

Zip Slip

Zip Slip is a widespread critical archive extraction vulnerability, allowing attackers to write

arbitrary files on the system, typically resulting in remote command execution. It was

discovered and responsibly disclosed by the Snyk Security team ahead of a public disclosure

on 5th June 2018, and affects thousands of projects, including ones from HP, Amazon, Apache,

Pivotal and many more (CVEs and full list here).

The vulnerability has been found in multiple ecosystems, including JavaScript, Ruby, .NET and

Go, but is especially prevalent in Java, where there is no central library offering high level

processing of archive (e.g. zip) files. The lack of such a library led to vulnerable code snippets

being hand crafted and shared among developer communities such as StackOverflow.

The vulnerability is exploited using a specially crafted archive that holds directory traversal

filenames (e.g. ../../evil.sh). The Zip Slip vulnerability can affect numerous archive formats,

including tar, jar, war, cpio, apk, rar and 7z.

Zip Slip is a form of directory traversal that can be exploited by extracting files from an archive.

The premise of the directory traversal vulnerability is that an attacker can gain access to parts

of the file system outside of the target folder in which they should reside. The attacker can then

overwrite executable files and either invoke them remotely or wait for the system or user to

call them, thus achieving remote command execution on the victim’s machine. The

vulnerability can also cause damage by overwriting configuration files or other sensitive

resources, and can be exploited on both client (user) machines and servers.

https://github.com/snyk/zip-slip-vulnerability
https://stackoverflow.com/questions/981578/how-to-unzip-files-recursively-in-java

Exploitable Application Flow

The two parts required to exploit this vulnerability is a malicious archive and extraction code

that does not perform validation checking. Let’s look through each of these in turn. First of all,

the contents of the zip file needs to have one or more files that break out of the target

directory when extracted. In the example below, we can see the contents of a zip file. It has

two files, a good.sh file which would be extracted into the target directory and an evil.sh

file which is trying to traverse up the directory tree to hit the root and then add a file into the

tmp directory. When you run cd .. from the root directory, you will still find yourself in the

root directory, so a malicious path could contain many levels of ../ to stand a better chance

of reaching the root directory, before trying to traverse to sensitive files.

5 Tue Jun 5 11:04:29 BST 2018 good.sh

20 Tue Jun 5 11:04:42 BST 2018 ../../../../../../../../tmp/evil.sh

The contents of this zip file have to be hand crafted. Archive creation tools don’t typically allow

users to add files with these paths, despite the zip specification allowing it. However, with the

right tools, it’s easy to create files with these paths.

The second thing required in order to be exploitable is to have the functionality to extract the

archive, either using your own code or a library. The vulnerability exists when the extraction

code omits validation on the file paths in the archive. An example of a vulnerable code snippet

(example shown in Java) can be seen below.

1: Enumeration<ZipEntry> entries = zip.getEntries();
2: while (entries.hasMoreElements()) {
3: ZipEntry e = entries.nextElement();
4: File f = new File(destinationDir, e.getName());
5: InputStream input = zip.getInputStream(e);
6: IOUtils.copy(input, write(f));
7: }

You can see on line 4, e.getName() is concatenated with the target directory, dir , without

being validated. At this point, when our zip archive gets to our evil.sh, it will append the full

path (including every ../) of the zip entry to the target directory resulting in evil.sh being

written outside of the target directory.

To see Zip Slip in action, watch us exploit the vulnerable java-goof application, a sample

application used to show many known vulnerabilities.

https://youtu.be/l1MT5lr4p9o

Are you Vulnerable?

You are vulnerable if you are either using a library which contains the Zip Slip vulnerability or

your project directly contains vulnerable code, which extracts files from an archive without the

necessary directory traversal validation. Snyk is maintaining a GitHub repository listing all

projects that have been found vulnerable to Zip Slip and have been responsibly disclosed to,

including fix dates and versions. The repository is open to contributions from the wider

community to ensure it holds the most up to date status.

What action should you take?

Here are some steps you can take to check if your project’s dependencies of code contain the

Zip Slip vulnerability:

1. Search through your projects for vulnerable code.
In each ecosystem section, you’ll see example snippets of code highlighting the specific
vulnerability. The accompanying validation code can be added to the vulnerable snippet to test
for directory traversal. You should search through your code for similar extract patterns, and
ensure you’re on the fixed versions of the archive processing libraries that we have found to be
vulnerable.

Java

As previously mentioned, the Java ecosystem doesn’t offer a central library containing high

level processing of archive files. The popular Oracle and Apache commons-compress APIs that

are heavily used do offer some archiving support but do not publically provide the full extract

capability. This has contributed to there being more instances of users hand crafting the

archive processing code themselves. We observed that the Java ecosystem had many more

archive libraries than other ecosystems, many of which were found to be vulnerable.

Example Vulnerable code:

1: Enumeration<ZipEntry> entries = zip.getEntries();
2: while (entries.hasMoreElements()) {
3: ZipEntry e = entries.nextElement();
4: File f = new File(destinationDir, e.getName());
5: InputStream input = zip.getInputStream(e);
6: IOUtils.copy(input, write(f));
7: }

https://github.com/snyk/zip-slip-vulnerability
https://github.com/snyk/zip-slip-vulnerability
https://github.com/snyk/zip-slip-vulnerability

Example Validation Code:

1: String canonicalDestinationDirPath = destinationDir.getCanonicalPath();
2: File destinationfile = new File(destinationDir, e.getName());
3: String canonicalDestinationFile = destinationfile.getCanonicalPath();
4: if (!canonicalDestinationFile.startsWith(canonicalDestinationDirPath + File.separator)) {
5: throw new ArchiverException("Entry is outside of the target dir: " + e.getName());
6: }

Groovy

Like Java, Groovy also has vulnerable snippets in various project codebases, as well as making
use of all the vulnerable Java archive processing libraries.

Example Vulnerable code:

1: final zipInput = new ZipInputStream(new FileInputStream(self))
2: zipInput.withStream {
3: def entry
4: while(entry = zipInput.nextEntry) {
5: final file = new File(dest, entry.name)
6: file.parentFile?.mkdirs()
7: def output = new FileOutputStream(file)
8: output.withStream {
9: output << zipInput
10: }
11: unzippedFiles << file
12: }
13: }

Example Validation Code:

1: final canonicalDestinationDirPath = destinationDir.getCanonicalPath()
2: final destinationfile = new File(destinationDir, e.name)
3: final canonicalDestinationFile = destinationfile.getCanonicalPath()
4: if (!canonicalDestinationFile.startsWith(canonicalDestinationDirPath + File.separator))
{
5: throw new ArchiverException("Entry is outside of the target dir: ${e.name}")
6: }

https://github.com/snyk/zip-slip-vulnerability

JavaScript

JavaScript has benefitted from having more central libraries that provide the functionality to

extract from archives and the vulnerable libraries we found before public disclosure were fixed.

Note that the join command concatenates the two path parameters and returns the shortest

path possible after being resolved.

Example Vulnerable code:

1: self.on('entry', function(entry) {
2: entry.pipe(Writer({
3: path: path.join(opts.path,entry.path)
4: }))

Example Validation Code:

1: var filePath = path.join(targetFolder, entry.path);
2: if (filePath.indexOf(targetFolder) != 0) {
3: return;
4: }

 .Net

The .Net ecosystem also has central libraries that perform the extraction functionality. In fact

the code in the core .Net library that checks for the Zip Slip vulnerability was so neat, we used

the implementation as the example reference solution to other libraries and ecosystems.

Example Vulnerable code:

1: public static void WriteToDirectory(IArchiveEntry entry,
2: string destDirectory,
3: ExtractionOptions options){
4: string file = Path.GetFileName(entry.Key);
5: string destFileName = Path.Combine(destDirectory, file);
6: entry.WriteToFile(destFileName, options);
7: }

https://github.com/snyk/zip-slip-vulnerability
https://github.com/dotnet/corefx/blob/a3e4e241c7b7c33750258082969287b9cf45d757/src/System.IO.Compression.ZipFile/src/System/IO/Compression/ZipFileExtensions.cs#L168-L169

Example Validation Code:

1: destFileName = Path.GetFullPath(Path.Combine(destDirecory, entry.Key));
2: string fullDestDirPath = Path.GetFullPath(destDirectory + Path.DirectorySeparatorChar);
3: if (!destFileName.StartsWith(fullDestDirPath)) {
4: throw new ExtractionException("Entry is outside of the target dir: " + destFileName);
5: }

Go

The Go ecosystem only has one vulnerable library that we found which was fixed within two

days of us disclosing the issue. Note that the Join command concatenates the two path

parameters and returns the shortest path possible after being resolved.

Example Vulnerable code:

1: func (rarFormat) Read(input io.Reader, dest string) {
2: rr := rardecode.NewReader(input, "")
3: for {
4: header := rr.Next()
5: writeNewFile(filepath.Join(dest, header.Name), rr, header.Mode())
6: }
7: }

Example Validation Code:

1: func sanitizeExtractPath(filePath string, destination string) error {
2: destpath := filepath.Join(destination, filePath)
3: if !strings.HasPrefix(destpath, destination) {
4: return fmt.Errorf("%s: illegal file path", filePath)
5: }
6: return nil
7: }

https://github.com/snyk/zip-slip-vulnerability

Ruby & Python

We also vetted the Ruby and Python ecosystems and couldn’t find any vulnerable code

snippets or libraries. In fact, Python’s zipfile was vulnerable until fixed in 2014. Ruby has a

number of existing vulnerabilities that have been fixed in previous versions here, here and

here, and has a few more libraries that are prone to be used incorrectly because of the lack of a

high level extraction API.

2. Add Zip Slip Security Testing to your application build pipeline
If you’d prefer not to search through your direct and transitive dependencies (of which you likely
have hundreds) to determine if you’re using a vulnerable library, you can choose a dependency
vulnerability scanning tool, like Snyk. It’s a good practice to add security testing into your
development lifecycle stages, such as during development, CI, deployment and production. You
can test your own projects (all the ecosystems mentioned above are supported) to determine if
they are vulnerable to Zip Slip.

Other Vulnerable projects

Vulnerable projects include projects in various ecosystems that either use the libraries

mentioned above or directly include vulnerable code. Of the many thousands of projects that

have contained similar vulnerable code samples or accessed vulnerable libraries, the most

significant include: Oracle, Amazon, Spring/Pivotal, Linkedin, Twitter, Alibaba, Jenkinsci,

Eclipse, OWASP, SonarCube, OpenTable, Arduino, ElasticSearch, Selenium, Gradle and

JetBrains.

Thank you!
The Snyk security team would like for thank all the vendors, project owners and the community
members that helped raise awareness, find and fix vulnerabilities in projects across many
ecosystems.

https://snyk.io/vuln/SNYK-RUBY-RUBYZIP-20336
https://snyk.io/vuln/SNYK-RUBY-MINITAR-20335
https://snyk.io/vuln/SNYK-RUBY-ARCHIVETARMINITAR-20337
https://github.com/snyk/zip-slip-vulnerability

Zip Slip Disclosure Timeline
This disclosure timeline details our actions from the first private disclosure on April 15th 2018.

Date Event

15/04/2018
Initial private disclosure to codehous/plexus-archiver, zip4j, adm-zip, unzipper,
mholt/archiver

15/04/2018 Confirmed codehous/plexus-archiver, zip4j, mholt/archiver

17/04/2018 Confirmed adm-zip

17/04/2018 unzipper fix released, v0.8.13, (CVE-2018-1002203)

17/04/2018 Snyk submitted a fix to mholt/archiver and unzipper

17/04/2018 mholt/archiver fix released (CVE-2018-1002207)

18/04/2018 Private disclosure to ZeroTurnaround (zt-zip)

19/04/2018 Private disclosure to Apache (multiple projects affected)

20/04/2018 Apache confirmed the issue, collaborated triage began

21/04/2018 Apache Ant fix released, v1.9.12

22/04/2018 Snyk submitted a fix to adm-fix

23/04/2018 adm-zip fix released, v0.4.9 (CVE-2018-1002204)

25/04/2018 Dislocsed to DotNetZip.Semverd, SharpCompress

26/04/2018 zt-zip confirmed and fixed, v1.13 (CVE-2018-1002201)

27/04/2018 HP Fortify Cloud Scan Jenkins Plugin fix released, v1.5.1

02/05/2018 Snyk submitted a fix to SharpCompress

02/05/2018 Apache Storm confirmed vulnerable and fixed (CVE-2018-8008)

03/05/2018 Private disclosure to OWASP DependencyCheck

03/05/2018 Private disclosure to SonarQube

04/05/2018 OWASP DependencyCheck fix released (3.2.0)

04/05/2018 SonarQube fixed

06/05/2018 Snyk submitted a fix to plexus-archiver, fix released, v3.6.0 (CVE-2018-1002200)

07/05/2018 DotNetZip.Semverd fix released, 1.11.0 (CVE-2018-1002205)

09/05/2018 Private disclosure to Pivotal Security Team

09/05/2018 Private disclosure to Oracle Security Team

09/05/2018 Pivotal spring-zip-integration fixed (CVE-2018-1261)

https://github.com/ZJONSSON/node-unzipper/pull/59
https://github.com/mholt/archiver/pull/65
https://github.com/apache/ant/commit/e56e54565804991c62ec76dad385d2bdda8972a7#diff-32b057b8e95fa2b3f7d644552643010aR11
https://github.com/cthackers/adm-zip/pull/212
https://github.com/zeroturnaround/zt-zip/commit/759b72f33bc8f4d69f84f09fcb7f010ad45d6fff
https://github.com/jenkinsci/fortify-cloudscan-plugin/commit/15a5270734280558f9356bd8681303b37f44f020#diff-443258e63dbf581491b1104125a59fd4
https://github.com/adamhathcock/sharpcompress/pull/374
https://github.com/SonarSource/sonarqube/commit/08438a2c47112f2fce1e512f6c843c908abed4c7#diff-6d8def68a00bf88a105528765f02fb95
https://github.com/codehaus-plexus/plexus-archiver/pull/87
https://github.com/haf/DotNetZip.Semverd/commit/55d2c13c0cc64654e18fcdd0038fdb3d7458e366
https://pivotal.io/security/cve-2018-1261

09/05/2018 SharpCompress fix released, v0.21.0 (CVE-2018-1002206)

12/05/2018 Apache Commons Compress documentation fixed

14/05/2018 Pivotal eclipse-integration-gradle fixed, v3.9.4

22/05/2018 LinkedIn removed vulnerable implementation from Pinot project

23/05/2018 Apache Hadoop and Hive confirmed vulnerable and fixed (CVE-2018-8009)

26/05/2018 Oracle fixed documentation

31/05/2018 Amazon aws-toolkit-eclipse fix released, v201805311643

https://github.com/spring-projects/eclipse-integration-gradle/commit/f4c188d330a481a1e342393981d4fe4abe85ea6a
https://github.com/linkedin/pinot/commit/07b0508f16f5e8e1bcd52963c82dbdf15ac9701e
https://github.com/aws/aws-toolkit-eclipse/blob/master/bundles/com.amazonaws.eclipse.opsworks/src/com/amazonaws/eclipse/opsworks/deploy/util/ZipUtils.java

