = readFile "example.txt" >>= putStrLn

The M-est of MVPs

Success! we can read a file and print it out to the screen!

. . . but only a single hard-coded file

. . . and it’s not actually paginated

. . . or formatted for our terminal window

Let’s take one problem at a time

The M-est of MVPs

Success! we can read a file and print it out to the screen!

. . . but only a single hard-coded file

. . . and it’s not actually paginated

. . . or formatted for our terminal window

Let’s take one problem at a time

The M-est of MVPs

Success! we can read a file and print it out to the screen!

. . . but only a single hard-coded file

. . . and it’s not actually paginated

. . . or formatted for our terminal window

Let’s take one problem at a time

The M-est of MVPs

Success! we can read a file and print it out to the screen!

. . . but only a single hard-coded file

. . . and it’s not actually paginated

. . . or formatted for our terminal window

Let’s take one problem at a time

The M-est of MVPs

Success! we can read a file and print it out to the screen!

. . . but only a single hard-coded file

. . . and it’s not actually paginated

. . . or formatted for our terminal window

Let’s take one problem at a time

Getting Into Arguments

we need to deal with arguments

Getting Into Arguments

We can use getArgs to get command line arguments, but we’ll need to
deal with user errors.

module HCat where
import System.Environment

targetFileName :: IO FilePath
targetFileName = do

args <- getArgs
case args of

[filename] ->
pure filename

_otherwise ->
ioError $ userError "please provide a single filename"

runHCat :: IO ()
runHCat = do

contents <- readFile =<< targetFileName
putStrLn contents

Getting Into Arguments

We can use getArgs to get command line arguments, but we’ll need to
deal with user errors.

module HCat where
import System.Environment

targetFileName :: IO FilePath
targetFileName = do

args <- getArgs
case args of

[filename] ->
pure filename

_otherwise ->
ioError $ userError "please provide a single filename"

runHCat :: IO ()
runHCat = do

contents <- readFile =<< targetFileName
putStrLn contents

I Am Error

Dealing with errors in IO actions can be complicated because there are a
lot of options:

▶ Plain IO Errors
▶ Using Either or Maybe values for failure
▶ Custom exceptions
▶ Monad Transformers

Opinion: Getting too fancy too early will cause more problems than it
solves. Start with the simplest thing that can possibly work.

I Am Error

Dealing with errors in IO actions can be complicated because there are a
lot of options:

▶ Plain IO Errors
▶ Using Either or Maybe values for failure
▶ Custom exceptions
▶ Monad Transformers

Opinion: Getting too fancy too early will cause more problems than it
solves. Start with the simplest thing that can possibly work.

I Am Error

Dealing with errors in IO actions can be complicated because there are a
lot of options:

▶ Plain IO Errors
▶ Using Either or Maybe values for failure
▶ Custom exceptions
▶ Monad Transformers

Opinion: Getting too fancy too early will cause more problems than it
solves. Start with the simplest thing that can possibly work.

What About Libraries?

Why parse arguments directly instead of using a library?

▶ Handling arguments yourself is good practice while learning
▶ Some good libraries use language features you probably haven’t

learned yet

What About Libraries?

Why parse arguments directly instead of using a library?

▶ Handling arguments yourself is good practice while learning
▶ Some good libraries use language features you probably haven’t

learned yet

Terminal Size

The size of our terminal will determine our page count. We can get the
terminal size with the tput program on *nix systems.

module HCat where
import System.Process
data TerminalDimension = TerminalLines | TerminalCols
data ScreenDimensions =

ScreenDimensions {screenRows :: Int, screenColumns :: Int}

getTerminalSize :: IO ScreenDimensions
getTerminalSize = do

termLines <- tput TerminalLines
termCols <- tput TerminalCols
pure ScreenDimensions

{ screenRows = termLines
, screenColumns = termCols }

tput :: TerminalDimension -> IO Int
tput dimension = do

outputData <- readProcess "tput" [cmd] ""
pure . read . head . lines $ outputData
where

cmd = case dimension of
TerminalLines -> "lines"
TerminalCols -> "cols"

Terminal Size

The size of our terminal will determine our page count. We can get the
terminal size with the tput program on *nix systems.

module HCat where
import System.Process
data TerminalDimension = TerminalLines | TerminalCols
data ScreenDimensions =

ScreenDimensions {screenRows :: Int, screenColumns :: Int}

getTerminalSize :: IO ScreenDimensions
getTerminalSize = do

termLines <- tput TerminalLines
termCols <- tput TerminalCols
pure ScreenDimensions

{ screenRows = termLines
, screenColumns = termCols }

tput :: TerminalDimension -> IO Int
tput dimension = do

outputData <- readProcess "tput" [cmd] ""
pure . read . head . lines $ outputData
where

cmd = case dimension of
TerminalLines -> "lines"
TerminalCols -> "cols"

Word Wrapping

Given the size of our terminal, we can wrap the text to fit.

wordWrap :: Int -> String -> [String]
wordWrap lineLength lineText =

case splitAt lineLength lineText of
(fullLine, "") -> [fullLine]
(hardwrappedLine, rest) ->

let (nextLine, remainder) = softWrap hardwrappedLine
in nextLine : wordWrap lineLength (remainder <> rest)

where
softWrap hardWrapped =

let (rest, wrappedText) = break isSpace $ reverse hardWrapped
in (reverse wrappedText, reverse rest)

runHCat :: IO ()
runHCat = do

contents <- readFile =<< targetFileName
termSize <- getTerminalSize
let wrapped = wordWrap (screenColumns termSize) contents
putStrLn $ unlines wrapped

Word Wrapping

Given the size of our terminal, we can wrap the text to fit.

wordWrap :: Int -> String -> [String]
wordWrap lineLength lineText =

case splitAt lineLength lineText of
(fullLine, "") -> [fullLine]
(hardwrappedLine, rest) ->

let (nextLine, remainder) = softWrap hardwrappedLine
in nextLine : wordWrap lineLength (remainder <> rest)

where
softWrap hardWrapped =

let (rest, wrappedText) = break isSpace $ reverse hardWrapped
in (reverse wrappedText, reverse rest)

runHCat :: IO ()
runHCat = do

contents <- readFile =<< targetFileName
termSize <- getTerminalSize
let wrapped = wordWrap (screenColumns termSize) contents
putStrLn $ unlines wrapped

Architecture

A Lesson On Building Things

Let’s talk about Architecture

A Tale of Two Word Wraps

We only need the terminal width to word wrap. Maybe we should
combine them?

wordWrap :: String -> IO [String]
wordWrap lineText = do

lineLength <- tput TerminalCols
case splitAt lineLength lineText of

(fullLine, "") ->
pure [fullLine]

(hardwrappedLine, rest) -> do
let (nextLine, remainder) = softWrap hardwrappedLine
wrappedRemainder <- wordWrap (remainder <> rest)
pure (nextLine : wrappedRemainder)

where
softWrap hardWrapped =

let (rest, wrappedText) = break isSpace $ reverse hardWrapped
in (reverse wrappedText, reverse rest)

A Tale of Two Word Wraps

We only need the terminal width to word wrap. Maybe we should
combine them?

wordWrap :: String -> IO [String]
wordWrap lineText = do

lineLength <- tput TerminalCols
case splitAt lineLength lineText of

(fullLine, "") ->
pure [fullLine]

(hardwrappedLine, rest) -> do
let (nextLine, remainder) = softWrap hardwrappedLine
wrappedRemainder <- wordWrap (remainder <> rest)
pure (nextLine : wrappedRemainder)

where
softWrap hardWrapped =

let (rest, wrappedText) = break isSpace $ reverse hardWrapped
in (reverse wrappedText, reverse rest)

A Tale of Two Word Wraps

Coming from impure languages, mixing IO and pure code feels natural:

▶ Hides implementation details about getting the terminal width

▶ Provides a simpler and more automated API

▶ Doesn’t create “extra” functions

Unfortunately. . .

▶ It can only be called by other IO actions

▶ We don’t know what it might do. Perhaps it makes a network
request to a word wrap server?

▶ We’ll have a harder time testing it

A Tale of Two Word Wraps

Coming from impure languages, mixing IO and pure code feels natural:
▶ Hides implementation details about getting the terminal width

▶ Provides a simpler and more automated API

▶ Doesn’t create “extra” functions

Unfortunately. . .

▶ It can only be called by other IO actions

▶ We don’t know what it might do. Perhaps it makes a network
request to a word wrap server?

▶ We’ll have a harder time testing it

A Tale of Two Word Wraps

Coming from impure languages, mixing IO and pure code feels natural:
▶ Hides implementation details about getting the terminal width

▶ Provides a simpler and more automated API

▶ Doesn’t create “extra” functions

Unfortunately. . .

▶ It can only be called by other IO actions

▶ We don’t know what it might do. Perhaps it makes a network
request to a word wrap server?

▶ We’ll have a harder time testing it

A Tale of Two Word Wraps

Coming from impure languages, mixing IO and pure code feels natural:
▶ Hides implementation details about getting the terminal width

▶ Provides a simpler and more automated API

▶ Doesn’t create “extra” functions

Unfortunately. . .

▶ It can only be called by other IO actions

▶ We don’t know what it might do. Perhaps it makes a network
request to a word wrap server?

▶ We’ll have a harder time testing it

A Tale of Two Word Wraps

Coming from impure languages, mixing IO and pure code feels natural:
▶ Hides implementation details about getting the terminal width

▶ Provides a simpler and more automated API

▶ Doesn’t create “extra” functions

Unfortunately. . .

▶ It can only be called by other IO actions

▶ We don’t know what it might do. Perhaps it makes a network
request to a word wrap server?

▶ We’ll have a harder time testing it

A Tale of Two Word Wraps

Coming from impure languages, mixing IO and pure code feels natural:
▶ Hides implementation details about getting the terminal width

▶ Provides a simpler and more automated API

▶ Doesn’t create “extra” functions

Unfortunately. . .

▶ It can only be called by other IO actions

▶ We don’t know what it might do. Perhaps it makes a network
request to a word wrap server?

▶ We’ll have a harder time testing it

A Tale of Two Word Wraps

Coming from impure languages, mixing IO and pure code feels natural:
▶ Hides implementation details about getting the terminal width

▶ Provides a simpler and more automated API

▶ Doesn’t create “extra” functions

Unfortunately. . .

▶ It can only be called by other IO actions

▶ We don’t know what it might do. Perhaps it makes a network
request to a word wrap server?

▶ We’ll have a harder time testing it

A Tale of Two Word Wraps

Coming from impure languages, mixing IO and pure code feels natural:
▶ Hides implementation details about getting the terminal width

▶ Provides a simpler and more automated API

▶ Doesn’t create “extra” functions

Unfortunately. . .

▶ It can only be called by other IO actions

▶ We don’t know what it might do. Perhaps it makes a network
request to a word wrap server?

▶ We’ll have a harder time testing it

The Lesson

As much as possible, have IO actions gather data then pass it into pure
functions for computation.

Procedural Shell, Functional Core

The "procedural shell, functional core" model is an over-simplification of a good guideline

Happy Little Trees

IO Actions and pure functions more closely resemble a tree

Back to HCat

Back to HCat

Back to our regularly scheduled HCat Presentation

Pagination

Our pager has one big problem right now: It doesn’t paginate.

paginate :: ScreenDimensions -> String -> [String]
paginate dimensions text = pages

where
rows = screenRows dimensions
cols = screenColumns dimensions
wrappedLines = concatMap (wordWrap cols) (lines text)
pages = map (unlines . padTo rows) $ groupsOf rows wrappedLines
padTo lineCount rowsToPad =

take lineCount $ rowsToPad <> repeat ""
groupsOf n elems

| null elems = []
| otherwise =

let (hd, tl) = splitAt n elems
in hd : groupsOf n tl

Pagination

Our pager has one big problem right now: It doesn’t paginate.

paginate :: ScreenDimensions -> String -> [String]
paginate dimensions text = pages

where
rows = screenRows dimensions
cols = screenColumns dimensions
wrappedLines = concatMap (wordWrap cols) (lines text)
pages = map (unlines . padTo rows) $ groupsOf rows wrappedLines
padTo lineCount rowsToPad =

take lineCount $ rowsToPad <> repeat ""
groupsOf n elems

| null elems = []
| otherwise =

let (hd, tl) = splitAt n elems
in hd : groupsOf n tl

The Event Loop

If we want to show our user a page at a time, we need to do a few things:

▶ Get some user input

▶ Loop over each page, displaying them

▶ Exit cleanly if the user wants to quit

The Event Loop

If we want to show our user a page at a time, we need to do a few things:

▶ Get some user input

▶ Loop over each page, displaying them

▶ Exit cleanly if the user wants to quit

The Event Loop

If we want to show our user a page at a time, we need to do a few things:

▶ Get some user input

▶ Loop over each page, displaying them

▶ Exit cleanly if the user wants to quit

The Event Loop

If we want to show our user a page at a time, we need to do a few things:

▶ Get some user input

▶ Loop over each page, displaying them

▶ Exit cleanly if the user wants to quit

Getting User Input

data ContinueCancel
= Continue
| Cancel
deriving stock (Eq, Show)

getContinue :: IO ContinueCancel
getContinue = do

hSetBuffering stdin NoBuffering
hSetEcho stdin False
input <- getChar
case input of

' ' -> return Continue
'q' -> return Cancel
_ -> getContinue

Taking User Input for a Loop

IO actions feel like a procedural language. Sometimes it’s tempting to
fall back on familiar patterns. We even have access to things like for
loops that make it easier to think this way.

showPages :: [String] -> IO ()
showPages allPages =

for_ allPages $ \page -> do
putStr "\^[[1J\^[[1;1H"
putStr page
cont <- getContinue
-- ...

Unfortunately, this can make things more difficult instead of easier.

Taking User Input for a Loop

IO actions feel like a procedural language. Sometimes it’s tempting to
fall back on familiar patterns. We even have access to things like for
loops that make it easier to think this way.

showPages :: [String] -> IO ()
showPages allPages =

for_ allPages $ \page -> do
putStr "\^[[1J\^[[1;1H"
putStr page
cont <- getContinue
-- ...

Unfortunately, this can make things more difficult instead of easier.

Taking User Input for a Loop

IO actions feel like a procedural language. Sometimes it’s tempting to
fall back on familiar patterns. We even have access to things like for
loops that make it easier to think this way.

showPages :: [String] -> IO ()
showPages allPages =

for_ allPages $ \page -> do
putStr "\^[[1J\^[[1;1H"
putStr page
cont <- getContinue
-- ...

Unfortunately, this can make things more difficult instead of easier.

Recursive IO Actions

You can use recursion in IO actions just like you would for pure functions.

showPages :: [String] -> IO ()
showPages [] = pure ()
showPages (page:pages) = do

putStr "\^[[1J\^[[1;1H"
putStr page
cont <- if null pages

then pure Cancel
else getContinue

when (Continue == cont) $
showPages pages

This is a good starting spot for implementing the effectful logic in your
programs.

Recursive IO Actions

You can use recursion in IO actions just like you would for pure functions.

showPages :: [String] -> IO ()
showPages [] = pure ()
showPages (page:pages) = do

putStr "\^[[1J\^[[1;1H"
putStr page
cont <- if null pages

then pure Cancel
else getContinue

when (Continue == cont) $
showPages pages

This is a good starting spot for implementing the effectful logic in your
programs.

Recursive IO Actions

You can use recursion in IO actions just like you would for pure functions.

showPages :: [String] -> IO ()
showPages [] = pure ()
showPages (page:pages) = do

putStr "\^[[1J\^[[1;1H"
putStr page
cont <- if null pages

then pure Cancel
else getContinue

when (Continue == cont) $
showPages pages

This is a good starting spot for implementing the effectful logic in your
programs.

Continued Action

As your programs grow, it’s a good idea to think about making your IO
actions compose. This can make your code a bit more verbose at first,
but it buys you flexibility later.

Continued Action

onContinue lets us to do any IO action when the user continues:

onContinue :: IO () -> IO ()
onContinue ioAction = do

cont <- getContinue
case cont of

Cancel -> pure ()
Continue -> ioAction

forPages separates looping application logic with a continuation:

forPages :: (String -> IO ()) -> [String] -> IO ()
forPages ioAction pages =

case pages of
[] -> pure ()
(page:rest) -> do

ioAction page
onContinue (forPages ioAction rest)

showPages composes benefits from the work we’ve done

showPages :: [String] -> IO ()
showPages = forPages $ \page -> do

putStr "\^[[1J\^[[1;1H"
putStr page

Continued Action

onContinue lets us to do any IO action when the user continues:

onContinue :: IO () -> IO ()
onContinue ioAction = do

cont <- getContinue
case cont of

Cancel -> pure ()
Continue -> ioAction

forPages separates looping application logic with a continuation:

forPages :: (String -> IO ()) -> [String] -> IO ()
forPages ioAction pages =

case pages of
[] -> pure ()
(page:rest) -> do

ioAction page
onContinue (forPages ioAction rest)

showPages composes benefits from the work we’ve done

showPages :: [String] -> IO ()
showPages = forPages $ \page -> do

putStr "\^[[1J\^[[1;1H"
putStr page

Continued Action

onContinue lets us to do any IO action when the user continues:

onContinue :: IO () -> IO ()
onContinue ioAction = do

cont <- getContinue
case cont of

Cancel -> pure ()
Continue -> ioAction

forPages separates looping application logic with a continuation:

forPages :: (String -> IO ()) -> [String] -> IO ()
forPages ioAction pages =

case pages of
[] -> pure ()
(page:rest) -> do

ioAction page
onContinue (forPages ioAction rest)

showPages composes benefits from the work we’ve done

showPages :: [String] -> IO ()
showPages = forPages $ \page -> do

putStr "\^[[1J\^[[1;1H"
putStr page

Continued Action

onContinue lets us to do any IO action when the user continues:

onContinue :: IO () -> IO ()
onContinue ioAction = do

cont <- getContinue
case cont of

Cancel -> pure ()
Continue -> ioAction

forPages separates looping application logic with a continuation:

forPages :: (String -> IO ()) -> [String] -> IO ()
forPages ioAction pages =

case pages of
[] -> pure ()
(page:rest) -> do

ioAction page
onContinue (forPages ioAction rest)

showPages composes benefits from the work we’ve done

showPages :: [String] -> IO ()
showPages = forPages $ \page -> do

putStr "\^[[1J\^[[1;1H"
putStr page

Continued Action

onContinue lets us to do any IO action when the user continues:

onContinue :: IO () -> IO ()
onContinue ioAction = do

cont <- getContinue
case cont of

Cancel -> pure ()
Continue -> ioAction

forPages separates looping application logic with a continuation:

forPages :: (String -> IO ()) -> [String] -> IO ()
forPages ioAction pages =

case pages of
[] -> pure ()
(page:rest) -> do

ioAction page
onContinue (forPages ioAction rest)

showPages composes benefits from the work we’ve done

showPages :: [String] -> IO ()
showPages = forPages $ \page -> do

putStr "\^[[1J\^[[1;1H"
putStr page

Continued Action

onContinue lets us to do any IO action when the user continues:

onContinue :: IO () -> IO ()
onContinue ioAction = do

cont <- getContinue
case cont of

Cancel -> pure ()
Continue -> ioAction

forPages separates looping application logic with a continuation:

forPages :: (String -> IO ()) -> [String] -> IO ()
forPages ioAction pages =

case pages of
[] -> pure ()
(page:rest) -> do

ioAction page
onContinue (forPages ioAction rest)

showPages composes benefits from the work we’ve done

showPages :: [String] -> IO ()
showPages = forPages $ \page -> do

putStr "\^[[1J\^[[1;1H"
putStr page

Putting It All Together

runHCat :: IO ()
runHCat = do

contents <- readFile =<< targetFileName
termSize <- getTerminalSize
showPages $ paginate termSize contents

Questions?

Questions?

Want to know more?

Follow the QR Code for a chance to win a copy of Effective Haskell.

	Prelude
	Starting a New Project
	Understanding IO
	HCat
	Architecture
	Back to HCat
	Questions?

