
Cheat Sheet: 10 GitHub Security Best Practices www.snyk.io

Never store credentials as code/config in GitHub.
Some good practices:

You should include a SECURITY.md file that highlights security related
information for your project. This should contain:

Disclosure policy.
Define the procedure for what a reporter who finds a security issue
needs to do in order to fully disclose the problem safely, including who
to contact and how. Consider HackerOne’s community edition or simply
a ‘security@’ email.

Security Update policy.
Define how you intend to update users about new security
vulnerabilities as they are found.

Security related configuration.
Settings users should consider that would impact the security posture of
deploying this project, such as HTTPS, authorisation
and many others.

Known security gaps & future enhancements.
Security improvements you haven’t gotten to yet.
Inform users those security controls aren’t in place, and perhaps
suggest they contribute an implementation!

For some great reference examples of SECURITY.md files,
look at Apache Storm and TensorFlow.

Failures in security are often humans making bad decisions.
Mandate the following practices for your contributors:

Manage team access to data. Give contributors only
access to what they need to do their work.

If sensitive data made to a repo after all:

Remember these apps are written by third-party developers,
not GitHub. Validate:

Use GitHub hooks to check your PRs don’t introduce new
vulnerabilities

When creating any project, develop it like an open source
project. Don’t rely on security by obscurity. You will:

If you don’t want anybody to have access to your code
(even GitHub), or if regulations require it, use GitHub
Enterprise’s on-prem offering.

Before importing a project into a public GitHub repo, fully audit the
history for sensitive data, and remove it before adding to GitHub.

GitHub access is typically done using SSH keys or personal user
tokens (in lieu of a password, because you enabled 2FA!). But
what happens if those tokens are stolen and you didn’t know?

Be sure to refresh your keys and tokens periodically, mitigating
any damage caused by keys that leaked out.

Monitor changes in (ii) and (iii) over time and consider using
application access restrictions.

Invalidate tokens and passwords.

Remove the info and clear the GitHub history
(force push rewrite history).

Assess impact of leaked private info.

Block sensitive data being pushed to GitHub by
git-secrets or its likes as a git pre-commit hook.

Break the build using the same tools.

Audit for slipped secrets with GitRob or truffleHog.

Use ENV variables for secrets in CI/CD and secret
managers like Vault in production.

The application access rights.

The author/organisation credibility.

How good is the app’s security posture - a breach of
them gives attackers access to your code!

SonarCloud - code quality testing.

CodeClimate - automated code reviews.

Snyk - dependency vuln testing.

Write more defensively when you push code/data knowing
anyone could see.

Find it easier and safer if you decide to open source
the project.

Require Two-factor authentication for all your GitHub accounts.

Never let users share GitHub accounts/passwords.

Any laptops/devices with access to your source code must be
properly secured.

Diligently revoke access from users who are no longer
working with you.

Add a SECURITY.md file Add Security testing to PRs

Create New Projects with Security in Mind

Use the right GitHub offering

Importing Projects

Rotate SSH keys and Personal Access Tokens

Sensitive Data

Tightly control access

Removing Sensitive data

GitHub Apps

4. 6.

9.

7.

10.

8.

1.

3.

2.

1

1

1

1

1

1

3

3

3

3

3
2

2

2

2

2

2

4

4

5.

https://github.com/awslabs/git-secrets
https://githooks.com/
https://github.com/michenriksen/gitrob
https://github.com/dxa4481/truffleHog
https://www.vaultproject.io/
https://help.github.com/articles/removing-sensitive-data-from-a-repository/
https://help.github.com/articles/requiring-two-factor-authentication-in-your-organization/
https://www.hackerone.com/product/community
https://github.com/apache/storm/blob/master/SECURITY.md
https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md
https://help.github.com/articles/about-oauth-app-access-restrictions/
https://sonarcloud.io/about
https://docs.codeclimate.com/v1.0/docs/installing-code-climates-webhook
https://snyk.io/docs/github
https://enterprise.github.com/home
https://enterprise.github.com/home
https://snyk.io/

