
The state of
open source

security report

2019

State of open source security report 2019

An introduction to this report 3

TL;DR - The state of open source security 2019 report,

at a glance 4

00

01 The open source landscape

Adoption 6

Risks and impact 9

Indirect dependencies 10

Security posture of open source maintainers 11

Security audits 12

02 Known open source vulnerabilities

Known vulnerabilities in application libraries 14

Trends in severity 16

Spotlight: Zip Slip 17

Known vulnerabilities in system libraries 18

Known vulnerabilities in docker images 20

Vulnerability differentiation based on image tag 22

Spotlight: Malicious packages 24

03 Vulnerability characteristics of each ecosystem

XSS vulnerabilities 27

SQL injection vulnerabilities 28

Sensitive information exposure 29

Regular expression denial of service 30

Path traversal 31

Cleartext transmission of sensitive information 32

04 The open source security lifecycle

Discovering vulnerabilities 34

Open source security ownership 35

Finding out about vulnerabilities 36

Spotlight: Vulnerabilities without CVEs 37

Time to adopt security fixes 38

How do maintainters find out about vulnerabilities? 39

Inclusion to disclosure 40

Spotlight: Equifax, a year later 41

Releasing fixes 42

Rate of fixing 43

Spotlight: Responsible security disclosures 44

05 The future of open source

Take action 46

TL;DR - Report summary 47

Table of contents

3All rights reserved. 2019 © Snyk

An introduction to this report

Adoption of open source software has continued over recent years,

and in 2018 we specifically witnessed how enterprise organizations

strengthened their stakes on open source software. For example,

in 2018 alone, IBM acquired RedHat for $34 billion, further proving

that open source software is becoming the foundation for the

modern enterprise. Microsoft acquired GitHub for $7.5 billion,

demonstrating the commercial opportunity in building tools for the

open source community.

As adoption of open source software continues to grow rapidly, the

risk of exposure to security vulnerabilities is also increasing.

To better understand the open source security landscape, and what

we can all do to make it better, we gathered information from a

number of public and private data sources including the following:

 è a survey created and distributed by Snyk that was completed by

over 500 open source maintainers and users.

 è internal data from the Snyk vulnerability database, as well as

hundreds of thousands of projects monitored and protected

by Snyk.

 è research taken from external sources published by various

vendors and data gathered by scanning millions of GitHub

repositories and packages on public registries.

Let’s start by showing you some of the key takeaways from this report

as a dashboard on the following page.

4All rights reserved. 2019 © Snyk

TL;DR - The state of open source security 2019 report, at a glance

 Open source adoption

 è Growth in indexed packages, 2017 to 2018
 ć Maven Central - 102%
 ć PyPI - 40%
 ć npm - 37%
 ć NuGet - 26%
 ć RubyGems - 5.6%

 è npm reported 304 billion downloads

for 2018

 è 78% of vulnerabilities are found in

indirect dependencies

 Known vulnerabilities in
 docker images

 è Each of the top ten most popular default

docker images contains at least 30

vulnerable system libraries

 è 44% of scanned docker images can fix

known vulnerabilities by updating their

base image tag

 Vulnerability identification

 è 37% of open source developers don’t

implement any sort of security testing

during CI and 54% of developers don't do

any docker image security testings

 è The median time from when a vulnerability

was added to an open source package until it

was fixed was over 2 years

 Snyk stats

 è In the second half of 2018 alone, Snyk

opened more than 70,000 Pull Requests

for its users to remediate vulnerabilities in

their projects

 è CVE/NVD and public vulnerability

databases miss many vulnerabilities, only

accounting for 60% of the vulnerabilities

Snyk tracks

 è In 2018 alone, 500 vulnerabilities were

disclosed by Snyk’s proprietary dedicated

research team

 Who's responsible for
 open source security?

 è 81% of users feel developers are

responsible for open source security

 è 68% of users feel that developers should

own the security responsibility of their

docker container images

 è Only three in ten open source

maintainers consider themselves to

have high security knowledge

 Known vulnerabilities

 è 88% growth in application vulnerabilities

over two years

 è In 2018, vulnerabilities for npm grew

by 47%. Maven Central and PHP

Packagist disclosures grew by 27%

and 56% respectively

 è In 2018, we tracked over 4 times more

vulnerabilities found in RHEL, Debian

and Ubuntu as compared to 2017

The open source
landscape

01
Nobody would question that open source software

has made an incredible impact on modern software

development, and continues to expand every year.

GitHub reported that 2018 had seen more new

users signing up than during all of its first six years

combined. This is accompanied with a 40% rise in new

organizations and new repositories created on the

platform, making 2018 the year during which almost

one third of all repositories that exist on GitHub

were created.

Open source software is everywhere too -

contributions are made across all languages and

platforms, impacting growth in different industries

and, as per Forrester’s report*, is an essential part of a

business technology strategy.

* Miller, Paul. Nelson, Lauren E. “Open Source Powers Enterprise Digital
Transformation.” Forrester, 25 April 2016 (source)

https://www.forrester.com/report/Open+Source+Powers+Enterprise+Digital+Transformation/-/E-RES133302?objectid=RES133302

6All rights reserved. 2019 © Snyk

Adoption

We’ve seen big technology players doubling-down

on open source in 2018 as mentioned already earlier

in this report. Let’s look at the numbers. In every

registry we reviewed, we saw an increasing rate of

open source libraries being indexed in every

language ecosystem. This is to be expected, but the

rate of growth may come as a surprise to many.

All but one ecosystem presents two-digit numbers

for increased growth in new libraries added to open

source registries: Maven Central, with a strong

growth of 102%, followed by PyPI with 40%, npm

with 37%, NuGet with 26% and lastly RubyGems with

5.6% growth of newly indexed packages

in the registries.

We may see further growth in numbers from 2018

due to undisclosed vulnerabilities that will only be

publicized later this year, further amplifying the

direction of this trend.

Use of open source is
accelerating. In 2018, Java

packages doubled, and npm
added roughly 250,000

new packages 0

500000

1000000

250000

750000

Jan 2017 Jan 2018 Jan 2019

Total packages indexed per ecosystem

RubyGems

PyPI

NuGet

npm

Maven Central

7All rights reserved. 2019 © Snyk

In 2018, The Linux Foundation reported that open

source contributors have committed over 31 billion

lines of code to date. However, with great adoption

comes great responsibility and risk that need to be

mitigated by anyone who owns, maintains or uses

this code. In 2017 the CVE list reported more than

14,000 vulnerabilities, breaking the record for the

most CVEs reported in a single year. 2018 continued

the record-breaking streak with over 16,000

vulnerabilities reported.

We can see how open source package growth

translates into user adoption when looking at the

download numbers for various packages in

different ecosystems.

Examining the python registry, PyPI boasts

more than 14 billion downloads during 2018, and

doubles the download count in our 2017 report of

approximately 6.3 billion downloads.

The spike in download count mid-year is due to

a fault in linehaul, the statistics gathering service

for PyPI, which missed recording about half of the

downloads up until around August. The missing

downloads presumably add up to more than the

recorded 14 billion downloads of 2018.

0

1 bil.

2 bil.

Jan

500 mill.

1.5 bil.

2.5 bil.

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

spike due to PyPI stats
gathering service issue

Number of PyPI packages downloaded in 2018

Open source software
consumption is also taking

huge leaps forward. Twice as
many Python packages were
downloaded from PyPI, and a

staggering 317 billion JavaScript
packages from npm

8All rights reserved. 2019 © Snyk

The npm registry is core to the entire JavaScript

ecosystem. It has seen steady growth for both the

number of packages being added and downloaded

consistently over the years. It featured more than

30 billion downloads just for the single month

of December 2018, and an incredible 317 billion

downloads for the entire year of 2018.

The increased adoption of Docker containers further

amplifies the strong growth of open source software.

Docker Inc, the de-facto library and community

for container images, reports more than 1 billion

container downloads every 2 weeks over the last

year, and about 50 billion to date, with more than

1 million new applications added into Docker Hub

over the last year alone.

Number of npm packages downloaded in 2018

0

20 bil.

40 bil.

Jan

10 bil.

30 bil.

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

As package counts grow,
so do their vulnerabilities.

A record setting 16,000
new vulnerabilities were

disclosed in 2018

9All rights reserved. 2019 © Snyk

Risks and impact

It shouldn't come as a surprise to most that in this

year’s State of the Octoverse report from GitHub,

security is the most popular project integration

app category with more than one integration for

developers. Here’s a quote from industry analyst

Gartner in a recent application security report that

covers the necessity for organisations to test for

security as early as possible in the application lifecycle.

The more we use open source software, the more risk

we accumulate as we’re including someone else’s

code that could potentially contain vulnerabilities

now or in the future. Moreover, risk doesn’t solely

reflect how secure the code is but also the licensing

compliance of code you adopt and whether that

code is in violation of the license itself.

“Enterprises should use SCA tools on a regular basis to audit repositories that contain

software assets (such as version control and configuration management systems) to

ensure that the software developed and/or used by the enterprise meets security and

legal standards, rules and regulations. Application developers should have access to

SCA tools to inspect the components they plan to use.

— Mark Horvath, Hype Cycle For Application Security 2018, Gartner

Almost half (43%) of
respondents have at least
20 direct dependencies,

amplifying the need to monitor
for open source vulnerabilities

introduced through
these libraries

Only one in three
developers can address

a high or critical-severity
vulnerability in a day

or less

10All rights reserved. 2019 © Snyk

Indirect dependencies

It is hard to imagine the days of writing software

without any open source dependencies. Managing

dependencies for a project is an important task, and

requires due diligence to correctly keep track of the

libraries you depend upon. After all, the application

you are deploying bundles your code as well as

your dependencies.

Snyk has scanned over a million snapshot

projects and has discovered that vulnerabilities in

indirect dependencies account for 78% of overall

vulnerabilities. This further amplifies a critical need for

clear insight into the dependency tree and the need to

be able to correctly highlight nuances of a vulnerable

path in order to address these vulnerabilities.

Of course, finding the vulnerabilities in a dependency

is just the first step. Being able to precisely determine

all the paths through the dependency tree in which

the vulnerable dependency can be reached is a more

complex issue.

Additionally, being able to suggest the steps

to take that will eliminate the vulnerability

while preserving the compatibility between

dependencies is an even greater and much more

interesting challenge.

0%

25%

50%

75%

100%

npmPyPI RubyGemsMaven
Central

PHP
Packagist

The direct and indirect dependency split across
ecosystems

IndirectDirect
Most dependencies in npm, Maven

and Ruby are indirect dependencies,
requested by the few libraries

explicitly defined. Vulnerabilities in
indirect dependencies account for

78% of overall vulnerabilities

11All rights reserved. 2019 © Snyk

Security posture of open source maintainers

Most developers and maintainers will likely agree that

security should play an important role when building

products and writing code. However there are no text-

book rules for maintainers to follow for building open

source projects, and as such their security standards

can vary significantly.

Maintainers find themselves using their time and

efforts on different aspects of the project, often

functional, which in turn, could make security less of

a priority for them in their process.

There’s a positive trend towards security engagement

and awareness since the time of our previous report,

released in 2017.

This year, the majority of users ranked their security

know-how as medium, with an average of 6.6 out of

ten. A small portion of them (7%) ranked themselves

as low, whereas the medium know-how ranking,

representing the majority of users, has actually

declined to 63% vs 56% last year.

The most movement is seen with the low and high

rankings. Last year, security know-how was ranked

as high by only 17%, while this year it has increased

to almost 30%. In addition, we can see similar

growth in low-ranked security know-how, which

reached 26% last year but only 7% this year.

OS maintainers are confident in their own
security knowledge

7%

30%

63%

Low

Medium

High

Open source maintainers
stated their security

knowledge is improving
but not high enough,

averaging 6.6/10

12All rights reserved. 2019 © Snyk

Security audits

A security audit could exist as part of a code review

where peers ensure that secure code best practices are

followed, or by running different variations of security

audits such as static or dynamic application security

testing. Whether manual or automatic audits, they are

all a vital part of detecting and reducing vulnerabilities

in your application, and should be executed as

regularly and early in the development phase as

possible in order to reduce risks of exposure and data

breaches at a later stage.

Last year 44% of respondents stated they had never

run a security audit, while this year, the number is

considerably lower with 26% of users stating they

do not audit their source code. We’re seeing positive

trends toward repeated auditing actions this year

across all audit cycles as compared to last year’s

report with an increase of an average 10% of users

auditing their source code more often over the

quarterly and yearly cycles.

Security professionals often cite the shift-left

mantra in support of handling security concerns and

potential problems earlier in the application lifecycle.

This approach can uncover many valuable insights

for developers through automation and help security

keep up with the fast pace of modern,

continuous development.

Shifting left, especially in security, is key and

at times even critical, to reducing the cost

of security incidents that are only found in

production. One way to address security earlier

in the process and to increase the chances of

developers adopting those practices is to select

tools that are developer friendly and built to

integrate with their existing workflows.

OS maintainers differ in their code auditing cadence

We don’t

At least once a year

At least once a quarter

At least once a month

Every couple of years
or more

26%

10%

21%

21%

21%

One in four open
source maintainers
do not audit their

code bases

Known open source
vulnerabilities

02 A vulnerability is a vulnerability, whether known or not.

The key difference between the two is the likelihood of

an attacker to be aware of this vulnerability, and try to

exploit it. Therefore, the better known the vulnerability

is, the more urgent it is to deal with it.

A known vulnerability might have a CVE ID associated

with it as part of a responsible disclosure, or it might

just be disclosed on the internet or stored in open

databases. These are all types of known vulnerabilities

that you should prioritize eliminating as they have a

higher chance of being attacked in production. After

these, vulnerabilities that are captured in closed

vulnerability databases or even shared in the dark web

should be considered.

14All rights reserved. 2019 © Snyk

Known vulnerabilities in application libraries

Today, we’re witnessing an increase in the number

of vulnerabilities reported across many of the

ecosystems that we track, including PHP Packagist,

Maven Central Repository, Golang, npm, NuGet,

RubyGems, and PyPI.

In 2017, we saw a 43% increase of vulnerabilities

reported across all registries, and in 2018 the

vulnerability count grew by a further 33%.

When examining the five different ecosystems:

PHP, Java, JavaScript, Python and Go, we see an

increasing trend in the number of vulnerabilities

disclosed across all of them since 2014.

We may see further growth in numbers from 2018

due to undisclosed vulnerabilities that will only be

publicized later this year, further amplifying the

direction of this trend.

0

1000

2000

500

1500

2014 2015 2016 2017 2018

New vulnerabilities each year by ecosystem

PyPI

Golang

npm

Maven Central

PHP Packagist

Vulnerabilities are
found at an increasing

pace, nearly doubling in
the last 2 years

In 2018, new disclosures
for npm grew by 47%, and

Maven Central grew by 27%

15All rights reserved. 2019 © Snyk

In 2018 vulnerabilities disclosed for PHP Packagist

grew by a staggering 56%, and for Maven Central,

disclosures increased by 27%. Although Golang is a

smaller ecosystem, it has growing security research

and reported 52% new vulnerabilities in 2018 over 2017.

Looking back at the data from 2014 in Snyk’s

vulnerability database, we see a strong overall

increase in the number of vulnerabilities across

the board.

Today, we track 1766 vulnerabilities in the Maven

Central Repository, 1268 in npm, 746 in PHP Packagist,

807 in PyPI, and 94 in Golang.

Since 2014, the number of vulnerabilities in the Snyk

database has increased by an astonishing 371%, with

npm vulnerabilities increasing by an incredible 954%

and Maven Central vulnerabilities increasing by 346%.

Since 2014, the number of
vulnerabilities in Snyk's
database for npm grew
by 954% and for Maven

Central by 346%

All rights reserved. 2019 © Snyk 16

Trends in severity

When we look at vulnerability severity for

application libraries disclosed over the last three

years across all language ecosystems, 2018 shows a

smaller number of high vulnerabilities as compared

to the previous year.

However an interesting insight for both 2017

and 2018 is that there were more high severity

vulnerabilities than medium or low vulnerabilities

as compared to 2016.

Vulnerability severities by year

0

250

500

750

1000

201820172016

39

467 455

73

540

30

776

355

660

High

Medium

Low

17All rights reserved. 2019 © Snyk

“

Spotlight: Zip Slip

In 2018, the Snyk Security research team responsibly disclosed many

instances of a vulnerability dubbed Zip Slip, a widespread arbitrary

file overwrite critical vulnerability. It can be exploited using a

specially crafted archive that holds directory traversal filenames

and typically results in remote command execution.

It was discovered and responsibly disclosed by the Snyk Security

team ahead of a public disclosure on 5th June 2018, and affects

thousands of projects, including ones from HP, Amazon, Apache,

Pivotal, and many others.

The research that spanned various ecosystems uncovered tens

of vulnerabilities in libraries such as Apache Ant, adm-zip,

SharpCompress and others used by thousands of projects for Java,

npm, NuGet, Go, .NET, Ruby, Python and C++. Almost half of them

were found to be of high severity.

When we discovered the first instance of the Zip Slip vulnerability in a big project,

it was very exciting. It was our eureka moment, but when we discovered that every

other application had a vulnerable implementation, we were extremely surprised.

We realised that this vulnerability wasn’t just affecting a few apps, but loads of

projects across ecosystems.
 — Danny Grander, Snyk CSO

https://github.com/snyk/zip-slip-vulnerability
https://github.com/snyk/zip-slip-vulnerability

18All rights reserved. 2019 © Snyk

Known vulnerabilities in system libraries

There is an increase in the number of vulnerabilities

reported for system libraries, affecting some of the

popular Linux distributions such as Debian, RedHat

Enterprise Linux and Ubuntu. IIn 2018 alone we

tracked 1,597 vulnerabilities in system libraries with

known CVEs assigned for these distros, which is

more than four times the number of vulnerabilities

compared to 2017.

0

1000

2000

2008

500

1500

2500

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Linux OS vulnerabilities steadily increasing

UbuntuRHELDebian

All rights reserved. 2019 © Snyk 19

As we look at the breakdown of vulnerabilities

(high and critical) it is clear that this severity level

is continuing to increase through 2017 and 2018.

0

1000

2000

3000

4000

201620152014 2017 2018

5000

High and critical vulnerabilities in system libraries

CriticalHigh

20All rights reserved. 2019 © Snyk

Known vulnerabilities in docker images

The adoption of application container technology

is increasing at a remarkable rate and is expected

to grow by a further 40% in 2020, according to

451 Research. It is common for system libraries to

be available in many docker images, as these rely

on a parent image that is commonly using a Linux

distribution as a base.

Docker Hub provides insights into the most popular

docker images.

Accordingly, we’ve scanned through ten of

the most popular images with Snyk’s recently

released docker scanning capabilities.

The findings show that in every docker image

we scanned, we found vulnerable versions of

system libraries. The official Node.js image ships

580 vulnerable system libraries, followed by the

others each of which ship at least 30 publicly

known vulnerabilities.

Number of OS vulnerabilities by docker image

61

580

85

0

100

500

600

89

69

nginxnode postgres mongohttpd mysql rediscouchbase memcached ubuntu

30

61
4747 47

Docker images almost
always bring known

vulnerabilities alongside
their great value

https://snyk.io/features/container-vulnerability-management/

21All rights reserved. 2019 © Snyk

Snyk recently released its container vulnerability

management solution to empower developers to fully

own the security of their dockerized applications.

Using this new capability, developers can find known

vulnerabilities in their docker base images and fix them

using Snyk’s remediation advice. Snyk suggests either

a minimal upgrade, or alternative base images that

contain fewer or even no vulnerabilities.

Based on scans performed by Snyk users, we found that

44% of docker image scans had known vulnerabilities,

and for which there were newer and more secure base

image available. This remediation advise is unique

to Snyk. Developers can take action to upgrade their

docker images.

Snyk also reported that 20% of docker image scans had

known vulnerabilities that simply required a rebuild of

the image to reduce the number of vulnerabilities.

Fix can be easy if you’re
aware. 20% of images can
fix vulnerabilities simply

by rebuilding a docker
image, 44% by swapping

base image

All rights reserved. 2019 © Snyk 22

Vulnerability differentiation based on image tag

The current Long Term Support (LTS) version of the

Node.js runtime is version 10. The image tagged with

10 (i.e: node:10) is essentially an alias to node:10.14.2-

jessie (at the time that we tested it) where jessie

specifies an obsolete version of Debian that is no

longer actively maintained.

If you had chosen that image as a base image in

your Dockerfile, you’d be exposing yourself to 582

vulnerable system libraries bundled with the image.

Another option is to use the node:10-slim image tag

which provides slimmer images without unnecessary

dependencies (for example: it omits the main pages

and other assets). Choosing node:10-slim however

would still pull in 71 vulnerable system libraries.

The node:10-alpine image is a better option to choose

if you want a very small base image with a minimal set

of system libraries. However, while no vulnerabilities

were detected in the version of the Alpine image we

tested, that’s not to say that it is necessarily free of

security issues.

Alpine Linux handles vulnerabilities differently than

the other major distros, who prefer to backport sets

of patches. At Alpine, they prefer rapid release cycles

for their images, with each image release providing a

system library upgrade.

582

0

200

400

600

71

node:10-alpinenode:10 node:10-slim

100

300

500

0

Number of vulnerabilities by node image tag

Most vulnerabilities
originate in the base image

you selected. For that reason,
remediation should focus on

base image fixes

23All rights reserved. 2019 © Snyk

Moreover, Alpine Linux doesn’t maintain a security

advisory program, which means that if a system

library has vulnerabilities, Alpine Linux will not issue

an official advisory about it; Alpine Linux will mitigate

the vulnerability by creating a new base image version

including a new version of that library that fixes the

issue, if one is available (as opposed to backporting

as mentioned).

There is no guarantee that the newer fixed version, of

a vulnerable library will be immediately available on

Alpine Linux, although that is the case many times.

Despite this, if you can safely move to the Alpine

Linux version without breaking your application, you

can reduce the attack surface of your environment

because you will be using fewer libraries.

The use of an image tag, like node:10, is in reality

an alias to another image, which constantly rotates

with new minor and patched versions of 10 as they

are released.

A practice that some teams follow is to use a specific

version tag instead of an alias so that their base

image would be node:10.8.0-jessie for example.

However, as newer releases of Node 10 are released,

there is a good chance those newer images will

include fewer system library vulnerabilities.

Using the Snyk Docker scanning features we found

that when a project uses a specific version tag such

as node:10.8.0-jessie, we could then recommend

newer images that contain fewer vulnerabilities.

24All rights reserved. 2019 © Snyk

Spotlight: Malicious packages

You may have heard about malicious packages in a variety of

contexts, such as a malicious docker container or perhaps a malicious

package in a public registry of one ecosystem or another. We have

also discussed developers as a malware distribution vehicle in several

other contexts such as the Induc malware that infected Delphi

compilers and XCodeGhost that targeted iOS and OSx developers.

However, not all malicious packages are the same in nature.

With regards to ecosystem registries we can broadly classify them

into the following:

 è a typosquatting attack where a malicious package uses a very

similar name of a more popular package

 è a compromised maintainer’s CI or registry account resulting in

the publishing of a malicious version, or a malicious package

residing in a project’s list of dependencies

 è a socially engineered inclusion of a malicious package (or a

package that will be malicious after inclusion) into a project

list of dependencies

In 2018 we saw occurrences of all of these malicious package types

in the npm ecosystem, known for being one of the registries that

suffers from malicious packages more than others. The package that

recently made the news in December 2018 was event-stream. It relied

on a malicious dependency that was delivered through a seemingly

innocent attempt to make an open source contribution.

This hack affected a staggering 8 million downloads of the malicious

package in only two months. Another example in 2018 is the ESLint-

scope package in which the maintainer’s account was compromised.

We also saw a total of 11 typosquatting attacks for malicious packages

published in 2018 on the npm registry.

25All rights reserved. 2019 © Snyk

In addition to the typical typosquatting attempts that we’ve seen

in the past, we also saw more mature malicious attempts to attack

the npm ecosystem than in previous years, such as the ESLint-scope

attack. With much higher sophistication, the event-stream incident

exposed a high level of expertise and targeted attacks than we’ve

seen in previous malicious attempts in the ecosystem to date.

In contrast to the npm registry, the only other registries in which

we identified malicious packages were RubyGems with just one

malicious package in 2018, and Python with ten malicious packages

in 2017 and thirteen in 2018.

In 2018, a malicious
package was downloaded
a record 8 million times. It

was one of 25 typosquatting
attacks in npm and PyPI

Vulnerability
characteristics

of each
ecosystem

03
We were curious to learn more about the distinct

vulnerability families found within each ecosystem

in order to better understand what attackers target

for exploitation.

27All rights reserved. 2019 © Snyk

XSS vulnerabilities

Cross-site Scripting (XSS) attacks have been an ever-

increasing pain point for web applications and we see

the trend in XSS vulnerabilities spiking in 2018 across

all ecosystems that Snyk has been monitoring.

Within these ecosystems, we’ve detected that the

npm ecosystem has seen the most XSS vulnerabilities,

disclosing 225 in total; followed by Maven Central

Repository with 167; and PyPI with 163 total cross-

site scripting vulnerabilities. In 2018, the PHP

Packagist ecosystem disclosed the most with 56 XSS

vulnerabilities, followed by npm with 54, and Maven

Central with 29.

0

50

100

150

200

201620152014 2017 2018

XSS vulnerabilities disclosed by year

XSS vulnerabilities in open
source libraries are still on

the rise, despite being a top
concern by OWASP for more

than 15 years

28All rights reserved. 2019 © Snyk

SQL injection vulnerabilities

Another common attack vector that is consistently

featured in the OWASP’s top 10 over the past decade

is CWE-89, more commonly known as SQL Injection.

Looking across the last three years, we can see that

each of the three main ecosystems we reviewed have

peaks during different years. Maven libraries lead

the number of SQL injection vulnerabilities disclosed

in both 2016 and 2017, followed by PHP Packagist

libraries, which hit a peak in 2018.

SQL injection disclosures show spikes by
year and ecosystem

3%

0

5

10

15

20

PHP PackagistMaven Centralnpm

3

0

4 4
5

8

2

6

16

20172016 2018

29All rights reserved. 2019 © Snyk

Sensitive information exposure

Looking at the Maven Central and PHP Packagist

registries we found they had the most vulnerabilities

related to information exposure, peaking in 2018 for

both ecosystems.

Information exposures often happen unintentionally.

They occur when a program or system discloses

potentially sensitive information, such as environment

variable names and values. Cases of information

exposure may also occur “by design” such as when

sensitive data is provided within URL parameters.

Several examples of information exposure

vulnerabilities in the Maven Central registry are

apache spark, jenkins core, keyclock-saml-core

packages. Jenkins ssh-agent CI plugin, for example,

leaked the SSH private key in the build logs for anyone

with Read permissions to see.

The PyPI registry also has a good amount of

vulnerabilities found in libraries, with examples of

information exposure vulnerabilities. Packages such

as django displayed a user password hash to admin

users who only had View permissions. The package

djangorestframework-api-key saved API keys in

plain text.

Sensitive information exposure vulnerabilities
affecting the Java ecosystem

0

25

50

75

100

RubyGemsPHP Packagistnpm

1 2
8 79

23

12

1

Maven Central PyPI

31 27

53

9
17

3
11

20172016 2018

https://snyk.io/vuln/SNYK-JAVA-ORGAPACHESPARK-72494
https://snyk.io/vuln/SNYK-JAVA-ORGJENKINSCIMAIN-72670
https://snyk.io/vuln/SNYK-JAVA-ORGKEYCLOAK-72428
https://snyk.io/vuln/SNYK-JAVA-ORGJENKINSCIPLUGINS-32452
https://snyk.io/vuln/SNYK-PYTHON-DJANGO-72562
https://snyk.io/vuln/SNYK-PYTHON-DJANGORESTFRAMEWORKAPIKEY-72560

30All rights reserved. 2019 © Snyk

Regular expression denial of service

The Node.js runtime is known to have many

strengths, but one of them, the single threaded Event

Loop, can also be its weakest link if not used correctly.

This happens more regularly than one might think.

Regular expression denial of service (ReDoS)

attacks exploit the non-linear worst-case complexity

vulnerabilities that some regex patterns can lead

to. For a single-threaded runtime this could be

devastating, and this is why Node.js is significantly

affected by this type of vulnerability.

We found that there were a growing number of

ReDoS vulnerabilities disclosed over the last three

years, with a spike of 143% in 2018 alone.

Regular expression denial of service (ReDoS)
disclosures on the rise

0

20

40

60

80

20182016 2017

31All rights reserved. 2019 © Snyk

Path traversal

Path and directory traversal vulnerabilities fiercely

stand out in the npm ecosystem with record

numbers of 146 and 143 disclosures in 2017 and 2018,

respectively. The other ecosystems are much further

behind, which is a good thing!

One might presume that this may be attributed to the

plethora of static and dynamic web servers built with

Node.js for both production and development use,

and therefore there are many more packages in which

such vulnerabilities might also be found.

Path traversal vulnerabilities most commonly
seen in npm

0

50

100

150

200

PyPIPHP PackagistRubyGems

0 2 3 61 53 3

Maven Central npm

21
5

17
4

143146

3

20172016 2018

32All rights reserved. 2019 © Snyk

Cleartext transmission of sensitive information

Last but not least is another unique vulnerability

worthy of mention in the npm ecosystem, CWE-319,

also known as Cleartext Transmission of Sensitive

Information, in which resources are accessed over

insecure protocols. We were able to find 44 new

reported vulnerabilities in packages from 2016,

and this number further rises to a hefty total of 110

packages in 2017, a 250% increase.

“The state of an ecosystem's security and its public perception are often

extremely different. The lack of typing in JavaScript has spread the idea

that it is an unsafe language due to type manipulation, but in any case, the

number of vulnerabilities discovered in npm modules over the last couple

of years is still lower than those discovered on Maven central. At the same

time, some vulnerabilities may be exacerbated because Node.js is still

mono-threaded. ReDoS (or other CPU-exhaustion DoS), which is much

more common in the Node.js world, is an example of this. Hopefully,

Worker Threads will soon enable Node.js, in order to reduce these risks.

The security community in Node.js has been more and more active in

the past years and we can continue to work hard so that the ecosystem

becomes safer in the future.

 — Vladimir de Turckheim, Node.js Foundation Security WG

The open source
security
lifecycle

04 A healthy approach to embracing security as part

of the SDLC is to integrate it within the entire

development lifecycle, from design to production.

This significantly differs from the more traditional

one-off phase of security testing that occurs

periodically and doesn’t fit the modern, fast-paced

software delivery model. However, processes and

guidelines may not be enough. Education, friendly

tooling, and engagement with R&D teams and

stakeholders are just as important to the healthy

adoption of security practices within an organization.

34All rights reserved. 2019 © Snyk

Discovering vulnerabilities

It takes a great deal of knowledge, experience, and

a sharp eye to properly code review for potential

security vulnerabilities within one’s own code. As

this isn’t a straightforward task, if carried out at all, it

suggests that vulnerable code may stay dormant for a

long time until it is picked up by anyone.

Teams that practice DevOps or have a mature CI/

CD pipeline may find it easier to introduce security

testing as part of their build automation, yet we find

that almost 40% of users don’t implement any sort

of security testing during their CI runs. A reassuring

note however is that more than half of them are at

the very least testing for vulnerabilities in their open

source dependencies.

0% 20% 40% 60%

14%

57%

37%

36%

No, we don’t have any automated
security testing during CI

We statically test our own
source code for vulnerabilities

We test for known vulnerabilities
in our container images

We test for known vulnerabilities in
our open source dependencies

10% 30% 50%

Security testing during CI

“Another finding in our research is that teams that build security into their work also

do better at continuous delivery. A key element of this is ensuring that information

security teams make pre-approved, easy-to-consume libraries, packages, toolchains,

and processes available for developers and IT operations to use in their work.

 — Nicole Forsgren, Accelerate: The Science of Lean Software and DevOps: Building

and Scaling High Performing Technology Organizations

37% of users of users
don’t implement any sort

of security testing
during CI

35All rights reserved. 2019 © Snyk

Open source security ownership

When facing such alarming statistics, we set out to

find who in practice owns the security responsibility

of an application or library today, as well as who users

think should take ownership of security.

According to 81% of respondents, developers should

own the security of their application code, sending

a strong statement about the involvement and

engagement level that is expected from developers,

and supports the strong DevSecOps movement

which many are adopting today.

Who is responsible for security?

12%

28%
23%

0%

25%

50%

75%

100%

81%

3%

OperationsSecurity team Developers NobodyOther

36All rights reserved. 2019 © Snyk

Finding out about vulnerabilities

From the user’s perspective, it is interesting to gain

insights into how they learn about vulnerabilities in

their application dependencies in order to respond to

potential threats as they are discovered.

A worrying 27% of respondents stated they do not

have any proactive or automatic way to find out

about newly discovered vulnerabilities in their

applications. Only 36% of users confirmed that they

use a dependency management or scanning tool to

help surface vulnerabilities.

Snyk stats

 è In the second half of 2018 alone, Snyk opened

more than 70,000 Pull Requests for its

users across Maven, RubyGems and npm

ecosystems to remediate vulnerabilities in

their projects.

 è Out of all the dependencies in a scanned

Java project, Snyk provided a remediation

path to fix vulnerabilities that were found

in 60% of them. It’s not always possible

to fix remediation paths when there is no

compatibility between a direct dependency

and a fixed version of an indirect dependency.

The Snyk Security team can provide custom

patches to fix some of these situations.

How do you find about vulnerabilities?

10%

2%

36%

16%

27%

9%
Other

We use a dependency management/ scanning tool
that notifies us

We track the list of dependencies against public
databases (e.g. CVEs) ourselves

When my security team reports a severe vulnerability,
we search for apps using this component

I read the release notes of most of my direct and
indirect dependencies

I probably won’t

37All rights reserved. 2019 © Snyk

Spotlight: Vulnerabilities without CVEs

It is common for security teams to keep track of, and to react to,

new vulnerabilities as they are disclosed through the National

Vulnerabilities Database (NVD), or other public CVE repositories.

However, a good number of security vulnerabilities are discovered

and fixed in non-official channels such as through informal

communication between maintainers and their users in an

issue tracker.

The Snyk database is carefully curated by an internal security

analysts team, and tracks vulnerabilities not included in these official

sources but mentioned in public locations such as forums or release

notes. Using Snyk's DB as a barometer, we see it uncovers 67% more

vulnerabilities than public databases.

In addition to comprehensiveness, CVEs and public databases are

often slow to add vulnerabilities. If we look at npm as an example,

vulnerabilities only show up in npm audit an average of 92 days after

they are captured in Snyk's DB, and lag behind 72% of the time.

These gaps indicate the CVE system and public open source

databases are not currently coping with the pace and volume of

open source software vulnerabilities. These mechanisms should be

reevaluated, and security conscious organisations should seek out

commercial databases for timely and broad coverage.

38All rights reserved. 2019 © Snyk

Time to adopt security fixes

How long does it take users to adopt new releases that

provide security fixes to known vulnerabilities? We

turned to Python’s PyPI registry and its websockets

package for an example to see how popular

vulnerable releases continued to be used even after a

vulnerability fix was released.

The websockets project is a fairly popular and

well-maintained package, dating back to 2013 and

showcasing regular releases to the present day.

In August 2018 a denial of service vulnerability was

disclosed to the community, affecting versions 4.0

and 4.0.1 of the package. At the time of disclosure,

newer versions already existed on the registry that

provided the security fix, however looking at the

download counts for the vulnerable versions, a

long trail of users still fetch vulnerable versions of

websockets can be seen.

By December 2018 we’re still tracking 11k downloads of

the websockets package that contain the vulnerability,

even though there is a fixed version available as a

major upgrade with websockets version 5.0.

Downloads of the vulnerable PyPI
websockets package in 2018

0

5000

10000

15000

20000

OctoberSeptemberAugust November December

25000

30000 vulnerability disclosed

39All rights reserved. 2019 © Snyk

How do maintainers find out about vulnerabilities?

It is more likely that maintainers be alerted to

a security concern than it is that they find out

themselves. An industry-accepted best practice is

a responsible disclosure policy, which details how

security researchers and individuals should safely

report security vulnerabilities to project maintainers.

From the survey data, we can conclude that almost

half (48%) of respondents find out about a security

vulnerability that is in their code from a public

channel, such as when someone else is opening a

public issue or contacting them over email.

72% of users said they find out about vulnerabilities

in their code when they review their own code

personally; however 62% of users have stated they

have only medium-level security know-how whereas

only 30% of them state their security expertise is high.

Furthermore, while the majority of users (72%) say

they review their own code to find vulnerabilities,

48% of users still learn about vulnerabilities in their

code only when someone else opens a public issue,

demonstrating how hard it is to rely on just one

maintainer reviewing code even if that maintainer is

perceived to have good security knowledge.

0% 20% 40% 60%

48%

37%

72%

30%

When I review my code

Through an external audit

By someone opening
a public issue

By someone sending
me an email

Other

I don’t

9%

17%

10% 30% 50% 70% 80%

How do maintainers find out about vulnerabilities?

40All rights reserved. 2019 © Snyk

Inclusion to disclosure

One of the research questions we wanted to

answer was how long it takes from the time a

vulnerability enters the code base and until it

is discovered and disclosed? To answer this, we

set out to analyze several top libraries in the

npm ecosystem and the vulnerabilities that were

discovered in them during 2018.

As this is more time-consuming and tricky to

accurately automate, we looked at the top six

npm libraries and analysed their code bases to see

the differences between the dates of the commits

that introduced the vulnerability and fixed the

vulnerability. Of course, these calculations are

slightly biased because we’re using such a small

sample size, but the range and order of numbers are

interesting all the same!

Of these six libraries, we saw that the quickest

time-to-fix from inclusion was almost one year, or

289 days to be precise. The median time is almost

2.5 years, and the worst case we saw was 5.9 years.

Vulnerabilities - days of inclusion to disclosure

Vulnerability
included

Day
1

Day
289

Day
886

Day
2250

Quickest
time-to-fix

Median

Slowest
response time

41All rights reserved. 2019 © Snyk

Spotlight: Equifax, a year later

A recent report released by the US government deemed the

infamous Equifax breach as completely preventable, and

demonstrated how important it is to shift security to the left by

integrating it into the development workflow.

With a DevSecOps mindset and good practices employed, a

development team could have prevented the Struts vulnerability

making such an impact if:

 è developers would have found the issue by adopting open source

dependency scanning tools that integrate with their workflow

using IDE plugins or code linters.

 è any new build run by a CI server would automatically test

application dependencies via a CI server plugin or a CLI

invocation as a task. This would immediately flag the new

vulnerability, breaking the CI job and forcing a remediation

action before continuing.

 è a monitoring solution was in place that notified developers of

the new vulnerability in their dependencies.

Further monitoring and runtime insights into how the application

behaves and what vulnerable functions it invokes could have alerted

of vulnerabilities in the Struts library.

42All rights reserved. 2019 © Snyk

Releasing fixes

A crucial part of a responsible security disclosure is

the speed of fix and roll out. It’s important to be able

to address the vulnerable issue as quickly as possible,

thereby reducing the time it exists in the code, and

also to provide sufficient time for users to upgrade to

a fixed version, preferably before the issue is

common knowledge.

As the nature of open source communities revolves

around mostly volunteer work of developers (a BIG

thank you to all the wonderful people who contribute

to open source software – your kind work is very

much appreciated and rarely acknowledged or

appreciated publicly!), it is interesting to gauge how

fast maintainers of open source software can react to a

security vulnerability and provide a fix.

An overwhelming majority of users, totaling 84%,

state they are likely to respond with a fix in less than

a week. 56% are likely to address it within a day, while

22% state they can address a security issue within a

few hours after the vulnerability has been reported –

not all heroes wear capes!

Over a month

A month or less

A week or less

A day or less

A few hours

10%

6%

27%

35%

22%

Vulnerability report response times

43All rights reserved. 2019 © Snyk

Rate of fixing

Examining the Snyk vulnerability database we can

determine which packages have released versions

that contain vulnerability fixes. This paints a less

than ideal picture for some ecosystems – looking at

you JavaScript! Java and Python exhibit ecosystems

with strong attention to security vulnerabilities,

whereas JavaScript and Node.js as a whole show

that only 59% of packages have known fixes for

disclosed vulnerabilities.

Package vulnerabilities with known fixes

0% 50% 100%

98%

97%

84%

59%

RubyGems

npm

PyPI

Maven
Central

25% 75%

44All rights reserved. 2019 © Snyk

Spotlight: Responsible security disclosures

A significant benefit of having a responsible disclosure policy is to

keep users out of harm’s way. When a vulnerability is reported and

triaged in a confidential manner with the project maintainer it allows

the maintainer to prepare a fix before the information is disclosed

to the general public. If maintainers can act quickly and release a

fix, then they provide a window of time during which their users

can upgrade to the fixed version. This time window significantly

decreases the number of users that consume the vulnerable versions.

We believe that having a responsible disclosure policy in place will

also communicate the maintainer’s high commitment to security.

We recommend to use a badge on the project’s homepage, and

including a SECURITY.MD policy file in the project’s repository as a

good practice.

In the last report we found that maintainers who have a public-facing

disclosure policy in place are far more likely to receive disclosures

from users in confidence, than those who do not.

About 21% of maintainers with no public disclosure policy have

been notified privately about a vulnerability, as compared to 73% of

maintainers with a disclosure policy in place.

Websites are susceptible to web security vulnerabilities and would

benefit from clear guidelines about web security policies.

An emerging proposal to aid with this is the SECURITY.TXT (RFC

5785) which has seen early adoption already. The purpose of such

as policy file is to effectively communicate to security researchers

the relevant contacts, preferred languages, exact policy and ways

of communication, including public keys to securely and efficiently

disclose security vulnerability.

45All rights reserved. 2019 © Snyk

The future of open source

Open source is a core part of virtually all software applications today. Even the Java and Node.js platforms are open source! There’s no getting

away from the obvious fact that open source is here to stay and a welcome part of modern software development. It’s easier than it has ever been

to create a new open source project, as well as use other projects from other members of the community. This speed of development and sharing

has led to coding standards and practices varying greatly between open source projects, as it’s not always easy for developers to think about the

consequences of unintentionally sharing insecure code. In the great, wise, and slightly adapted words of Dr. Malcolm:

We’d like to conclude this report with some security advice for both open source project maintainers as well as those who consume open source

dependencies. Oh, I guess that’s pretty much everyone then!

“Your developers were so preoccupied with whether or not they could, they didn't

stop to think if they should.

 — Dr. Ian Malcolm, Jurassic Park

All rights reserved. 2019 © Snyk 46

Take action

As OS maintainers and developers there are actions you can take to improve the security in projects you own and contribute to.

Open source maintainers

As an open source maintainer, you should offer secure releases of your code and

provide a communication strategy to those consumers in order to positively

impact other projects and applications, ultimately benefiting your own projects

as well.

 è Practice secure code review with your peers if possible and follow secure-

code best practices. Make security considerations part of your code review

checklist and educate those who are reviewing so that they know what they

should be looking for.

 è Regularly audit your code base for vulnerabilities, through static and dynamic

code analysis, for example, that can be automated into your development

workflow and make it easier to catch vulnerabilities before they

become public.

 è Clearly define a simple process for communication of responsible disclosures,

using your own policy or by referring to an existing program. To communicate

your security awareness consider adopting a SECURITY.MD policy and a

project badge that reflects the security health of the project.

 è Implement a shift-left security strategy that provides your team the insight

into security issues during development, CI, and even when pull requests are

created to eliminate all chances of vulnerable code entering your projects.

Open source developers

As a consumer of open source components, it’s your responsibility to fully

understand the direct and indirect dependencies your projects use, including

any security flaws that might exist in that dependency tree. Consider adopting

the following security guidelines:

 è Regularly audit your code base with a tool that automatically detects

vulnerabilities in your third-party dependencies, providing remediation

advice to your team and monitoring a project’s dependencies even after it

has been deployed.

 è Follow responsible disclosure policies if you are reporting a security

vulnerability to make sure you don’t put users in harm’s way. If you are

unsure about how to do this, consider disclosing to a security company

that work through the disclosure with you, such as Snyk’s responsible

disclosure program.

 è Subscribe to the security communication channels of your open source

dependencies, if they have them, so you’re aware of any potential

vulnerabilities as they are reported.

47All rights reserved. 2019 © Snyk

TL;DR - Report summary

 è Over 500 open source maintainers and users

 è Internal data from the Snyk vulnerability database

 è Hundreds of thousands of projects monitored and protected by Snyk

 è Research taken from external sources published by various vendors

 è Scanning millions of GitHub repositories and packages on public registries

Data in this report was collected from the
following sources:

 è GitHub saw a 40% rise in new organizations and new repositories
created in 2018

 è Almost one third of all repositories that exist on GitHub were created in 2018

 è Growth in indexed packages from 2017 to 2018.
 ć Maven Central - 102% growth
 ć PyPI - 40% growth
 ć npm - 37% growth
 ć NuGet - 26% growth
 ć RubyGems - 5.6% growth

 è The CVE list reported a record-breaking number of vulnerabilities reported
in 2018, which now totals more than 16,000 vulnerabilities in the
database overall

 è npm reported 304 billion package downloads for the entire year of 2018.

 è Docker reported over 1 billion container downloads every 2 weeks over the
last year, and about 50 billion to date

 è Docker also reported 1 million new applications added into Docker Hub over
the last year

 è 78% of vulnerabilities are found in indirect dependencies

 è On average, open source maintainers rate their own security knowledge
as 6.6/10

 è Only 3 in ten open source maintainers consider themselves to have high
security knowledge

 è One in four open source maintainers do not audit their code bases

Open source adoption

 è Security vulnerabilities almost double in two years. In 2017 we saw a 43%
increase in the number of vulnerabilities reported. In 2018, that total
increased by a further 33% across all registries

 è The number of Golang vulnerabilities grew in 2018 by 52%

 è Since 2014, the number of vulnerabilities in the Snyk database has increased
by an astonishing 371%, with npm vulnerabilities increasing by an incredible
954% and Maven vulnerabilities increasing by 346%

Known vulnerabilities in application libraries

 è 81% of users feel developers are responsible for security

 è Only 28% of users feel security teams are responsible for security

 è 68% of users feel that developers should own the security responsibility of
their docker container images

Security ownership

48All rights reserved. 2019 © Snyk

 è 1597 vulnerabilities in system libraries with known CVEs were raised in
2018 for the Debian, RHEL and Ubuntu distributions

 è In 2018, we tracked over four times more vulnerabilities found in RHEL,
Debian and Ubuntu compared to 2017

 è According to 451 Research, the adoption of application container
technology is expected to grow by a further 40% in 2020

 è Ruby's default docker image ships with 583 system library vulnerabilities

Known vulnerabilities in system libraries

 è Almost 40% of open source users don’t implement any sort of security
testing during CI

 è Over half of open source users test for vulnerabilities in their open
source dependencies

Discovering vulnerabilities

 è In 2018 there were 11 typosquatting attacks for malicious packages
published on the npm registry

 è The number of XSS vulnerabilities is again on the increase. In 2018 the
PHP Packagist ecosystem disclosed the most with 56 XSS vulnerabilities,
followed by npm with 54, and Maven Central with 29

 è Path and directory traversal vulnerabilities fiercely stand out in the npm
ecosystem with record numbers of 146 and 143 disclosures in 2017 and
2018, respectively

 è The number of Cleartext Transmission of Sensitive Information
vulnerabilities has increased by 250% since 2016

Vulnerability characteristics of each ecosystem

 è Each of the top ten most popular default docker images contains at least 30
vulnerable system libraries

 è 44% of scanned docker images can fix known vulnerabilities by updating
their base image tag

 è 20% of docker image scans had known vulnerabilities that simply required
a rebuild of the image to reduce the number of vulnerabilities

 è 37% of open source developers don’t implement any sort of security testing
in their CI and 54% of developers don’t do any docker image security testing

Vulnerabilities in docker images

49All rights reserved. 2019 © Snyk

 è Of the seven libraries we analysed, the quickest time-to-fix from inclusion
was 289 days. The median time is almost 2.5 years, and the worst case we
saw was 5.9 years

Inclusion to disclosure

 è 84% of users state they are likely to respond to a fix in less than a week

 è 22% state they can address a security issue within a few hours of a report

 è 27% of users stated they do not have any proactive or automatic way to
find out about newly discovered vulnerabilities in their applications.

 è Only 36% of users confirmed that they use a dependency management or
scanning tool to help surface vulnerabilities

 è In the second half of 2018 alone, Snyk opened more than 70,000 Pull
Requests for its users across Maven, RubyGems and npm ecosystems to
remediate vulnerabilities in their projects

Adopting fixes

 è Almost half (48%) of respondents find out about a security vulnerability that
is in their code from a public channel, such as a public issue

 è 72% of users said they find out about vulnerabilities in their code when they
review it

How do maintainers find out about vulnerabilities?

 è CVE/NVD and public vulnerability databases miss many vulnerabilities, only
accounting for 60% of the vulnerabilities Snyk tracks

 è In 2018 alone, 500 vulnerabilities were disclosed by our proprietary research

 è 72% of the vulnerabilities in npm audit were added to the Snyk vulnerability
database first

 è On average, Snyk discloses vulnerabilities 92 days sooner than they are
published on npm-audit

The Snyk Vulnerability database

London

1 Mark Square

London EC2A 4EG

Office info

 Tel Aviv

40 Yavne st., first floor

Boston

WeWork 9th Floor

501 Boylston St

Boston, MA 02116

Twitter: @snyksec

Web: https://snyk.io

Report author

Liran Tal (@liran_tal)

Report contributors

Simon Maple (@sjmaple)

Guy Podjarny (@guypod)

Rachel Cheyfitz (@spinningrachel)

Report design

Growth Labs (@GrowthLabsMKTG)

Snyk helps you use open source and stay secure.

Get started at snyk.io

http://twitter.com/snyksec
https://snyk.io
http://twitter.com/Liran_Tal
http://twitter.com/sjmaple
http://twitter.com/guypod
http://twitter.com/spinningrachel
http://twitter.com/GrowthLabsMKTG
https://snyk.io

