
A monadic DSL for 
Distributed Persistent 
Processes (workflows)
(Inspiration from Unix processes)
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HELLO!
I am Rahul Korthiwada  

I work on systems engineering and 
building frameworks at Juspay. 

You can find me at 
@rahulKorthiwada
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● About Juspay: 1M LoC of Haskell code. 500+ fresher 
engineers learning and using Haskell everyday! We chose 
Haskell is to build DSLs like what Alan Kay talks about in his 
vision for programming & scaling. 

● Problem: Workflows (Distributed Persistent processes) is a 
complex but pervasive need across varied use cases in 
Juspay. Can a Haskell DSL really simplify this?
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● Building a “custom CI/CD” release and monitoring pipeline for our 
SDK release that should be pushed to 300M devices 

● Ensure Reliability, Visibility & Agility in evolution of this system.

Let’s take an example problem



startBusinessFlow :: RT.ReleaseTracker -> L.Flow Common.ConsumerResp

startBusinessFlow releaseTracker =

   case releaseTracker ^. RT.event_status of

       ES.START               -> startFlow releaseTracker

       ES.WAITING_FOR_AB_PODS -> waitingForABFlow releaseTracker

       ES.STAGGERING          -> monitoringFlow releaseTracker

       ES.STAGGERING_FULL     -> staggeringFullFlow releaseTracker

       ES.POST_MONITORING     -> postMonitoringFlow releaseTracker

       ES.STABILIZE           -> stabilizationFlow releaseTracker

       ES.DONE                -> doneFlow releaseTracker

       ES.ABORTING            -> abortReleaseFlow releaseTracker Nothing

       ES.ABORTED             -> Logger.logAPIDebug "Release Tracker already aborted"

                                   releaseId $> Common.ConsumerResp 

                                                 { releaseId = releaseId,

                                                   execStatus = "RELEASE_ABORTED" }

       _                      -> Logger.logAPIDebug "Not a Proper Business Status"  

   releaseId $> Common.ConsumerResp {releaseId = releaseId, execStatus =

                                       "RELEASE_NOT_IN_CONSUMER_FLOW"}

   where

      releaseId = releaseTracker ^. RT.release_id

The old code (a typical state machine)

● Difficult to reason about as there 
is no top down structure.

● Too flexible and prone to bugs

● More effort to implement and 
maintain.

Issues



The Ideal system - Goals

Hide the complexity of distributed execution of the 
process but still provide good debuggability and 
traceability. 

Learn from the Linux process interface and design a DSL for the use 
cases of a distributed, long running process. 

DSL Needs:

● Wait for a timeout / external event (for hours/days)

● Loops & retries with checkpoints (running across machines)

● Reliable Exception handling (system and business failures)

● Fork & Join (schedule new child processes across hosts)
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How it should be

liveWorkflow ::  Deployment -> RT.ReleaseTracker -> L.Flow ConsumerResp
liveWorkflow dpmt rt = runExceptT do

       cpr ES.START startAB

       cpr ES.WAITING_FOR_AB_PODS checkABPodStatus

       cpr ES.START_RELEASE startRelease

       cpr ES.STAGGERING increaseStagger

       cpr ES.STAGGERING_FULL startPostReleaseAB

       cpr ES.POST_MONITORING moveToStabilize

       cpr ES.STABILIZE stabilize

       cpr ES.DONE done
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How did we implement this.. (monad)

● Use Monad’s Computation Box to Store the features you want..

● For Checkpointing…

❏ We need a State Monad for storing the computed value of each statement

❏ And a Getter / Skip Function to verify if the instruction is executed or not and return the 

computed value.

● For Global Error Handling.. Use a Except Monad.. 
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How did we implement this.. (systems)
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State management using Checkpoints

data Recorded s m a = Recorded

{ inner :: StateT s m a

, getter :: s -> Maybe a }

● s    -> State which stores the computed value of each step.. 

● inner  -> instruction to be executed… (over state monad.. So that we can store the computed values info in state)

● getter -> A Getter Function.. Which takes the precomputed state and returns the computed value of the instruction.. 

If it is already executed.. (Maybe a)... 
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Retries, Parallel flows, Join flows etc.

     type WorkFlow m e = Except Me (Recorded s m)

s :- State for Storing each flow

e :- Error Type

m :- Your Base Monad

● Instruction Level Checkpointing

● Skipping Executed Instructions in a Distributed Environment

● Multiple Iterations of a Single Instruction..

● Generic error handler



Workflow Retries-Schedules

continueIf

 :: (Monad m, Monoid e)

 => (s -> Bool)

 -> WorkFlow s m e ()

continueIf predicate =

 lift get >>= guard . predicate

elsePerform

 :: (MonadIO m, ToJSON s)

 => (s -> Maybe a)

 -> StateT s m a

 -> Recorded s m a

elsePerform =

 flip (recordedWithPersisted 

noStatePersist)

 where

 noStatePersist = const (pure ())

scheduleAfter

 :: (MonadIO m, ToJSON a)

 => NominalDiffTime

 -> WorkFlow (PTState a) m e ()

scheduleAfter after =

 lift $

   const Nothing `elsePerform` 

changeScheduleTime

 where

   changeScheduleTime =

     nextScheduleTime <~ (Just . addUTCTime 

after <$> liftIO getCurrentTime)



Workflow Looping
loopEveryUntil
 :: (MonadIO m, ToJSON a, Hashable a, FromJSON a)
 => NominalDiffTime
 -> (b -> Bool) --Should it be a (State -> Bool) or (b -> Bool) ?
 -> Maybe Int -- max iterations
 -> WorkFlow (PTState a) m e b
 -> WorkFlow (PTState a) m (WorkFlowError e) b
loopEveryUntil after predicate maybeMaxRetries wf =
 do
   b <- withExceptT DomainErr wf
   if predicate b -- done
     then do
       retryingStatus .= Nothing
       pure b
     else do
       maybe
         (scheduleAfter after) -- No limit on retries. Seriously ??
         (\maxRetries -> do
            retriesDone <- gets (fromMaybe 0 . preview (retryingStatus._Just))
            if (retriesDone <= maxRetries)
              then do
                retryingStatus .= Just (retriesDone + 1)
                scheduleAfter after
              else
                gets (view (domainState.re _JSON')) >>= except . Left . PTError . MaxRetriesReachedWith)
         maybeMaxRetries
       empty



Reliable Exception Handling

handleError :: ErrorType -> L.Flow Response

handleError = \case

   DB_ERROR -> scheduleAfter5mins *> pure err500Response

   INTERNAL_ERROR -> pauseRelease *> pure err500Response

   MJOS_ERROR -> pauseRelease *> pure err500Response

   ..



● Distributed tracing for debugging

● Increase availability and scaling with Kafka integration

● Build helper libraries for DevOps use cases - for kubernetes, 
envoy releases etc.

● Migrate older payment workflows to this system & test at 
scale (our existing workflows process millions of txns / day)

● Refactor and open source it
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Future direction



Q & A ?
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Thank you 

17


