
JVM Ecosystem
Report 2020

Table of contents

About your JDK

01. Which Java vendor's JDK do you currently use in
production for your main application?

02. Are you currently paying a vendor for JDK support?

03. Who do you pay?

04. Did the support and release cadence changes, since JDK 9,
affect your decision to pay for support?

05. Will you consider paying for JDK support in the future,
based on the latest release cadence changes?

06. Which Java SE version do you use in production for your
main application?

07. What are the reasons why you have not moved to a more
recent version?

08. What is your approach to adopting new JDK releases
in production?

09. How well do you understand the new 6-month release
model and the updated support statements made about
each release?

10. How quickly do you apply critical JDK security updates?

11. What is the main JVM language you use for your
main application?

12. Do you write or maintain any Java applications?

13. Are you using, or are you planning to use, Java modules in
your Java applications?

14. How easy was it to adopt Java modules?

15. Did you adopt Java modules while writing new
applications or while migrating older ones?

About your application

16. Do you use the Spring Framework?

17. What Spring version do you use for your main application?

18. Do you use Enterprise Java? (J2EE, Java EE, Jakarta EE)

19. What Java EE version do you use for your main application?

20. What was your reaction to Oracle and the Eclipse foundation not
agreeing on continued usage of the javax namespace?

21. Would you consider switching to another framework/technology
in order to avoid migrating to a newer Jakarta EE version, due to
the javax namespace changes?

22. What other languages does your application use?

23. Which client-side web frameworks do you use?

24. Which server-side web frameworks do you use?

About your tools

25. Which is the main Integrated Development Environment (IDE)
you are using?

26. Which build tool do you use for your main application?

27. Which CI server do you use?

28. Which code repository do you use for your main application?

29. When do you scan your dependencies for known vulnerabilities?

About you

30. Where are you from?

31. What is your current role?

32. What is the size of your company?

All rights reserved. 2020 © Snyk 4

Introduction

Welcome to our annual JVM ecosystem report! This report presents the

results of the largest annual survey on the JVM ecosystem. The survey was

conducted in the second half of 2019 gathering the responses of over 2000

participants. We would like to thank everyone who participated and offered

their insights on Java and JVM-related topics.

For this survey, we teamed up with conferences and communities across the

JVM ecosystem to reach as many developers as possible. Big shout out to

Devoxx, DevNexus, Jfokus, JCrete, Adopt OpenJDK, VirtualJUG and other

Java communities for their invaluable help. As a result of this massive effort,

an impressive number of developers participated in the survey, giving great

insight into the current state of the JVM ecosystem.

Find all demographic information at the end of this report.

Happy reading!

A big thank you to JFokus, Devoxx, JCrete, Java Specialists newsletter, The

Developer's Conference, DevNexus, Virtual JUG, Transylvania JUG, Beirut

JUG, Manchester Java Community, London Java Community, Timisoara JUG,

Utrecht JUG and other user groups!

All rights reserved. 2020 © Snyk 5

TL;DR: report highlights
Before we start, here's a TL;DR overview of the main highlights in this report.

1 in 3 developers use the Oracle
JDK in production

Less than 1 in 10 developers pay
for commercial Java support

Less than 1 in 10 developers
is using JPMS today in
their application

1 in 20 developers use Kotlin in
their main application, making it
the second most popular language
on the JVM

50% of developers use
Spring Boot

2 in 3 developers use Maven to
build their main project

Almost 6 in 10 developers use
Jenkins in CI

Almost 2 in 3 developers use
IntelliJ IDEA

1 in 3 developers use GitLab,
making it the most popular SCM
tool among JVM devs

50% of developers use OpenJDK
distributions in production

2 in 3 developers use Java SE 8
in production

1 in 4 developers use Java SE 11
in production

8 11

Jenkins

��

About your JDK

All rights reserved. 2020 © Snyk 7

01. Which Java vendor's JDK do you currently use in
production for your main application?

With Oracle changing the licensing on their JDK

versions, we kickoff this report with the answer

to an important question — which JDK are

developers using for their main application?

According to the respondents, although Oracle

JDK is still dominant with 34%, there is a huge

shift towards other OpenJDK providers. 1 in

4 developers chooses the Adopt OpenJDK

distribution. It's also interesting to note that,

the Oracle JDK still uses the OpenJDK under the

covers, despite carrying a commercial license.

Comparing this to the results from last year,

where Oracle JDK accounted for 70% and

OpenJDK for 21% of the prefered JDK distribution,

we notice a major shift, with a 72% swing from

Oracle JDK to alternate OpenJDK providers.

24%

14%

4%
2%3%

34%

15%

4%

0%

+40%

+20%

Eclipse J9/IBM J9Oracle JDK

Other OpenJDK
distros

Azul

-36%

+36%

-1%

+3%

-20%

-40%

Difference in share from 2018 to 2019

Eclipse OpenJ9 (via Adopt OpenJDK)

Azul

OpenJDK (via Amazon Coretto)

OpenJDK (via other)

OpenJDK (via Oracle)

OpenJDK (via Adopt OpenJDK)

Oracle JDK

Other

All rights reserved. 2020 © Snyk 8

02. Are you currently paying a vendor for JDK support?

When we look at the responses to this question,

the shift we saw earlier, from Oracle JDK to

OpenJDK, makes more sense since the large

majority of the participants (86%) do not wish to

pay for JDK support. In fact, only 9% currently

pay for support.

9%

86%

5%

Don’t know

No

Yes

All rights reserved. 2020 © Snyk 9

03. Who do you pay?

When developers do choose to pay for JDK

support, Oracle is still the clear winner while

the other three vendors share the remainder

of the market rather equally. In retrospect, this

means that, if only 9% of developers pay for

JDK support (as seen in question 2), the total

population of developers that pay Oracle, is 5% –

or 1 in 20 developers.

0%

20%

40%

60%

IBMOracle Red Hat

10%

30%

50%

Azul

55%

17% 16%
12%

All rights reserved. 2020 © Snyk 10

04. Did the support and release cadence changes, since
JDK 9, affect your decision to pay for support?

Starting with JDK 9, a new Java version is being

released every March and September, which is

a major change to the JDK release cadence. This

impacts the update strategy for many users as

this 6-month release cadence affects the support

cycle as well. Moreover, this change has an

impact on security too, with security patches not

being backported to older versions.

According to our survey, for more than a third of

the developers, the new cadence influenced their

decision to pay for support. At least 41% of the

respondents claim that the changes made to the

release cadence and support played some role in

that decision.

15%
23%

18%

44%

Don’t know

No

Yes, to some extent

Yes

All rights reserved. 2020 © Snyk 11

05. Will you consider paying for JDK support in the future,
based on the latest release cadence changes?

The majority of the developers who participated

in this survey, don't believe they will change their

minds about paying JDK support in the future.

As the community involvement is bound to grow

in future JDK releases, it is possible that, in a year

from now, we see a decrease in the number of

developers who consider paying for JDK support.

Although only 7% of the respondents are willing

to pay for support in the future, a significant 19%

is still considering the possibility.

12% 7%

19%

62%

Don’t know

No

Maybe

Yes

All rights reserved. 2020 © Snyk 12

06. Which Java SE version do you use in production for
your main application?

The introduction to Java 9 brought significant

structural changes to the JDK. Last year, we

saw evidence that these changes were possibly

holding people back from moving beyond Java

8. This year, the numbers are a little different.

The number of people working with Java 8 in

production is still very high; however, with

the first Long Term Support (LTS) version of

Java, Java 11, released in September 2018, the

landscape is slowly changing. A quarter of the

developers who participated in this survey, are

now running Java 11 in production.

2%

25%

4%

0%

10%

20%

30%

40%

50%

60%

70%

2%

64%

3%

121110987 or lower

Long Term Support (LTS) release

All rights reserved. 2020 © Snyk 13

07. What are the reasons why you have not moved to a
more recent version?

Although the new release cadence was

introduced over 2 years ago we still do not see

significant adoption. Many people are not able

or willing to migrate every 6 months in order to

stay up to date. 51% of respondents say that their

current setup is working fine, so change is not

needed. As the cost of migration seems to be too

high, a lot of companies are reluctant to adopt

changes so rapidly.

The biggest question is, are developers and

companies to blame for staying put on an older

version? In fact, migrating every six months,

doesn't necessarily give you any real return on

investment. Nonetheless, it is possible that we

have to wait a bit longer to see the effects of

users migrating to more recent versions.

Some of the reasons participants explained in

the 'other' category include, application servers

or libraries not supporting the latest versions of

the JDK fast enough.

0% 20% 40% 60%

32%

51%

7%

10%

The new support plan
doesn’t work for you

The new release cadence
doesn’t work for you

The cost of migration
is too great

Your current set up
works just fine

Can’t get the business
to agree to migrate

Other

30%

22%

10% 30% 50%

27%There are no features you
need in later versions

Up to 3 responses allowed.Up to 3 responses allowed.

All rights reserved. 2020 © Snyk 14

08. What is your approach to adopting new JDK releases
in production?

The plan for most people (55%) is to stick with

long term releases. That is hardly surprising as

these versions are released every 3 years, similar to

the cadence people are already familiar with in the

JDK ecosystem. Still, 22% of the respondents report

that they plan to decide whether or not to upgrade

on a release-by-release basis to see if the newly

introduced features are important enough to

justify migrating.

Comparing the numbers from 2018 to this year's

numbers, it is interesting to see the shift in the

approach of JDK adoption. In 2018 the number

of indecisive developers was higher, as was the

number of people who stated they would decide

to upgrade on a release-by-release basis.

In contrast, with an increase of 21%, the majority of

developers now prefer to adopt LTS releases only

— this is a significant swing in just over one year,

as shown in the bar graph below that compares the

changes over time.

12%

22%

55%

11%

Don’t know yet

Decide based on a release-by-release basis,
depending on features, etc

Always stay on the latest version of Java

Stay with long-termsupport (LTS) releases

Difference in share from 2018 to 2019

0%

+30%

Stay with long-term
support (LTS) releases

Always stay
on the latest

version of Java

Decide on a
release-by-release

basis Don’t know yet+3%

-8%

+21%

-16%
-30%

All rights reserved. 2020 © Snyk 15

09. How well do you understand the new 6-month release model and
the updated support statements made about each release?

With the new 6-month Java release model, features

become fully or partially available to developers

at a faster pace, between LTS releases. This means

that the official support for a non-LTS release lasts

only until the next version becomes available, that

is every six months. Every three years or so —

similarly to the old cadance — a version is marked

as LTS and there are support options available for

an extended period of time, until the next LTS

version arrives.

It's also important to note that, according to the

maintainers of Java, the non-LTS versions are not

alpha or beta versions — they are fully supported,

production-ready versions of Java.

When we asked the community how well they

understand this new release model, the responses

were rather positive. Looking at the overall results,

it's safe to say that the majority of Java users have

a very good understanding of the new release

cadence with more than half of them rating

themselves with a score of 7 out of 10 or higher.

10%

20%

1

5%

15%

25%

2 3 4 5 6 7 8 9
I understand

it well

0
No idea

what it is

Median Mode

Mean

All rights reserved. 2020 © Snyk 16

10. How quickly do you apply critical JDK security updates?

In order to keep a system healthy, applying critical

JDK security updates is essential. However, 17%

of respondents claim that they do not apply any

security patches. Scary, isn't it? Nonetheless, it is

a relief to see that the vast majority of developers

(61%) do take security seriously and apply security

updates within a month of release.

We also want to give a big shout-out to the 15% of

the respondents who apply security updates almost

immediately after release. Awesome job!

Release

15%

Within
days

27%

1-2 weeks

1 month

19%

3 months

11%

6 months

6%

Over 6 months

5% We don’t

17%

All rights reserved. 2020 © Snyk 17

11. What is the main JVM language you use for your
main application?

While the variety of JVM languages grew over

the last couple of years, the large majority of JVM

users — nearly 9 out of 10 — still use Java as their

main language.

One of the reasons we see this consistently large

percentage over the years, is the fact that Java

is constantly changing. Many of the language

constructs and paradigms that other JVM languages

have been using to differentiate themselves from

Java, have been introduced and implemented in Java,

such as local type inference, and lambdas, to name

just a couple. The new Java release cycle also makes

these new features available to developers earlier

than before.

However, despite the strong preference for Java, the

use of other JVM languages grew as well. Particularly

Kotlin, a language developed by JetBrains, gained

a lot of popularity over the last couple of years. In

fact, Kotlin grew from 2.4%, according to last year's

report, to an impressive 5.5%.

The growth of Kotlin adoption, among JVM users,

is not surprising considering how seamlessly it

integrates with Java. Not to mention that, the

adoption of Kotlin in frameworks like Spring Boot

made it easier to create production-grade systems.

It is important to note that, the innovations

Kotlin tries to achieve flow back into the

development of Java. Newer Java versions try to

integrate concepts that are popular and loved in

languages like Kotlin. It is interesting to see how

this influences the future adoption of different

JVM languages.

86.9%

5.5%

2.9% 0.6%2.6% 1.5%

Other

Groovy

Scala

Clojure

Kotlin

Java

All rights reserved. 2020 © Snyk 18

12. Do you write or maintain any Java applications?

Not every JVM developer uses Java as their main

language. Based on the responses to the previous

question, JVM developers who predominantly use

other languages in their application, account for

13%. Out of this group of developers, the majority

(70%) still uses Java in some capacity, during their

regular work.

This means that 96% of overall respondents use

Java, either as their main language or to a smaller

extent, in their application. Only 4% of respondents

run applications on the JVM that entirely use

alternative JVM languages.

For those who don't use Java in their main application, do they use it at all?

Not using JavaUsing Java

96%

4%

NoYes

70%

30%

All rights reserved. 2020 © Snyk 19

13. Are you using, or are you planning to use, Java modules
in your Java applications?

The release of Java 9 introduced some major

architectural changes. The most famous and impactful

change was the introduction of the module system,

formally known as the Java Platform Module System

(JPMS). This new abstraction above packages make it

possible to create a smaller, more fit-for-purpose JDK.

But architectural changes of this magnitude are bound

to have a large impact on older or legacy systems,

if they are to be migrated. It's important to note,

however, that you are not forced to use the module

system in Java 9 and higher. You are able to continue

to use the classpath while the module system silently

bundles all your jars into the unnamed module.

When we asked developers whether they are using

or plan to use the module system, we got some

interesting results with only 7% of the respondents

stating that they are already using it. The vast majority

of the participants — over 6 out of 10 — do not use the

JPMS while 29% plan to use it in the future.

7%

64%

29%

Yes, we plan toWe already are No

All rights reserved. 2020 © Snyk 20

14. How easy was it to adopt Java modules?

When it comes to adopting Java modules, the

opinions on the level of difficulty differs. While a

quarter of the respondents found the adoption

process to be neither hard or easy, a significant

percentage (25%) found the JPMS adoption to be

rather hard (7/10 or higher). The mean, median

and modal averages were all 5/10. According to

these responses, it is safe to conclude that, while

adopting Java modules takes time and effort, it's

not rocket science!

10%

20%

1

5%

15%

25%

2 3 4 5
So so

6 7 8 9
Very hard

0
Very easy

Mean/Median/Mode

All rights reserved. 2020 © Snyk 21

15. Did you adopt Java modules while writing new applications
or while migrating older ones?

Adopting something new is considered easier

when you work on a greenfield project. Creating an

application from scratch, for the most part means that

you do not have to deal with the complicated evolution

of a software project. When it comes to adopting Java

modules, though, this is not always the case. According

to our survey, almost half of the respondents adopted

Java modules while migrating older applications.
46%

54%

Migrating older applications Writing new applications

About your application

All rights reserved. 2020 © Snyk 23

16. Do you use the Spring Framework?

Exactly 6 out of 10 people depend on the Spring Framework for the production of their application. That is a

remarkably high market share for a third-party open source framework.

Yes No

All rights reserved. 2020 © Snyk 24

17. What Spring version do you use for your
main application?

Spring has been around for a long time. By introducing significant changes and innovations, Spring has

evolved into the most dominant framework in the Java ecosystem. With two thirds of Spring users working

with Spring 5, there's a strong adoption rate of newer versions.

2%

48%

17%

0

10%

18%

5%

4.3.x5.1.x 5.0.x 4.1.x4.2.x 4.0.x 3.0.x3.2.x 3.1.x Other

1%2% 1%
4%

2%

20%

30%

40%

50%

All rights reserved. 2020 © Snyk 25

18. Do you use Enterprise Java? (J2EE, Java EE,
Jakarta EE)

The question of whether Java developers use the

Enterprise Edition (EE) of Java is something we ask

every year. Only this year, we slightly changed the

question. We added the option “Yes, via Spring or

another framework (e.g. JPA or Servlets) to ensure

that people who use EE indirectly do not choose the

“No” option.

With 35% of developers reporting that they don't use

Java EE, the landscape hasn't changed much since

last year (38%). It is important to point out, however,

that 4 out of 10 developers are using Enterprise Java

indirectly. This does raise some concerns over Java

EE's popularity.

35%
24%

41%

No

Yes, via Spring or another
framework (i.e I use JPA
or Servlets)

Yes, directly

All rights reserved. 2020 © Snyk 26

19. What Java EE version do you use for your
main application?

Almost 4 out of 10 people use the latest version of

Java EE while Java EE 7 still remains quite popular.

What's more, 2% of developers reported that they

still use J2EE and, even though this seems like a very

small percentage, it is a significant number as it is

almost equal to the number of people that use Scala

as their main application language!

It's also important to mention that 21% of the

respondents do not know the exact version of Java

EE they're using. By cross-referencing the answers to

this question with the previous question, we found

out that 95% of developers who are not aware of

their exact Java EE version, use Java EE indirectly,

namely through the Spring Framework.

9%

2%

21%

0%

10%

20%

30%

40%

2%

29%

37%

Don’t knowJ2EEJava EE 5Java EE 6Java EE 7Java EE 8

All rights reserved. 2020 © Snyk 27

20. What was your reaction to Oracle and the Eclipse foundation
not agreeing on continued usage of the javax namespace?

After many months of negotiations, Oracle and

the Eclipse foundation weren't able to come to an

agreement over the usage of the javax package

namespace by the Eclipse Foundation Community.

The javax namespace falls under trademark by

Oracle which means that, moving forward, all

improvements made to Jakarta EE by the Eclipse

Foundation, have to use a different package

name. As a result, changes to Jakarta EE are also

accompanied with migration of library code.

Although the change in package name clearly

marks the ownership of that package — Oracle

up to Java EE 8 and the Eclipse Foundation from

Jakarta EE 8 onwards — it affects every API in the

Enterprise Edition as they all begin with javax.

When asked about this development, the vast

majority of participants feel annoyed by Oracle's

position on the matter with 2 out of 3 JVM

developers stating their disappointment of the

negotiated outcomes. In fact, the responses to

this question raise some concerns for Oracle.

What if this outcome ultimately harms Oracle's

stewardship of Java?

32%
A little annoyed

Very disappointed
37%

17%
I'm fine with it

2%
I'm happy with it

14%
I have no idea what
you're talking about

?

All rights reserved. 2020 © Snyk 28

21. Would you consider switching to another framework/technology
in order to avoid migrating to a newer Jakarta EE version, due to
the javax namespace changes?

Despite the majority of the respondents being

rather disappointed with the javax namespace

changes, only 1 out of 10 developers would switch

to another framework. According to our survey,

66% of developers are probably or definitely staying

with Jakarta EE despite the namespace changes. It is

possible that developers believe that these changes

will not affect them, since the majority of them use

the EE version indirectly, via frameworks like Spring.

This points to the namespace change being more

of a disappointing annoyance rather than anything

developers really take action over.

30%

10%

24%

36% No, Jakarta EE all the way

Unlikely

Probably

Definitely, yes

All rights reserved. 2020 © Snyk 29

22. What other languages does your application use?

Not many people use a single language for their

application anymore. It's safe to say that the vast

majority of developers nowadays need to be

polyglot, fullstack or multi-lingual. As languages in

many cases serve a specific goal it is obvious that

developers use other languages alongside their main

JVM language. This doesn't mean you have to like

the language. Some languages are considered

a necessary evil fit-for-purpose.

It is important to mention that multiple answers

were allowed when answering this question. The

results, however, are not that surprising. JavaScript

is the most popular language for front end

development with 62%, SQL with 44% is the most

popular for querying databases, while the most

popular choice for data science and machine learning

applications is Python with 22%

50% 60%40%

22%

0% 20% 30%10%

62%

5%

2%

3%

2%

9%

44%

5%

6%

3%

Front end JavaScript

Node.js

C#

Objective-C

SQL

Swift

PHP

Go

Perl

Rust

None

22%

9%

3%

C

Python

Ruby

70%

9%

Multiple responses allowed.

All rights reserved. 2020 © Snyk 30

23. Which client-side web frameworks do you use?

Participants were able to select multiple options

for this question — why choose one framework

when you can use them all, right?

Looking at the responses, Angular looks like the

clear winner with 38%. However, with so many

Angular versions available, we are not certain

whether newer or older versions of Angular are

the winners here. React is the runner-up with 31%,

closely followed by jQuery with 28%.

It's also interesting to point out that, according

to our survey, 2 out of 10 developers don't use

any frameworks. Let's see if this list changes

significantly over time.
0% 20% 40%

28%

11%

38%

31%

Angular

React

jQuery

Vue

Backbone

None

2%

20%

10% 30%

Multiple responses allowed.Multiple responses allowed.

All rights reserved. 2020 © Snyk 31

24. Which server-side web frameworks do you use?

The server-side is still a Spring-dominated world,

with half of the market using Spring Boot and

almost a third using Spring MVC.

Frameworks like Micronaut and Quarkus

probably have what it takes to compete against

Spring. Nonetheless, let's wait until next year's

report before we draw any conclusions. JHipster

does not look as popular as one would expect

from all the conference talks. It's also interesting

to see that JSF is still alive.

50%40%

5%

0% 20% 30%10%

5%

5%

3%

3%

9%

3%

4%

3%

3%

Vaadin

Vert.x

Struts

Play

Grails

GWT

JHipster

DropWizard

Wicket

None

50%

31%

11%

Spring MVC

Spring Boot

JSF

Multiple responses allowed.

21%

Multiple responses allowed.

About your tools

All rights reserved. 2020 © Snyk 33

25. Which is the main Integrated Development
Environment (IDE) you are using?

The results we see in the graph below are consistent

with other recent surveys — IntelliJ IDEA is the

most widely used IDE within the JVM community.

According to our survey, 62% of developers use the

Community and Ultimate versions of IntelliJ IDEA,

making it today's dominant IDE among developers

on the JVM.

Apache NetBeans remains steady in 3th place with

10% of the market —roughly the same numbers as

last year. However, when we look further down the

list, it is surprising to see that the VS Code adoption

barely grew, compared to last year. Despite being

considered as one of the favoured IDEs in other

ecosystems, it seems that VS Code does not share

the same popularity among JVM developers.

In fact, even the VI/Vim/Emacs adoption is bigger

than that of VS Code. These results bring to the

surface a group of developers who, apparently,

don't like IDEs. Are these real die-hard coders or do

they feel smarter typing everything manually? In

either case, we are not judging! :)

70%

4%

20%

10%

0%

10%

20%

30%

40%

62%

2% 1%

Apache
NetBeans

Eclipse
IDE

IntelliJ
IDEA

Vi/Vim/
Emacs/etc

Visual Studio
Code

Android
Studio

PaidFree

50%

60%

1%

Other

70%

4%

20%

10%

0%

10%

20%

30%

40%

62%

2% 1%

Apache
NetBeans

Eclipse
IDE

IntelliJ
IDEA

Vi/Vim/
Emacs/etc

Visual Studio
Code

Android
Studio

PaidFree

50%

60%

1%

Other

All rights reserved. 2020 © Snyk 34

The support for a long list of out-of-the-box

features, as well as the native support for Kotlin,

have contributed to IntelliJ IDEA's rising popularity,

With the Eclipse IDE dropping from 38% last year

to only 20% this year, the gap between IntelliJ

IDEA and Eclipse IDE is getting larger. Taking into

account that, prior to 2016 (results kindly used from

RebelLabs reports), Eclipse was the most used IDE,

it becomes evident that folks over at JetBrains did a

good job improving their software to fit the needs

of JVM developers.

IDE usage since 2012

20%

40%

2012

10%

30%

50%

2014 2016 2018 2019

70%

60%

Eclipse IntelliJ IDEA NetBeans

All rights reserved. 2020 © Snyk 35

26. Which build tool do you use for your main application?

It is possible that teams depend on multiple build systems for different projects. So, for this question, we

allowed only one answer, since we wanted to have a look at the one build tool developers use the most for

their main application and compare it to the historical data (again, used from previous RebelLabs and Snyk

reports) in order to reveal any trends.

Build tool usage since 2012

Maven

Gradle

Ant
20%

40%

2012

10%

30%

50%

2014 2016 2018 2019

70%

60%

All rights reserved. 2020 © Snyk 36

Maven is still number one, with two thirds of the share and a slight increase since last year. The runner-up,

Gradle, shows the same rate of growth as its competition, Maven. So, is the “war” between build systems over

or are we just taking a break?

64%

25%

6%
2% 1%

2%

Other

None

SBT

Ant

Gradle

Maven

All rights reserved. 2020 © Snyk 37

27. Which CI server do you use?

As most Java developers would expect, Jenkins

wins the CI server race with a whopping 58%

market share. Between Jenkins and the second

most selected option, which was “none”, we

see a huge gap. Although the amount of people

who don't use any CI server is much smaller

compared to last year, it is still surprisingly high.

But why do people choose to not use CI servers?

That's an interesting question to ask developers

in future surveys!

The nearest competitors to Jenkins are GitLab

with 6% and TeamCity with 5%.

50% 60%40%0% 20% 30%10%

4%

1%

4%

1%

5%

6%

1%

Bamboo

Visual Studio
Teams Service

Circle CI

TeamCity

GitLab

Hudson

Concourse

Other

58%

4%

Jenkins

Travis CI

3%

9%None 12%

1%Bitbucket
pipelines

All rights reserved. 2020 © Snyk 38

28. Which code repository do you use for your
main application?

It is possibly surprising for people to hear that GitLab is the winner of this battle. With 35% in total market

share, it has a small advantage over GitHub in second place with 31%. We also notice that the public use of

GitLab is lower, mostly because they have been offering private repositories for a long time. On top of that,

GitLab offers a lot more than just a repository, including a CI pipeline. However, taking into account the

responses to the previous question, this is unlikely to be the reason for using GitLab over GitHub.

BitBucket

GitHub

GitLab

Other

10%0% 20%

1

31%

35%

9%

30%

15%
10% 25%

Server
Cloud

40%

15%
16%

Enterprise
Public

24%
11%

Private
Public

All rights reserved. 2020 © Snyk 39

29. When do you scan your dependencies for
known vulnerabilities?

Scanning your dependencies for known

vulnerabilities is the wisest thing to do! It is crucial

to know if the code someone else produced is safe

to use. Once a vulnerability is discovered, the list

of potential victims is extensive, depending on

how widely that particular package is used. If a

vulnerability is already disclosed, there's a good

chance that a fix is already available in a newer

version of the package. However, if a developer is

still using an older version, unaware of the existing

security issue or its fix, they are vulnerable without

knowing it.

According to our survey, 30% of the respondents,

scan their dependencies for known vulnerabilities

as part of the CI/CD pipeline. Using these scans as

a gatekeeper before production deployment, is a

good start.

However, scanning in multiple places during

development, for example, on your local machine

(16%) or when a PR is published (9%), helps to

identify problems earlier.

Discovering issues later in the software

development life cycle (SDLC), often means that

there's a significant amount of rework to be done

in order to fix it.

Having said that, it is surprising to see that

only 8% of the respondents monitor their

applications during production. Discovering

vulnerabilities happens over time, therefore,

monitoring a production snapshot on a regular

basis is the wise thing to do. Something even

scarier to witness is that 28% of the participants

do not scan their dependencies for known

vulnerabilities. Hopefully, the explanation behind

this percentage is that, these developers do not

use any dependencies in their current application.

Nobody wants to be the next Equifax, right?

30%

9%

16%

0%

10%

20%

30%

14%

8%

In my IDE/
Command Line

In my code
repository

(for all PRs)

During build time During CI/CD Monitor during
production

About you

All rights reserved. 2020 © Snyk 41

30. Where are you from?

It is great to see that we have

developers from all over the globe

responding to this survey! This

shows how the JVM ecosystem is

thriving everywhere.

1% 65%

65%
18%

5%

8%

2%

2%

All rights reserved. 2020 © Snyk 42

31. What is your current role?

The vast majority of respondents come from a

technical background with 89% of them being

either developers, team leaders, or architects.

What's more, an important number of C-level

employees took time out of their busy schedule

to participate in our survey.

Software Developer54%

Architect21%

Team Leader14%
C-Level3%
Consultant3%
Project Manager2%
Developer Relations1%
Hobbyist1%
Other1%

All rights reserved. 2020 © Snyk 43

32. What is the size of your company?

According to the demographics, the JVM ecosystem has a place in enterprises as well as startups! With

41% of the respondents working for a company that has less than 100 employees, it is safe to say that Java

has a role to play everywhere.

9%

12%

3%

0%

10%

20%

30%

40%

17%

12%

7%7%

0 - n/a 1-9 10-49 50-99 100-249 500-999250-499

33%

1000+

London

1 Mark Square

London EC2A 4EG

Office info

 Tel Aviv

40 Yavne st., first floor

Boston

200 Berkeley, 24th floor

Boston, MA 02116

Twitter: @snyksec

Web: https://snyk.io

Develop fast. Stay secure.

Report author

Brian Vermeer (@BrianVerm)

Report design

Growth Labs (@GrowthLabsMKTG)

Reviewers

Simon Maple (@sjmaple)

Eirini-Eleni Papadopoulou (@Esk_Dhg)

http://twitter.com/snyksec
https://snyk.io
http://twitter.com/BrianVerm
http://twitter.com/GrowthLabsMKTG
http://twitter.com/sjmaple
http://twitter.com/Esk_Dhg

