
A monadic DSL for
Distributed Persistent
Processes (workflows)
(Inspiration from Unix processes)

1

HELLO!
I am Rahul Korthiwada

I work on systems engineering and
building frameworks at Juspay.

You can find me at
@rahulKorthiwada

3

● About Juspay: 1M LoC of Haskell code. 500+ fresher
engineers learning and using Haskell everyday! We chose
Haskell is to build DSLs like what Alan Kay talks about in his
vision for programming & scaling.

● Problem: Workflows (Distributed Persistent processes) is a
complex but pervasive need across varied use cases in
Juspay. Can a Haskell DSL really simplify this?

4

● Building a “custom CI/CD” release and monitoring pipeline for our
SDK release that should be pushed to 300M devices

● Ensure Reliability, Visibility & Agility in evolution of this system.

Let’s take an example problem

startBusinessFlow :: RT.ReleaseTracker -> L.Flow Common.ConsumerResp

startBusinessFlow releaseTracker =

 case releaseTracker ^. RT.event_status of

 ES.START -> startFlow releaseTracker

 ES.WAITING_FOR_AB_PODS -> waitingForABFlow releaseTracker

 ES.STAGGERING -> monitoringFlow releaseTracker

 ES.STAGGERING_FULL -> staggeringFullFlow releaseTracker

 ES.POST_MONITORING -> postMonitoringFlow releaseTracker

 ES.STABILIZE -> stabilizationFlow releaseTracker

 ES.DONE -> doneFlow releaseTracker

 ES.ABORTING -> abortReleaseFlow releaseTracker Nothing

 ES.ABORTED -> Logger.logAPIDebug "Release Tracker already aborted"

 releaseId $> Common.ConsumerResp

 { releaseId = releaseId,

 execStatus = "RELEASE_ABORTED" }

 _ -> Logger.logAPIDebug "Not a Proper Business Status"

 releaseId $> Common.ConsumerResp {releaseId = releaseId, execStatus =

 "RELEASE_NOT_IN_CONSUMER_FLOW"}

 where

 releaseId = releaseTracker ^. RT.release_id

The old code (a typical state machine)

● Difficult to reason about as there
is no top down structure.

● Too flexible and prone to bugs

● More effort to implement and
maintain.

Issues

The Ideal system - Goals

Hide the complexity of distributed execution of the
process but still provide good debuggability and
traceability.

Learn from the Linux process interface and design a DSL for the use
cases of a distributed, long running process.

DSL Needs:

● Wait for a timeout / external event (for hours/days)

● Loops & retries with checkpoints (running across machines)

● Reliable Exception handling (system and business failures)

● Fork & Join (schedule new child processes across hosts)

7

How it should be

liveWorkflow :: Deployment -> RT.ReleaseTracker -> L.Flow ConsumerResp
liveWorkflow dpmt rt = runExceptT do

 cpr ES.START startAB

 cpr ES.WAITING_FOR_AB_PODS checkABPodStatus

 cpr ES.START_RELEASE startRelease

 cpr ES.STAGGERING increaseStagger

 cpr ES.STAGGERING_FULL startPostReleaseAB

 cpr ES.POST_MONITORING moveToStabilize

 cpr ES.STABILIZE stabilize

 cpr ES.DONE done

8

How did we implement this.. (monad)

● Use Monad’s Computation Box to Store the features you want..

● For Checkpointing…

❏ We need a State Monad for storing the computed value of each statement

❏ And a Getter / Skip Function to verify if the instruction is executed or not and return the

computed value.

● For Global Error Handling.. Use a Except Monad..

9

How did we implement this.. (systems)

10

State management using Checkpoints

data Recorded s m a = Recorded

{ inner :: StateT s m a

, getter :: s -> Maybe a }

● s -> State which stores the computed value of each step..

● inner -> instruction to be executed… (over state monad.. So that we can store the computed values info in state)

● getter -> A Getter Function.. Which takes the precomputed state and returns the computed value of the instruction..

If it is already executed.. (Maybe a)...

11

Retries, Parallel flows, Join flows etc.

 type WorkFlow m e = Except Me (Recorded s m)

s :- State for Storing each flow

e :- Error Type

m :- Your Base Monad

● Instruction Level Checkpointing

● Skipping Executed Instructions in a Distributed Environment

● Multiple Iterations of a Single Instruction..

● Generic error handler

Workflow Retries-Schedules

continueIf

 :: (Monad m, Monoid e)

 => (s -> Bool)

 -> WorkFlow s m e ()

continueIf predicate =

 lift get >>= guard . predicate

elsePerform

 :: (MonadIO m, ToJSON s)

 => (s -> Maybe a)

 -> StateT s m a

 -> Recorded s m a

elsePerform =

 flip (recordedWithPersisted

noStatePersist)

 where

 noStatePersist = const (pure ())

scheduleAfter

 :: (MonadIO m, ToJSON a)

 => NominalDiffTime

 -> WorkFlow (PTState a) m e ()

scheduleAfter after =

 lift $

 const Nothing `elsePerform`

changeScheduleTime

 where

 changeScheduleTime =

 nextScheduleTime <~ (Just . addUTCTime

after <$> liftIO getCurrentTime)

Workflow Looping
loopEveryUntil
 :: (MonadIO m, ToJSON a, Hashable a, FromJSON a)
 => NominalDiffTime
 -> (b -> Bool) --Should it be a (State -> Bool) or (b -> Bool) ?
 -> Maybe Int -- max iterations
 -> WorkFlow (PTState a) m e b
 -> WorkFlow (PTState a) m (WorkFlowError e) b
loopEveryUntil after predicate maybeMaxRetries wf =
 do
 b <- withExceptT DomainErr wf
 if predicate b -- done
 then do
 retryingStatus .= Nothing
 pure b
 else do
 maybe
 (scheduleAfter after) -- No limit on retries. Seriously ??
 (\maxRetries -> do
 retriesDone <- gets (fromMaybe 0 . preview (retryingStatus._Just))
 if (retriesDone <= maxRetries)
 then do
 retryingStatus .= Just (retriesDone + 1)
 scheduleAfter after
 else
 gets (view (domainState.re _JSON')) >>= except . Left . PTError . MaxRetriesReachedWith)
 maybeMaxRetries
 empty

Reliable Exception Handling

handleError :: ErrorType -> L.Flow Response

handleError = \case

 DB_ERROR -> scheduleAfter5mins *> pure err500Response

 INTERNAL_ERROR -> pauseRelease *> pure err500Response

 MJOS_ERROR -> pauseRelease *> pure err500Response

 ..

● Distributed tracing for debugging

● Increase availability and scaling with Kafka integration

● Build helper libraries for DevOps use cases - for kubernetes,
envoy releases etc.

● Migrate older payment workflows to this system & test at
scale (our existing workflows process millions of txns / day)

● Refactor and open source it

15

Future direction

Q & A ?

16

Thank you

17

