
DevSecOps
Insights
2020

powered by

Table of contents

Introduction 3

About the data 4

Key takeaways 5

Challenges faced in DevSecOps 6

The culture of DevSecOps 7

Integrated tooling is key 9

State of DevOps adoption 10

The DevSecOps promise 11

The state of DevSecOps 12

Organizational readiness for DevSecOps adoption 13

DevOps maturity directly impacts strong security adoption 18

Lessons learned on security posture
and DevOps adoption 20

Deep and frictionless security integration benefits

security posture and collaboration 21

Deeply integrated security increases the sense of

shared responsibility 22

Executing well on DevOps is key to enabling DevSecOps 23

DevSecOps advice for practitioners,
by practitioners 25

All rights reserved. 2020 © Snyk 3

Introduction

Fast software development iterations call for baked-in security in order to keep up with the rate of building and

shipping software. In a typical organization, security staff is vastly out-numbered compared to operations and

developers. This significantly complicates the job of keeping up with security tests, reviews, etc, in order to mitigate the

increasing application security risk.

Is security slowing down operations and developers? This is one of the major concerns and challenges for integrating

security in development teams. Security teams remain accountable for the security of applications and related data,

yet cannot introduce disruption to the development teams' workflows. To overcome these challenges, development

and security teams need to adopt new ways of working together, develop new processes and adopt new tooling.

DevOps teams do not prioritize for security in a build pipeline or security monitoring, as there are other concerns they

are tasked with. So, even for empowered DevOps teams, security is still mainly an afterthought.

To address security concerns while keeping up with the rapid pace of software delivery, we need to adopt processes,

culture, and proper tools through automation which sustains fast development iterations. These enable development

teams to integrate security tooling within their build pipelines to detect vulnerabilities early on, and fosters healthy

collaboration across security and DevOps teams.

In this report we aim to explore the state of DevSecOps adoption and the challenges organizations and teams face.

What we aim to gain from this research is better insight into practices and tools that accelerates DevSecOps adoption.

All rights reserved. 2020 © Snyk 4

About the data

This study is based on data presented in the Snyk 2019 State of Open Source Security report and the

Puppet 2019 State of DevOps report.

The Snyk report presents the survey results of over five hundred respondents and the Puppet report presents data

from 2,949 technical professionals.

https://snyk.io/opensourcesecurity-2019/
https://puppet.com/resources/report/state-of-devops-report

All rights reserved. 2020 © Snyk 5

Key takeaways - challenges faced in DevSecOps

 à CULTURE Security is perceived as an activity that slows down the

business and overall software delivery. 33% of respondents, within the

highest level of security integration, still feel that security is a major

constraint on the ability to deliver software quickly.
 à

 à CULTURE Key security activities, such as threat modelling and security

tools integrated in the development pipeline, contribute to a sense of

shared responsibility across different functions of the business. Seeing

security as a shared responsibility improved by 31% between Level 1 —

the lowest level of security integration within an organization — and

Level 5, the highest.
 à

 à CULTURE Even though there is a high correlation between the

maturity of security integration and the sense of shared responsibility,

29% of all organizations, positioned at the highest level of security

integration, still feel that security teams and delivery teams encounter a

lot of friction when collaborating.
 à

 à CULTURE 81% of users feel developers are responsible for open source

security and 68% of users feel that developers should own the security

responsibility of their container images.

 à TOOLING 79% of organizations are positioned at a medium level of

DevOps evolution and face challenges in scaling the tooling, culture,

and practice to properly support the business.
 à

 à TOOLING 22 percent of firms at the highest level of security

integration are also at an advanced stage of DevOps evolution.
 à

 à TOOLING 65% of respondents confirm that they employ automated

security testing tools to audit their code, while a security code review

is an activity that 79% of respondents follow.
 à

 à TOOLING 37% of users don't implement any sort of security testing

during CI.
 à

 à TOOLING 57% of respondents test for known security vulnerabilities

in their open source dependencies, and 36% of respondents perform

static application security testing for their own code.
 à

 à TOOLING 31% of respondents aren't tracking any application

dependencies in use within their organization, and 37% are only

tracking direct dependencies.

Challenges faced in DevSecOps

As teams and organizations rush to embed security throughout the software

development life cycle (SDLC), challenges arise in many forms. In order to cope with

the increased pace of software delivery and the scarcity of security resources available,

organizations must face cultural, process, and tooling decisions –from shaping internal

culture, to finding the right tools to embed in engineering workflows that enable and

empower developers and minimize disruptive unplanned work.

With every data breach disclosed, organizations become more aware of the need to

address security early on and throughout the SDLC to ensure customer privacy and

assets, feature security, and delivery speed. To do it all well, DevSecOps must be driven

by security, but powered by developers.

All rights reserved. 2020 © Snyk 7

The culture of DevSecOps

Everyone talks about security as a shared

responsibility concept across the organization.

Then why is it hard to turn to reality in so many

cases? The Puppet State of DevOps report

provides a cynical but not uncommon perspective

on the matter: security concerns are often viewed

as a means of averting a blame rather than

measurably improve the overall security posture of

an organization.

Moving on to another crucial question, is application

security owned solely by the security team? From

the Snyk State of Open Source Security report

2019 we learn that 81% of the respondents believe

developers should actually own security, but that

they aren't well-equipped to do so.

According to this survey, developers are the

ones responsible for the security of their code

and application.

How can we make them more successful? How can

we empower these security champions to better

integrate security into their workflows?

Perhaps, an even more controversial question

to ask would be, who is responsible for applying

security fixes and who is tasked with finding them?

Who is responsible for security?

12%

28%
23%

0%

25%

50%

75%

100%

81%

3%

OperationsSecurity team Developers NobodyOther

https://puppet.com/resources/whitepaper/state-of-devops-report
https://snyk.io/blog/81-believe-developers-should-own-security-but-they-arent-well-equipped/

All rights reserved. 2020 © Snyk 8

As DevSecOps processes are being increasingly

embraced, some wonder whether security hinders

fast development iterations? Unlike DevOps, which is

celebrated for speeding up software delivery for agile

teams, security is perceived as that which slows it

down. Teams need to handle top-to-bottom pressure

from business stakeholders who communicate

urgency for feature delivery and constantly prioritize

it over technical debt and security issues. These issues

often remain unaddressed and pose a potential risk

of software development slow-down, and paramount

business risk.

In fact, according to the Puppet report, 48% of

respondents still feel that security is a major

constraint on the ability to deliver software quickly.

Traditional security practices take place late in the

SDLC, for example, moving a release to QA. Even for

teams practicing agile software delivery based on

short sprints, a security review isn't something that

happens often, such as a quarterly review, and isn't

baked into the development and automated build and

test stages.

Penetration tests and the ability to outsource them,

are a handy security tool for many organizations

but they take place during the latest part of the

SDLC, after the application has been significantly

built. At this point, finding severe security issues is

costly as a study by IBM System Science Institute

suggests. This study shows that fixing a bug is

a hundred times more costly when discovered

in production. Security bugs further increase the

damage beyond just R&D spend, for example those

relating to ransomware, loss of data, privacy issues

lawsuits, and other risks.

Teamwork and support from the entire organization

are critical for successful DevSecOps adoption.

Security integration and speed of software delivery
Respondents agree security is a major constraint on ability to deliver software quickly

0%

20%

40%

60%

Level 3Level 1 Level 2

10%

30%

50%

Level 4

31%

42%

48%
43%

Level 5

33%

1.3x vs. Level 1 1.5x vs. Level 1 1.4x vs. Level 1 1.1x vs. Level 1

Based on the Puppet "State of DevOps" report

All rights reserved. 2020 © Snyk 9

Integrated tooling is key

Software is 'eating the world' and it isn't slowing

down, as we're witnessing more and more

traditional technologies tunnel into the software

world—from software-defined networking to cloud

providers that abstract the entire management of

traditional services into Infrastructure as Code (IaC).

As software continues to control more of the

world around us; developers are key to effectively

addressing security concerns because they have

a direct impact on code and its security. We're

seeing this change being embraced within leading

developer ecosystems, such as key security

integrations within the largest code repository

hosting at GitHub.

To align with the agility demanded in a DevOps

world, tooling must incorporate automation from

risk detection through remediation. This empowers

engineers to proactively address security concerns,

leading to rapid risk reduction. Effective tooling

should also be contextualized, making it easy for

developers to assess and prioritize risk. The volume

of potential risk at any given time is immense -

creating noise for both development and security

teams to address. Knowing where the highest risk

exists is core to an efficient risk reduction practice

for applications and services.

This not only empowers engineers to address

security concerns, but also shortens the time

window of exposed vulnerabilities, which results

in reduced overall risk for the organization and

its assets.

IaC flourished within DevOps teams as it enabled

them to abstract a lot of the infrastructure

management and configuration through a

reproducible instruction set. This has the benefit

of further tracking via version control, audit logs

and such. However, this also implies more access

to resources and spinning up infrastructure as

needed, which could also suffer from security

issues in the form of misconfigured cloud

resources, for example, cloud storage, a repeated

pattern affecting many cloud data leaks. The case

of First American Financial Corp demonstrates

this issue with over 885 million records publicly

accessible. SImilarly, in the case of the

Republican National Committee, vendor

data Deep Root Analytics exposed 198 million

voter records.

All the above, point to one certain conclusion:

security tooling is relevant throughout

the entire DevOps stack — from the setup

of environments, to their configuration

provisioning throughout the application's

continuous integration and deployment.

Only thing is if it is transparent to them [the

development teams], they love it, because

that's not slowing down the process to

production. But if it is slowing down, they

want to find better ways to manage this.

- Mohan Yelnadu,

Head of AppSec at Prudential,

on the Secure Developer Podcast

“

All rights reserved. 2020 © Snyk 10

State of DevOps adoption

The Puppet State of DevOps report sheds light

on the state of DevOps adoption and maturity in

different organizations as well as how this impacts

security adoption.

One of the findings presented in the report is that

79% of organizations are positioned at the medium-

level of DevOps evolution. Organizations also face

challenges in the form of scaling tooling, culture,

and practices to effectively meet the promises and

value of DevOps.

To help with DevOps adoption in the middle

stages, Puppet recommends focusing on measuring

business outcomes and make use of DevOps-driven

metrics. This approach reflects the current status

and provides insights into what's to be done next in

order to achieve a more mature DevOps adoption.

2018 vs. 2019 respondents in DevOps evolution

20192018

11% 10%

0

20%

40%

60%

79%

Low evolutionHigh evolution Medium evolution

14%

7%10%

30%

50%

80%

70%

Based on the Puppet "State of DevOps" report

https://puppet.com/resources/whitepaper/state-of-devops-report

All rights reserved. 2020 © Snyk 11

The DevSecOps promise

There are two crucial assets to adopting DevSecOps successfully:

 à Enabling cultural change where security is prioritized instead of being an afterthought — a culture where

security is everyone's responsibility and not a siloed ownership of the security team.

 à Tooling and automation that empower developer, operations, and security teams to make smart decisions

and fix vulnerabilities without slowing down the organization.

Collaboration between dev and security teams at the earliest stages of the software delivery lifecycle promotes

a culture of shared responsibility that ultimately provides security teams with the right levels of visibility and

control. As Puppet's 2019 State of DevOps Report found, practices like threat modeling have the highest impact

on the teams overall confidence in security posture.

Security application testing that is employed throughout the SDLC, is a great enabler for DevSecOps — from

developer productivity in an IDE to find and fix vulnerabilities immediately, to continuous integration pipelines

of a later stage.

The state of DevSecOps

In this section, we review the state of organizational readiness for DevSecOps

adoption, how DevOps maturity impacts security integration, and we go over the

lessons learned on security posture of the teams that embraced DevOps.

All rights reserved. 2020 © Snyk 13

Organizational readiness for DevSecOps adoption

As we look into the way engineers audit their code bases, we see a strong adoption of automated security tooling, according to the Snyk

State of Open Source Security report 2019, with 65% of respondents confirming that observation. It is also important to point out that,

even when automated security tools are employed, 79% of the respondents still use security code reviews.

How do you audit your code?

0% 20% 40% 60%

65%

19%

79%Manual review

I use automated
security testing tools

My company's security team
performs a review

We hire external
pen-testers/reviewers

Other

18%

3%

10% 30% 50% 80%70%

All rights reserved. 2020 © Snyk 14

As teams embrace automated security tooling

they also recognize that the negative impact the

embedment of the tooling in a CI pipeline has on

build time, worsens the experience and feedback

loop for developers.

We found that 57% of respondents test for

known security vulnerabilities in their open

source dependencies while a significantly lower

percentage perform static application security

testing (SAST).

This is often the result of the latter involving high

runtimes for this kind of security testing and also

the fact that it results in a high percentage of false

positives which then require manual review.

While a little over half of the respondents

confirmed they test for known vulnerabilities in

their application's open source dependencies, only

14% perform a similar test in container images

during a continuous integration pipeline. Is it

possible that respondents aren't aware of the

security tooling available to them that mitigates

this gap? Another option is that with most

security tooling, you only get a report of which

vulnerabilities exist in the container image, but

fixing the actual problem, is entirely up to you.

Do you include automated security testing in your continuous
integration pipeline?

0% 20% 40% 60%

57%

38%

We test for known vulnerabilities
in our open source dependencies

No, we don’t have any automated
security testing during CI

We statically test our own
source code for vulnerabilities

We test for known vulnerabilities
in our container images

36%

14%

10% 30% 50%

All rights reserved. 2020 © Snyk 15

As a source of comparison, Snyk Container provides

actionable advice in the form of alternative

container images that when used, they reduce the

number of vulnerabilities, and minimize the overall

security exposure.

Switching a base image for a docker container is an

easily executed action that results in a high return

on investment for security. In fact, based on scans

performed by Snyk users, the Snyk State of Open

Source Security report shows that 44% of docker

image scans had known security vulnerabilities

for which there were newer and more secure base

images available.

Container security expands to more than

just Docker container images. It impacts

Kuberentes with real security issues in the form

of vulnerabilities found in Helm charts. The Snyk

2019 report Uncharted territories: the untold tale

of Helm Chart security, revealed several risks in

this area:

 à 68% of stable Helm Charts contain an

image with a high severity vulnerability.

 à Updating to the latest published images,

reduces the number of vulnerabilities for

64% of the stable Helm Charts.

 à 6 images (out of a total of 416) account for

half of the vulnerability instances.

https://snyk.io/blog/uncharted-territory-discovering-vulnerabilities-in-public-helm-charts/
https://snyk.io/blog/uncharted-territory-discovering-vulnerabilities-in-public-helm-charts/

All rights reserved. 2020 © Snyk 16

When security is the application itself, or its vehicle

— for example, container images used to deploy

the application — then we found that developers

play a key role in owning the responsibility of

security for their application. How does this differ

when we discuss the responsibility for the security

of the infrastructure? Surprisingly, all the parties

contributing in a DevSecOps environment, are

almost evenly accountable for the responsibility of

the infrastructure security.

Who do you think should own the security of
your infrastructure?

3%

61%

58%

45%

Other

Developers

Operations

Security team

All rights reserved. 2020 © Snyk 17

Stepping up for the responsibility of the

application's security is a great start. That said,

how could one be responsible for their application

dependencies if they aren't even tracking it? This is

where Software Composition Analysis (SCA) helps.

We found that 31% of respondents aren't

performing any tracking of application

dependencies used within their organization,

while 38% are only tracking direct dependencies.

According to the Snyk State of Open Source Security

report, in language-based ecosystems — such as

Maven Central, RubyGems, and npm — 78% of

the security vulnerabilities we found reside within

indirect dependencies which could very well be

spread further down in the hierarchy, several levels

deep. Yet, only 29% of respondents confirmed that

they track all of their application's dependencies,

whether direct or indirect.

Does your company track which open source libraries your
applications are using?

0% 20% 40%

38%

31%

We track the ones
that we use directly

No, we don’t

We track all our dependencies -
the ones we use directly,

the ones they use, etc.

Other

29%

2%

10% 30%

https://snyk.io/opensourcesecurity-2019/

All rights reserved. 2020 © Snyk 18

DevOps maturity directly impacts strong security adoption

Puppet's State of DevOps report analyzes how

security adoption varies between different

organizations depending on their DevOps practices

and provides important insights on security posture

of businesses.

The more highly evolved organizations are much

more more likely to have integrated security across

the software delivery lifecycle. The Puppet report

finds that 22% of the organizations with the highest

level of DevOps maturity (Level 5), are also at the

highest level of security integration.

The report also points out that 16% of organizations

where at Level 1, the lowest level of security

integration. Puppet's findings align well with the

Snyk State of Open Source Security report from

February 2019.

Percentage of firms at high stage in DevOps evolution

10%

20%

Level 1
No integration

Level 2
Minimal integration

Level 3
Selective integration

Level 4
Significant integration

30%

Level 5
Full integration

6%

12% 12%

17%

22%

Based on the Puppet "State of DevOps" report

All rights reserved. 2020 © Snyk 19

The Snyk report highlighted that a significant 37 percent of the users don't do any sort of automated security

testing during a CI phase.

To put this in further context, the Puppet report highlights that the majority (75%) of the organizations at

Level 1 of DevOps maturity, get involved with security activities only on an ad-hoc basis, for example, when

security issues are escalated from production. This demonstrates that businesses are still at a very early stage

of DevOps evolution and maturity. These organizations act reactively to security threats instead of proactively

addressing security concerns, not allowing potential hacks and breaches to pose any risk.

0% 20% 40% 60%

14%

57%

37%

36%

No, we don’t have any automated
security testing during CI

We statically test our own
source code for vulnerabilities

We test for known vulnerabilities
in our container images

We test for known vulnerabilities in
our open source dependencies

10% 30% 50%

Security testing during CI

Lessons learned on security posture and
DevOps adoption

The following sections review stories and observations of three key

security adoption takeaways.

All rights reserved. 2020 © Snyk 21

Deep and frictionless security integration benefits
security posture and collaboration

A watermark of traditional security activities within

organizations is the high tension between security teams, the

operations or IT, and the core R&D engineering. When all of

these teams are siloed with their activities and overall goals

unaligned, they create tension and friction that manifests in

mis-executive security activities.

However, when security practices are integrated throughout

the SDLC, then the overall confidence level of security practices

levels up for the entire organization. Furthermore, the Puppet

report shows that, when security activities take place very early

in the SDLC, they are more impactful.

More specifically, threat modeling was named as the security

activity with the most significant impact on an organization's

overall security posture and confidence level. Threat modeling,

aims to connect all the business stakeholders — security,

development, and operations — and focus on answering some

fundamental questions, for example, “what are we building?”

and “what can go wrong?”. This kind of activity creates a

collaborative environment and a platform for open discussion

and communication between all Dev, Sec, and Ops parties.

 à Security tooling that is used within a

continuous integration pipeline, aids

engineers to stay confident in knowing

that they don't introduce known security

problems into their codebases.

Such automated security tools often

execute fast, providing a good developer

experience with a fast feedback loop that

allows developers to move swiftly in a

non-blocking manner. Some of these tools

also provide actionable remediation that

is closely integrated within a developer's

workflow. In this case, developers are

further empowered to take responsibility

over the security of the application

they develop.

 à Infrastructure-related security policies are

reviewed before deployment.

Infrastructure as code has been an integral

part of many DevOps tooling and it's

rapidly expanding with cloud native

service provisioning and tools such as the

Hashicorp's Terraform. Another example of

IaC is the use of text-based configuration to

provision container orchestration software,

for example Kubernetes.

However, a common security slip up is

to accidentally provision an insecure

configuration which has a significant

impact to an organization. For example, in

one particular case, insecure cloud storage

configuration allowed improper access

to non-authorized users, and resulted in

several data leaks, as we highlighted earlier

in this report.

Some of the most influential practices in improving an organization's security posture,

according to Puppet are:

1

All rights reserved. 2020 © Snyk 22

That being said, 29% of all organizations positioned

at the highest level of security integration, still feel

that security teams and delivery teams encounter

a lot of friction when collaborating. On the bright

side, this is still a better situation compared to 47%

of all organizations at the medium phase of security

integration who share the same feeling. Notably,

when security integration doesn't exist, teams aren't

collaborating at all.

Another notable highlight from the Puppet report

is that organizations which had a strong and deep

security integration were able to prioritize security

issues over generic feature delivery, and address

them faster. This is a loud statement — when

security is viewed as a shared responsibility across

the organization, then minimizing security risk to

the business takes precedence.

Security integration and friction between teams
Respondents agree security team encounters a lot of friction when collaborating with delivery teams.

0%

20%

40%

60%

Level 3Level 1 Level 2

10%

30%

50%

Level 4

31%

44%
47% 37%

Level 5

29%

1.4x vs. Level 1 1.5x vs. Level 1 1.2x vs. Level 1 0.9x vs. Level 1

Based on the Puppet "State of DevOps" report

All rights reserved. 2020 © Snyk 23

Deeply integrated security increases the sense
of shared responsibility

Having a sense of shared responsibility across the

organization contributes to an elevated security-

first mindset among employees who will seek out

to question and challenge solutions regarding the

security impact of the products they build.

We found that the more security is integrated

into the software development lifecycle, the

more delivery teams see security as a shared

responsibility. In fact, seeing security as a shared

responsibility improved by 31 percentage points

between Level 1 and Level 5.

- Puppet 2019 State of Devops

Notably, the report demonstrates that security is a

shared responsibility in the place of work, for 86 % of

security professionals.

“

2
Security as a shared responsibility
Responsibility for security is shared across security and delivery teams.

Based on the Puppet "State of DevOps" report

Security rolesNon-security roles

3%

13%

0

20%

40%

60%

7%

Neither agree
nor disagree

Strongly disagree Disagree

1%

10%10%

30%

50%

32%

Strongly agreeAgree

34%

3%

45%

52%

All rights reserved. 2020 © Snyk 24

Executing well on DevOps is key to
enabling DevSecOps

An organization is more likely to adopt security practices, the higher it lands on the DevOps evolution ladder. When

organizations exhibit a strong level of DevOps tooling and culture adoption, they are well positioned to further enable

security practices and DevSecOps. In the DevSecOps world, an organization relies on automation as a basis and empowers

engineers throughout the organization to collaborate across different departments and take action to improve security.

3

All rights reserved. 2020 © Snyk 25

“
DevSecOps advice for practitioners, by practitioners

A modern software architecture stack can get complex pretty fast; It is

impossible to understand all layers in detail. Therefore, it makes sense

to collaborate with other people more versed in other aspects. Similar to

ops, DevSecOps adds the security people to that conversation. To have

a meaningful dialog, one needs to have a common goal: making the app

more secure.

In the past, nobody stopped developers from talking to security people,

but in many cases the business priorities favored features and delivery

first. More mature organizations that have worked hard on their delivery

pipeline, now are ready to take it to the next level. Not just deliver

faster, but also improve what is being delivered. The shift left approach

empowers developers early in the valuestream, as issues further down the

delivery path get more costly. By automating common tasks and creating

a platform of collaboration, knowledge can be shared so that awareness

increases. While many people thought automation would render us

jobless, it actually allows us to improve what gets delivered. Now,

the question becomes how much security is enough security? That is,

ultimately, a business decision. But now, we can better explain and handle

risks that may arise, so the cost/benefit ratio starts making more and more

sense, for a business.

- Patrick Debois, DevSecOps Practitioner,
author of The DevOps Handbook

For me, DevSecOps is about making security simple and easy for

developers. Take least privilege, for example. How many of you inspect

IAM roles that are supplied by OSS projects? What about Kubernetes

RBAC objects? Do you know what to look for in there?

We can't expect devs to create least privilege roles if it's hard, or if it's not

easy to understand what not to do. It's about tooling. But it's also about

cultural change.

- Omer Levi Hevroni,
DevSecOps Engineer at Soluto.

Many people harp upon the fact that DevOps, if done properly, includes

security. The problem with this is that our industry is reliably producing

insecure applications, DevOps or not. The term DevSecOps has been

coined in order to emphasize the importance of security and make it a

real priority for our industry. Although the tools and tactics to create

secure applications may change in a DevOps environment, the goals and

strategies remain the same; secure requirements, secure design, secure

code, all types of testing, performing maintenance, monitoring and

patching and having a responsive incident process. DevSecOps is merely

a more modern and mature form of Application Security, our industry still

strives for the same results; safe, secure and reliable software.

- Tanya Janca,
Independent Security Consultant

“

“

All rights reserved. 2020 © Snyk 26

“A lot of people assume that DevSecOps will replace penetration testing;

however, that's not the case. We can not leave the in-depth testing of

applications. So, the best way is to create a parallel security pipeline for

more in-depth testing.

- Vandana Verma,
Security leader

The velocity at which vulnerabilities can be detected and remediated

will be key. It's a race — where organizations are up against a

malicious community of individuals and teams of increasing size and

professionalism. Their goal is to use vulnerabilities in your software

to extract information — data for commercial extortion and national

security purposes, and intellectual property for commercial and military

advantage. Technologies and processes which enhance development

teams' early detection and remediation of security vulnerabilities,

together with robust training in secure coding techniques, will help to

protect the organization, their clients and stakeholders.

- Wendy Ng,
DevSecOps Security Managing Advisor at Experian

“

London

1 Mark Square

London EC2A 4EG

Office info

 Tel Aviv

40 Yavne st., first floor

Boston

WeWork 9th Floor

501 Boylston St

Boston, MA 02116

Twitter: @snyksec

Web: https://snyk.io

Develop faster. Stay secure.

Report author

Liran Tal (@liran_tal)

Report design

Growth Labs (@GrowthLabsMKTG)

Report contributors

Alana Brown (Puppet) (@alannapb)

Eirini-Eleni Papadopoulou (@Esk_Dhg)

http://twitter.com/snyksec
https://snyk.io
http://twitter.com/liran_tal
http://twitter.com/alannapb
http://twitter.com/Esk_Dhg

