
Spring Boot Security Cheat Sheet www.snyk.io

Enable to avoid XSS attacks.

Spring Security provides a number of security headers by default, 
but not CSP. Enable in your Spring Boot app as follows:

OpenID Connect (OIDC) provides user information via an ID token 
in addition to an access token.
Query the /userinfo endpoint for additional user information.

Don’t store passwords in plain text. Spring Security doesn’t allow 
plain text passwords by default.

PasswordEncoder is the main interface for password hashing in 
Spring Security:

@EnableWebSecurity
public class WebSecurityConfig extends 
                        WebSecurityConfigurerAdapter {
  @Override
  protected void configure(HttpSecurity http) 
                                    throws Exception {
  http.headers().contentSecurityPolicy("script-src 
'self' https://trustedscripts.example.com; object-src 
https://trustedplugins.example.com; report-uri /csp-
report-endpoint/");
  }
}

  @Value("${password}")

  String password;

public interface PasswordEncoder {
  String encode(String rawPasswd);
  boolean matches(String rawPasswd, String encPasswd);
}

Use a Content Security Policy

Use OpenID Connect

Use Password Hashing

Use the Latest Releases

Store Secrets Securely

Pen Test Your App

Have Your Security Team do a Code Review

4.

5.

6.

7.

8.

9.

10.

To use HTTPS in your Spring Boot app, extend 
WebSecurityConfigurerAdapter and require a secure 
connection (Note: this forces HTTPS in development also):

The start.spring.io site automatically uses the latest versions of 
libraries for new apps.

For existing apps, when upgrades aren’t possible, consider patches 
from a security vendor, like Snyk.

Store secrets in Vault by HashiCorp or  Spring Vault

Extract secrets from the Spring Vault using annotations.

The OWASP ZAP security tool is a proxy that performs penetration 
testing. It runs in Spider and Active Scan modes to identify and map all 
hyperlinks in your app, and automatically test your selected targets 
against a list of potential vulnerabilities.

Code reviews are essential. Ensure all your code changes undergo:

Use HTTPS in Production1.

Ensure your application does not use dependencies 
with known vulnerabilities. Use a tool like Snyk to:

Spring Security enables CSRF support by default. If 
you use a JavaScript framework, configure the 
CookieCsrfTokenRepository so cookies are not 
HTTP-only.

Test your app dependencies for known vulnerabilities.

Automatically Fix issues that exist.

Continuously Monitor for new vulns.

a security team code review.

Automatic testing on every pull request using Snyk

@EnableWebSecurity
public class WebSecurityConfig extends 
                     WebSecurityConfigurerAdapter {
  @Override
  protected void configure(HttpSecurity http) 
                                 throws Exception {
  http.csrf()
      .csrfTokenRepository(CookieCsrfTokenRepository
                           .withHttpOnlyFalse());
  }
}

@Configuration
public class WebSecurityConfig extends  
                      WebSecurityConfigurerAdapter {
 @Override
 protected void configure(HttpSecurity http) 
                                  throws Exception {
    http.requiresChannel().requiresSecure();
  }
}

Test Your Dependencies

Enable CSRF Protection

2.

3.

@mraible

Authors: 

Java Champion and Developer Advocate at Okta

@sjmaple
Java Champion and Developer Advocate at Snyk

https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html
https://start.spring.io/
https://www.vaultproject.io/
http://projects.spring.io/spring-vault/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://twitter.com/sjmaple
https://twitter.com/mraible

