BEYOND FUNCTIONAL
PROGRAMMING:
THE VERSE PROGRAMMING
LANGUAGE

Simon Peyton Jones, Tim Sweeney .
Lennart Augustsson, Koen Claessen, Ranjit Jhala, Olin Shivers

Epic Games

December 2022

Verse: a language for the metaverse

Tim's vision of the metaverse

Social interaction in a shared real-time 3D simulation
An open economy with rules but no corporate overlord

A creation platform open to all programmers, artists, and
designers, not a walled garden

Much more than a collection of separately compiled, statically-
linked apps: everyone's code and content must interoperate
dynamically, with'live updates of running code

Pervasive open standards. Not just Unreal, but any other
game/simulation engine e.g. Unity.

Verse is open

Like the metaverse vision, Verse itself is open

= We will publish papers, specification for anyone to implement

= We will offer compiler, verifier, runtime under permissive
open-source license with no IP encumbrances.

Goal: engage in a rich dialogue with the community that will
make Verse better.

Do we really need a new language?

= Objectively: no. All languages are Turing-complete.

= But we think we can do better with a new language

= Transactional from the get-go; the only plausible way to manage
concurrence across 1M+ programmers

= Strong interop guarantees over time: compile time guarantees that a
module subsumes the APT of the previous version.

= Scalable to running code, written by millions of programmers who do not
know each other, that supports billions of users

= And ..

= | earnable as a first language (c.f. Javascript yes, C++ no)

= Extensible: mechanisms for the language to grow over time, without
breaking code.

A taste of Verse

a0 Verse 1: a familiar FP subset
a Verse 2: choice
a Verse 3: functional logic

View from 100,000 feet

Verse is a functional logic language (like Curry or Mercury).

Verse is a declarative language: a variable names a single
value, not a cell whose value changes over time.

Verse is lenient but not strict:
m Like strict:, everything gets evaluated in the end
= Like lazy: functions can be called before the argument has a value

Verse has an unusual static type system: types are first-
class values.

Verse has an effect system rather than using monads.

A taste of Verse

= A subset of Verse is a fairly ordinary functional language

= Integers

= Tuples/arrays KEMY ((92,2) ,3, 4)

fst(3,4)
“array{..}" is
long-form
array{3,4} @array{3}

syntax

Bindings

n.,._n

Syntax: ":i=" and *;"
For now, think
“letrec-binding”

y:=x+1; x:=3; x*y

Order does
hot matter

Functions and lambda

Arguments on
the LHS...

f(x:1nt) :1nt := x+1; £ (3)

f:=(x:1nt=>x+1); £ (3)

Verse uses infix “=>" for lambda

Conditionals and recursion

= A subset of Verse is a fairly ordinary functional langauge

fac(x:int) :1nt :=
if (x=0) then 1 else n * fac(n-1)

Conditionals

Verse 2: choice

Choice

= A Haskell expression denotes one value

= A Verse expression denotes a sequence of zero or more values

One value

Two values “fail”

Choice
operator false? Zero values
Ten values

A notation for

Binding and choices

Denotes sequence of
three values: 2, 8, 3

x:=(1|7|2); x+1

= A bit like Haskell [x+1 | x<-[1,7,2]]

m Key point: a variable is always bound to a single value,
not to a sequence of values. I.e.

m We execute the (x+1) with x bound to 1, then with x bound to 7, then
with x bound to 2.

= Not with x bound to (1|7]2)

Nested choices

What sequence of values does this denote?

x:=(112); y:=(718); (x,y)

Answer. (1,7), (1,8), (2,7), (2,8)

Like a nested for-loop

Like Haskell list comprehension [(x,y) | x<-[1,2], y<-[7,8]]
But more fundamentally built in

Kezfoin'r: a variable is always bound to a single value,
not to a sequence of values

Nested choices

x:=(112); y:=(718); (x,y)

R R e ((112), (718))

m This still produces the same seguence of pairs,
not a single pair containing two sequences!

= Same for all operations

77 + (1]3) WEUERG RSO (77+1) | (77+3)
77 + false? BRI RUEUEAE

Nested choices and funky order

What sequence of values does this denote?

x:=(y|2);, y:=(718); (x,y)

Answer: (7,7), (8,8), (2,7), (2,8)
Order of results is still left-to-right
But data dependencies can be "backwards”

(Not like Haskell list comprehensions!)

Conditionals

= No Booleans!

1f (e) then el else e2

B Returns el if e succeeds
m "Succeeds” = returns one or more values

m Returns e?2 if e fails
® "Fails” = returns zero values

Comparisons

1f (x<20) then el else e2

m (x<20)

» fails if x>= 20

m succeeds if x < 20, returning the left operand
= Example: (3 + (x<20))

m Succeeds if x=7, returning 10

m Fails if x=25

= Example: (0 < x < 20)

m Succeeds if x is between O and 20, returning O

" Fails if x is out of range g
m (<) IS righf-associaﬂve if (0<X<20) then el else e2
AN HEIN if (0<x && x<20) then .. else ..

Conjunction and disjunction

i1f (x<20, y>0) then el else e2

= The tuple expression (x<20,y>0) fails
if either (x<20) or (y>0) fails

if (x<20 | y>0) then el else e2

® Choice succeeds if either branch succeeds

Equality

1f (x=0) then el else e2

" (x=0)
= fails if x is not zero
= succeeds if x is zero, returning x

As we will see, "=" isa

super-important operator

m "Tfxis2or3 then.”

1f (x=(2|3)) then el else e2

ANHCIN 1 f (x==2 || x==3) then .. else..

From choice to tuples

m for turns a choice into a tuple/array

for { 3 The singleton tuple, array(3)

for{ 3 | 4 } The tuple (3,4)

for{ false? The empty tuple ()

for{ 1..10 } The tuple (1,2,..., 10)

Order is important

® for turns a choice into a tuple/array

for{ 3 | 4 } The tuple (3,4)

for{ 4 | 3 } The tuple (4,3)

= That's why we say that an expression denotes a sequence of
values, not a bag of values, and definitely not a sef.

m So"|" is associative but not commutative

From tuples to choice

= 2 turns a tuple/array into a choice

(3,4)° The choice (3 | 4)

= false := (), the empty tuple
so false? always fails.

Gener'alising for for el do e2

Iterate over the N (non-failing) For‘l;nal’ruhee(slsl-o’rfuglcfn;:o;nz’rhe

choices in the domain el (variables bound in el scope over e2)

((1*1), (2*2), (3*3))

Generalising for for el do e2

Form the N-tuple from the
value(s) of range e2

Iterate over the N (non-failing)

choices in the domain el (variables bound in el scope over e2)

= Range expression can yield multiple values

for (i:=1..3) do (1|i+7) ((118), (219), (3110))

(1,2,3) | (1,2,10) |
(1,9,3) | (1,9,10) |

And we can use that
choice to iterate:

.=) Xs is successively bound to all
= R D) €8 (WIRI2)Z o0 om80 0. 5-digit humbers in base 3

Generalising for for el do e2

Form the N-tuple from the
value(s) of range e2

Iterate over the N (non-failing)

choices in the domain el (variables bound in el scope over e2)

= Range expression can fail

for (1:=1..4) do (i<3) (1<3, 2<3, 3<3, 4<3)

(1, 2, false?, false?)

Gener'alising for for el do e2

Form the N-tuple from the
value(s) of range e2

Iterate over the N (non-failing)

choices in the domain el (variables bound in el scope over e2)

= Domain expression can fail

for (i:=1..4, isEven(i)) do (i*i)

(2*2, 4*4)

Indexing arrays

= Tndexing an array/tuple fails on bad indices

MWI

=1..Length(as);, as[i]+1}

Denotes one value, 3

Denotes one value, 4

Fails: denotes zero values

Returns (4,8,5)

=as[1]) then x+1 else 0 Returns O if i is out of range

Narrowing

as:=(3,7,4) ;

for{i:int; as[i]+1}

= What values can i take? Clearly just 0,1,2!

m So expand as[i] to those three choices

= This is called "narrowing” in the functional logic literature

as:=(3,7,4) ; as:=(3,7,4) ;

for{i:int; as[i] + 1} for{i:int; ((i=0; 3+1) |
(i=1,; 7+1) |
(i=2; 4+1)) }

Haskell array (bounds a) [(i,a!'i + 1) | i<-indices a]

head (xs)
tail (xs)
cons (x, xs)

snoc (xs, x)
append (xs,ys) :
map (£, xs)

Some functions

Fails on empty tuple
xs (0)

for{i:int; i>0; xs[i]}
for{x | xs[i:1nt]}
for{xs[i:1nt] | x}
for{xs[i:int] | ys[j:int]}
for{f(xs[i:int])}

Verse 3: functional logic

Separating “bring intfo scope” from “give value”

xX:=7, x+1>3; y=x*2

means the same as
xX:1int; x=7; x+1>3; y=x*2

By the way,
x must be 7
(or else fail)

Bring x into
scope.
I'm not telling

The very same

w_un

you what its =" as before
value is yet

Separating “bring intfo scope” from “give value”

Think:
x:=7; x+1>3; y=x*2 « “" brings the variable
Into scope.
« Scope extends to the
means the same as left as well as right

xX:1nt; x=7; x+1>3; y=x*2

means the same as

x=7; x+1>3; y=(x:1int) *2

x+1>3,; y=(x:=7) *2

Towards functional logic programming

UM et (y,z) = if (x=0) then (3,4)
else (232, 913)

in y+z

" Verse Bring y,z into scope

y:int; z:int;
if (x=0) then { y=3; z=4 }

else { y=232; z=913 },;

yv+z
Give them values

Towards functional logic programming

® Partial values

x's first component is 2
:tuple (int, int) ; y is a fresh unbound variable

x's second component is 3
z is a fresh unbound variable

Towards functional logic programming

= You can even pass those in-scope-but-unbound variables to a
function

f(p:1int,q:1nt) :1nt
:= 1f (x=0) then { p=3; gq=4 }
else { p=232; g=913 },;
y:int; z:int;

£f(y,z); Pass y,z to f, which binds
v+z each of them to a value

..and add up the
results

Towards functional logic programming

f(p:int,g:int) :int :=
if (x=0) then { p=3; q=4 }
else { p=232; g=913 };

y:int; z:int;
f(y,z);
y+z

= v,z look very like logical variables in Prolog,
aka “unification variables”.

= And "=" looks very like unification.

Towards functional logic programming

= We can do the usual "run functions backwards” thing

swap(x:int, y:int) := (y,x)

swap (3,4) Run swap "forward”: returns (4,3)

w:tuple (int,int) ;
swap (w) = (3,4);
W

Run swap "backward”: Also returns (4,3)

Flexible and rigid variables

= What does this do? RilidasEEedy
if (x=0) then y=1 else y=2;

Sets ;r?i value Reads the
value of x Sets the

value of y

= One plan (Curry): two different equality operators

= Verse plan:

= inside a conditional scrutinee, variables bound outside (e.g. x) are
“rigid” and can only be read, not unified

m outside, x is "flexible" and can be unified

Lenience

= (Clearly Verse cannot be strict

= call-by-value
m with a defined evaluation order

because earlier bindings may refer to later ones;
and functions can take as-yet-unbound logical variables as arguments

m And it cannot be lazy, because all those "=" unifications must
happen, to give values to variables.

'if' is stuck until x

m So Verse is lenient
gets a value

= Everything is eventually evaluated

= But only when it is "ready”

= | ike dataflow Let's hope f
gives x its value

Making it all precise

Designing the aeroplane during take-off

= MaxVerse: the glorious vision.
A significant research project in its own right.

m ShipVerse: a conservative subset we will ship to users in
2023.

Core Verse

= MaxVerse is a big language

= To give it precise semantics, we use a small Core Verse
language:
= Desugar MaxVerse into CoreVerse
® Give precise semantics to CoreVerse
= CoreVerse might well be a good compiler intermediate language

= Analogy:
m MaxVerse = Haskell
m CoreVerse = Lambda calculus

Core Verse

Integers k

Variables XY,z f,g

Primops op == gt | add
Values v = x| k|op|{(s5,--,s) | Ax.e
Expressions e == v |eu;e | dx.e | fail | egle; | vi v, | one{e} | all{e}

eu == e|v=e
= "="is a language construct, not a primop (like gt)
= <vl,. vn> for tuples to avoid ambiguity with (x)
= "3Ix" is what we previously wrote "x:any” (except I'm not telling you about types)
= fail is a language construct, alongside "|"

= Core Verse is untyped

:tuple (int,int) ; “Exis.'.sn

= (2,y:int); (y. <2,y>);
- (2'int,3); e gy

= Main constructs

m exists = brings a variable into scope

® ynification = says that two expressions have the same value
m sequencing sequences unifications

= choice |, fail

= conditional one return first success

= for-loops all return all successes

What is execution?

= Execution = "solve the equations”
= Find values for the exists variables that make all the equations true.

= Tn this example:
B x=<2,3>, z=2, y=3

= Operationally: unification.

= But unification is hard for programmers
= backtracking, choice points, undoing, rigid variables, ...

Ideal Use rewriting

foo (3+2) let %x=3+2 in x*x + 1

(3+2) * (3+2) + 1 let x=5

in x*x + 1

5%(3+2) + 1 (3+2)*5 + 1

o3

Rewriting: key ideas

To answer "what does this program do, or what does it mean?”
just apply the rewrite rules

Rewrite rules are like

= Add/multiply constants
= Replace a function call with a copy of the function's RHS, making substitutions
= Substitute for a let-binding

You can apply any rewrite rule, anywhere, anytime
= They should all lead to the same answer ("confluence")

Good as a way to explain o a programmer: just source-to-source rewrites
Good for compilers, when optimising/transforming the program

Not good as a final execution mechanism

:tuple (int,int) ; ExeCU'l'ion - rewriting

(2,¥::|.nt); dx. x = (Ay. (2,y)):
(z:int,3) ; Desugar x = (Az. (z,3)):

X

:tuple (int,int) ; ExeCU'l'ion - rewriting

= (2,y:1int);
= (z:int,3);

(3z. (z,3));

:tuple (int,int) ; ExeCLl'l'ion - rewriting

= (2,y:int) ;
— (y ln3) . : (Fy. (2,y));
= (Z :1int,) ’ DCSUQGF‘ (3z. (z,3));

dxyz. x = (2,y); (2,y)=(z,3); x

Substitute for
(one occurrence of) x

:tuple (int,int) ; ExeCLl'l'ion - rewriting

= (2,y:1 ;
_ (fy lnt) . . (3Y <ZIY>) ’
= (Z.lnt,3) ’ DCSUQGF‘ (3z. (z,3));

Decompose equality
of pairs (unification)

Execution = rewriting

= (2,y:int);
_ . : : (Fy. (2,¥))
= (z:int,3); (3z. (z,3));

:tuple (int,int) ;

Substitute for
another
occurrence of x

dxyz. x = (2,y); y=3; z=2; (2,3)

An alternative sequence

= (2,y:int) ;
= (.1_7 ln3). . Fy. (2,y);
= (z:int,3); (Az. (z,3));

:tuple (int,int) ;

Unification rewrite rules

U-SCALAR s=se — e

’0
n:

oTur (v,) = (Vo vilie > W=V v =

e
U-FAIL hnf, = hnf, — fail if neither u-scaLar nor u-Tup match

Scalar Values s == x| k| op

Heap Values h == (v, ,v | Ax.e

Head Values hnf == h | k

Values v == s | h

Expressions e == v |eu e| dx.e| fail | e;le; | vi v» | one{e} | all{e}
e | v=e

Primitive operations

Application: A

APP-BETA (Ax.e) v dx.x=v; e if x ¢ fvs(v)
fail
dx.x=v; (x=0; %l ---lx=nv,) ifx¢&fvs(v),n=>0
ki + k;
k1 if k; > k»
fail if k1 < ks

APP-TUP(() v
APP-TUP (Vo ==+ vp) Vv
APP-ADD add(k,, k;)
APP-GT gt(ky, ky)

A A A

APP-GT-FAIL gt(ky, ky)

Normalization: N
NORM-VAL
NORM-SEQ-ASSOC
NORM-SEQ-SWAP1
NORM-SEQ-SWAP2
NORM-EQ-SWAP
NORM-SEQ-DEFR
NORM-SEQ-DEFL
NORM-DEFR

NORM-SEQR

Normalisation rewrite rules
getting stuff “out of the way”

Vv, e

(eu; er); e

eu; (x =v; e)
eu; (x =s; e)
hnf = x
(dx.e1); e

eu; (dx. e)
v=(3dy.e); e
v=(eu; e1); e

A A A A A A

e
eu; (er;)

x =v; (eu; e)
x=s; (eu; e)
x = hnf

dx. (ey; e2)
dx.eu; e
dy.v=e; e
eu; v=ep; e

if eu not of form x’ = v’

if eu not of form x’ = ¢’

if x ¢ fvs(ey)
if x ¢ fvs(eu)
if y € fvs(v, e)

Scalar Values s == x| k| op
Heap Values h == (v,---,v,) | Ax. e

Condi.l.ionals Head Values hnf == h | k

Values v == s | h

Expressions e == v |eu e| dx.e| fail | e;le; | vi v» | one{e} | all{e}

eu == el|lv=e

= Desugar conditionals like this: one: a new, simpler construct

if e; then e, else ¢35 means Jy.y=one{(e; Ax.e) | (Ax.e3)}; y()

Variables bound in el can scope over e2

® Rewrite rules for one ONE-FAIL one{fail} — fail

ONE-CHOICE one{v; | &} — v

ONE-VALUE one{v} — v

Scalar Values s = x| k| op

Heap Values h == (v,---,v,) | Ax. e
Loops Head Values hnf == h |k

Values v == s |h

Expressions e v|eu;e| dx.e | fail | e;ley | vi vo | one{e} | all{e}

eu e| v=e

= Desugar for-loops like this:
for ¢ means all{e}
for(e;) do ez means dy.y=all{e;; Ax.ex}; map{Az. z(), y)

Variables bound in el can
scope over e?2

= Rewr'iTe r'Ules for' ‘C(”' ALL-FAIL for{fail} — ()

aLL-cHoice for{vi | --- lv,} — (v, -+, vp)

Choice

= How to rewrite (el | e2)?

CHOOSE CXleilee] — CXle|lICX[e]| ifCX #[]

Duplicate surrounding context

Eg. (x+(yl2)*2) > (x+y*2) | (x+2*2)

Choice context CX:=0|v=CX | CX;e| ce; CX | Ix.CX

Choice-free expr cex=v | v=ce | cey; ce; | one{e} | all{e} | op(v) | Ix.ce

More in the paper...
https://simon.peytonjones.org/verse-calculus

= First attempt to give a deterministic rewrite semantics to a
functional logic language.

= Much more detail, lots of examples

® Sad lack of a confluence proof. It's tricky. Details may
change.

There is more. A /of more.

Mutable state, I/0O, and other effects.
= An effect system, not a monadic setup

Pervasive transactional memory
Structs, classes, inheritance

The type system and the verifier - lots of cool stuff here

Types

In Verse, a "type" is simply a function
= that fails on values outside the type
= and succeeds on values inside the type

So int is the identity function on integers, and fails otherwise
isEven (which succeeds on even numbers and fails otherwise) is a type

array int succeeds on arrays, all of whose elements are integers...
hmm, scratch head... ‘array’ is simply ‘map’

(Ax.3p,q.x = (p,q); p < q) is the type of pairs whose first component is
smaller than the second

The Verifier rejects programs that might go wrong. This is wildly
undecidable in general, but the Verifier does its best.

Take-aways

= Verse is extremely ambitious
= Kick functional logic programming out the lab and into the mainstream
= Stretches from end users to professional developers
= Transactional memory at scale
= Very strong stability guarantees
= A radical new approach to types

= Verse is open
= Open spec, open-source compiler, published papers (I hopel)

Before long: a conversation to which you can contribute

