
7. Be careful with your cookies

Some cookies are more secure than others — the default cookie behavior is to connect
over http. However, since we already established that you need to use https, you want to
make sure your cookies are only being sent over https as well. To prevent leaking cookies,
be sure to set your SESSION_COOKIE_SECURE and CSRF_COOKIE_SECURE settings to
True.

8. Carefully handle user uploads

If your web application allows users to upload files, you are opening yourself to an attack
vector and the upload logic should therefore be handled carefully. It is important to
validate all uploaded files to be sure they are what you expect (for instance, an image file
and not a PHP script!).

9. Understand all of your dependencies

Indirect dependencies are as likely to introduce risk as direct dependencies, but these risks
are less likely to be recognized. A tool like Snyk helps you understand your entire
dependency tree, and now that Snyk offers fix pull requests for Python, fixing problems
(even in indirect dependencies) is easier than ever.

10. Don’t let the perfect get in the way of the good

Every security step you take is a step in the right direction. Django may be for perfection-
ists with deadlines, but code doesn’t have to be perfect to reap security benefits.

www.snyk.io

Cheat sheet: Django security tips

1. Know your version and use a secure one

What version of Django are you using? The choice of version determines what known
vulnerabilities are present, and potentially exploitable, in your application. Learn more about
known Django vulnerabilities from our vulnerability database or you scan your project with
Snyk.

2. Throttle user authentications

Django provides a lot of security features baked in, but the authentication system does not
inherently protect against brute force attacks. It is important for you to write your own code
to prevent this, or use one of many open source solutions (like Django Defender).

3. Protect your source code

Make sure your source code is not included in your web server’s root directory. Use a private
repository if your project is sensitive. Never check your secrets into version control, even if
you are using a private repository.

4. Use raw queries and custom SQL with caution

While it may be tempting to write raw sql queries and custom SQL, doing so may open the
door for an attack. A user attempting to perform an sql injection (execute arbitrary sql on a
database) is going to find it much harder, if you always use the ORM.

5. Use HTTPs

Regardless of your framework of choice, it is always preferable to deploy behind HTTPS.
Doing so prevents malicious users from intercepting information sent between the client
and the server.

6. Watch your headers

When the site is served via https, the referer request header is utilized by Django to help
prevent cross site request forgery (CRSF) attacks. If you are too strict with your referer-policy
header, you disable the functionality of Django’s CRSF protection. In the end you need to
weigh the privacy benefits of using a strict referer-policy header with the benefits of the
CRSF protection.

Watch your headers

First, we want to specifically consider the referer request header.
This header contains the address of the previous web page from
which you arrived at the current page. This information is useful
for analytics, among other things. Sometimes though, It causes
problems because, generally, people do not like to be followed
around the web. Due to privacy concerns, it is possible to
disable this functionality. Whether a referer request header is
passed along, can be determined by the referer-policy header.
Under certain conditions, partial information is passed along —
in others, all of the information is included, and sometimes no
referer request header information is forwarded.

When the site is served via https, the referer request header is
utilized by Django to help prevent cross site request forgery
(CRSF) attacks. If you are too strict with your referer-policy
header, you disable the functionality of Django’s CRSF protec-
tion. In the end, you need to weigh the privacy benefits of using
a strict referer-policy header with the benefits of the CRSF
protection. It is possible to “split the difference” by only
enabling same-origin referrers in your referer-policy header.

Be careful with your cookies

Some cookies are more secure than others — the default cookie
behavior is to connect over http. However, since we already
established that you need to use https, you want to make sure
your cookies are only being sent over https as well. To prevent
leaking cookies, be sure to set your SESSION_COOKIE_SECURE
and CSRF_COOKIE_SECURE settings to True. This instructs the
browser to only send these cookies over HTTPS connections.
There are some interesting side effects to setting these
parameters to true, but they should be mitigated by redirecting
http traffic to https.

https://snyk.io/vuln/search?q=django&type=any
https://app.snyk.io/login
https://app.snyk.io/login
https://pypi.org/project/django-defender/
https://docs.djangoproject.com/en/3.0/ref/settings/#std:setting-SESSION_COOKIE_SECURE
https://docs.djangoproject.com/en/3.0/ref/settings/#std:setting-CSRF_COOKIE_SECURE

