
Python
Security Best
Practices
Cheat Sheet

www.snyk.io

What version of Python are you using? The end of
Python 2 is near—January 1, 2020. If you are using
Python 2 past that date, you leave yourself open to
any emerging security vulnerabilities.

Understand how the requests library utilizes certain security
practices so you can get the most out of them. Keep your version of
certifi up to date—the requests library uses it to verify certificates.

Deterministic builds are important for predictable behavior
in production. However, pinning your dependencies to
achieve this leaves you open to security vulnerabilities.
Pipenv helps you manage your environment and
dependencies in a predictable, secure way.

Python import statements are flexible but can be exploited.
Implicit relative imports (deprecated as of Python 3) leave
your code vulnerable to malicious code execution. Whatever
import method you use, remember be sure you trust the
module--importing executes code!

Assume that there are malicious packages available on PyPI.
When installing, be sure to spell the package name
correctly--you don’t want to install a malicious package that
is named for a common misspelling of a popular package.

Bandit is an open source security scanner for Python code. It
can be run locally or as part of your CI/CD pipeline.

There are multiple ways to format strings in Python. When
formatting strings from user input, extra care is needed to
avoid things like injection or code execution. The Template
class in the string module is a more secure way to format
strings with user input.

Understand the different types of open source licenses and
adhere to their terms. Be wary of any project that does not
have a license; you may not like the terms of the license they
eventually adopt. Over 10% of packages on PyPI fall into this
category.

Do not deserialize data from an untrusted source. Python’s pickle
module allows for this using pickle.load. Deserializing from an
untrusted source can result in arbitrary code execution.

Just because your app is secure today does not mean it will be
secure tomorrow. Stay up to date on new vulnerabilities by using
the Pipenv safety package or consider trying Snyk’s tools, which
can alert you when a new vulnerability is found in a package that
you are using.

Handle requests safelyUse Python 3

Use Pipenv for environment and dependency
management

Watch your import statements

Download packages with care

Scan your code with Bandit Be careful with string formatting

Review your dependency licenses

Deserialize selectively

Keep up-to-date on vulnerabilities

6.1.

3.

4.

5.

2. 7.

8.

9.

10.

https://bandit.readthedocs.io/en/latest/
https://pipenv.readthedocs.io/en/latest/
https://pypi.org/project/certifi/
http://docs.python-requests.org/en/master/#
https://snyk.io/blog/over-10-of-python-packages-on-pypi-are-distributed-without-any-license/
https://snyk.io/

