
The state of JavaScript
frameworks security
report 2019

A security review of Angular and React

with a sneak peek into Vue.js, Bootstrap and jQuery

powered by

Table of contents

Angular and React core projects:
security vulnerabilities 	 			 7

Core React project: overview					 8

Spotlight: Preact—a React alternative				 9

Core Angular project: overview					 10

Angular and React: good vulnerability databases are
key to surface security issues					 12

Angular vs. React: comparing vulnerability severities		 14

Time-to-fix, time-to-release					 17

Angular and React projects:
overall security posture 	 			 29

Secure coding							 30

HTTP security							 31

Angular and React module ecosystems:
security risks 	 					 19

The security risk of indirect dependencies				 20

Remediating vulnerable paths					 21

Vulnerabilities in the Angular module ecosystem			 22

Vulnerabilities in the React module ecosystem			 25

Spotlight: Next.js security vulnerabilities				 27

Introduction						 3

A word about vulnerabilities			 4

Key takeaways	 					 5

Security vulnerabilities found in other
frontend ecosystem projects	 		 32

Vue.js security							 33

Bootstrap security						 34

jQuery security							 35

1

2

3

4

All rights reserved. 2019 © Snyk 3

Introduction

In this report, we investigate the state of security for both the Angular and React ecosystems. This report by no means

intends to venture into any rivalries that may exist between the two in terms of whether one or the other is a true

framework - we are not comparing them as competitive frameworks at all. Instead, we review them each as viable

frontend ecosystem alternatives for building your JavaScript projects, while focusing on security risks and best practices

for each and the differences between them. 	

This report covers:

àà the security practices for each of the two different core projects, both Angular and React

àà the state of security of each of the two different module ecosystems, based on an in-depth look at the
vulnerabilities contained in each of the ecosystems

àà the security practices for other common JavaScript frontend framework alternatives such as Vue.js, Bootstrap
and jQuery

àà the significant security differences between the different alternatives, and particularly between Angular and React

This report reviews the overall security of each framework, their community-powered module ecosystems and the

associated security risks with each; based on these insights, this report ultimately provides actionable security advice for

Angular and React users by highlighting best security practices employed in the field in order to ensure secure code.

All rights reserved. 2019 © Snyk 4

A word about vulnerabilities

In order to investigate the overall security posture of each of the ecosystems included in this report, amongst the

factors we discuss are security vulnerabilities identified in the different relevant packages. We review and discuss these

vulnerabilities on the landscape of, and sometimes in comparison to, known vulnerabilities. Known vulnerabilities have

been assigned an identification number in the list of Common Vulnerabilities and Exposures (CVEs) maintained by the

CVE Numbering Authorities (CNAs). CVEs are assigned CVSS scores that provide insight into how severe the listed

vulnerabilities are. Learn more about how the severities of vulnerabilities are scored via their CVSS here.

https://snyk.io/blog/scoring-security-vulnerabilities-101-introducing-cvss-for-cve/

5All rights reserved. 2019 © Snyk

Key takeaways

Angular vs. React core project security

àà Angular contains twenty three security vulnerabilities in its

legacy AngularJS project (Angular v1.x).

àà No security vulnerabilities were identified in the core Angular

framework components.

àà React has a few security vulnerabilities; vulnerabilities seem

to be regularly found in its core libraries and disclosed every

couple of years.

àà Only one React core project vulnerability has an official CVE

assigned. None of the reported Angular vulnerabilities are listed

by CVE at all. Together, these prove the need for a vulnerability

database that taps into open source community activities, in

order to surface relevant security issues.

àà Snyk reports twenty six security vulnerabilities across

Angular and React core projects, which npm audit falls short of

in its reports.

Angular vs. React module
ecosystem security

àà Both React and Angular module ecosystems exhibit security

vulnerabilities in highly popular frontend library components

spanning millions of downloads, some of which have no security

fix available to date.

àà We have witnessed malicious modules impacting both the

Angular and the React ecosystems with an attempt to harvest

credit cards, passwords and other sensitive information used in

frontend web applications.

àà The Next.js framework exhibited a great commitment to

security by swiftly addressing all five vulnerabilities found

throughout the lifetime of their project, offering fixes within

just one week.

6All rights reserved. 2019 © Snyk

Angular vs. React security posture

àà Angular has visible and attainable security guidelines, a

security contact and a responsible disclosure policy, all of

which are missing from the React project.

àà Angular has broader built-in support for data sanitization and

output encoding in different contexts such as URL attributes

in HTML anchor (or, link) elements.

àà React doesn’t have built-in controls for data sanitization, but

rather encodes output by default in most cases and leaves it

up to developers to address unhandled cases such as refs and

URL attributes (the latter of which is addressed in the React

v16.9.0 release).

àà Angular includes support for Cross-Site Request Forgery

(CSRF) vulnerabilities with a built-in security mechanism

in its HTTP service. React developers need to address these

issues independently.

Frontend ecosystem security

àà jQuery was downloaded more than 120 million times in

the last 12 months and according to W3Techs, jQuery v1.x

is used in 84% of all websites using jQuery, which have four

medium severity XSS vulnerabilities affecting it. In fact, if you’re

not using jQuery v3.4.0 and above, which is true for the majority

of jQuery users, then you are using a version that includes

security vulnerabilities.

àà Bootstrap has been downloaded 79,185,409 times in the past

twelve months, all while containing seven Cross-Site Scripting

(XSS) vulnerabilities. Three of these were disclosed in 2019.

Notable community modules such as bootstrap-markdown

have more than 300,000 downloads in the same time frame,

despite having no security fix or upgrade path to its XSS

vulnerabilities. bootstrap-select features more than two million

downloads and has a high severity XSS vulnerability that the

Snyk research team surfaced with the help of their proprietary

threat intelligence system.

àà The Vue.js framework has been downloaded more than 40

million times this past 12 months and records four vulnerabilities

in total for Vue.js core, all of which have been fixed.

https://snyk.io/vuln/npm:bootstrap-markdown
https://snyk.io/vuln/SNYK-JS-BOOTSTRAPSELECT-173741
https://snyk.io/vuln/npm:vue
https://snyk.io/vuln/npm:vue

1Angular and React core projects:
security vulnerabilities

Let’s begin this report by exploring the different security vulnerabilities found in the

core Angular and React projects. We then review the severity breakdown for each of the

vulnerabilities and we inspect the differences between the two. Lastly, for both projects, we

review the time gap from when a vulnerability was disclosed until it was fixed, as well as

the time gap until the time at which an upgrade was finally published (time-to-fix, time-to-

release) for each of the cases.

8All rights reserved. 2019 © Snyk

Core React project: overview

For the purposes of this report, we considered the

react, react-dom, and prop-types libraries to be

the “core” React modules since, together, they often

make up the foundation for web applications built

in React.

For these core modules, we found three

vulnerabilities in total; two in react and one

in react-dom.

All three are Cross-Site Scripting (XSS)

vulnerabilities. The two XSS vulnerabilities in the

React npm package are quite old and include the

0.5.x versions dated back to 2013, and the versions

prior to 0.14 that were disclosed in 2015.

The XSS vulnerability in the react-dom v16.x release

branch, on the other hand, is quite recent and was

disclosed just over a year ago, in August 2018. This

vulnerability, however, only occurs when other

pre-conditions exist as well, such as using the react-

dom library within a server-side rendering context.

Nevertheless, it is always advisable to stay up-to-

date with security fixes and to upgrade your open

source components as early as possible, in order to

avoid any unnecessary security risks.

https://snyk.io/vuln/npm:react
https://snyk.io/vuln/search?q=react-dom&type=npm
https://snyk.io/vuln/npm:react
https://snyk.io/vuln/npm:react
https://snyk.io/vuln/npm:react-dom:20180802

Spotlight: Preact—a React alternative

In addition to these three core Reach project vulnerabilities, we also tracked a medium

Deserialization of Untrusted Data security vulnerability in Preact. As many developers prefer

Preact over React, for being lightweight and faster, we thought it was worth having a closer

look. This medium-severity Preact vulnerability affects the 10.0.0 pre-release branch versions

from March and April 2019.

https://snyk.io/vuln/npm:preact

10All rights reserved. 2019 © Snyk

 Core Angular project: overview

When we looked at core Angular projects, we

specifically investigated security vulnerabilities in

the v1.x branch, also referred to as AngularJS.

AngularJS is considered an outdated version,

despite being widely used and officially supported

until June 30, 2021.

We charted the monthly download counts for the

angular and @angular/core npm packages,

which represent Angular v1.x and Angular v2.0

and above, respectively. According to the data we

reviewed, we found that Angular v1.x is still very

much a considerable player within the Angular

market-share, representing 28% of all Angular

downloads across all versions. While Angular has

reached many more major version releases since 1.x,

the reality is that users continue to download this

older version millions of times a month.
The above graph demonstrates just how popular the Angular 1.x versions are relative to the other Angular

options: the Angular 2.0 and above versions are represented together by the yellow line; we can see from

the graph that Angular v1.x alone represents about a third (28% to be exact) of all Angular (new and old)

downloads ever.

Angular downloads per version over time

0

2 mil.

4 mil.

Jun
2018

Jul Aug Sep Oct Nov Dec Jan
2019

Feb Mar Apr May

6 mil.

Jun Jul

Angular (newer versions)Angular v1.x

11All rights reserved. 2019 © Snyk

We can speculate that the continued use of

Angular 1.x versions may be due to legacy

applications that are still maintained by medium

and large enterprises. For these organizations,

technology change and migration paths are very

costly, but applications still need to be maintained

and released regularly.

It is this assumption that emphasizes, even more,

the critical need to track security vulnerabilities

in open source components such as the Angular

framework including for older versions, in order

to quickly address any vulnerabilities identified in

production-deployed applications and ensure these

do not escalate and worsen a company’s security

posture over time.

With these issues in mind, in total, we found 19

vulnerabilities across six different release branches

of Angular v1.x, with the minor version breakdown

as itemized in the graph that appears to the right.

Angular 1.x vulnerability count per version

7

1

3

0

2

4

6

8

4

1

1.31.1 1.2 1.51.4

3

1.6

12All rights reserved. 2019 © Snyk

Angular and React: good vulnerability databases
are key to surface security issues

Though Snyk has tracked twenty three Angular v1.x security vulnerabilities, none

of them includes a CVE reference because they were not disclosed through any of

the officially-recognized CVE programs. This isn’t necessarily a failing on the part

of Angular, but rather common practice, as CVEs were designed with commercial

vendors in mind, requiring substantial time and expertise to file - and this doesn’t

always scale well for open source.

Without a CVE, vulnerabilities can only be tracked by dedicated analysts who

manage and track open-source activity with customized methods; few solutions

provide this option.

Tools such as npm audit do some tracking, but miss many of the vulnerabilities

that lack a CVE as well. For instance, npm audit, which is bundled by default with

npm client, unfortunately misses all twenty three Angular v1.x vulnerabilities and all

React vulnerabilities, and so relying on npm audit can provide developers with a

false sense of confidence.

All of this is in contrast to Snyk’s vulnerability database for Angular 1.x which,

for example, reports eleven security reports eleven security vulnerabilities for

Angular v1.2.32.

Version Published Licenses Direct vulnerabilities

angular 1.6.0-rc.1
(pre-release)

21 Nov, 2016 MIT 3  medium

angular 1.6.0-rc.0
(pre-release)

27 Oct, 2016 MIT 3  medium

angular 1.4.14 11 Oct, 2016 MIT 3  high 6  medium

angular 1.2.32 11 Oct, 2016 MIT 3  high 7  medium 1  low

https://snyk.io/vuln/npm:angular

13All rights reserved. 2019 © Snyk

These vulnerabilities are reported through the Snyk

UI or the Snyk CLI tool. What's more, the Snyk UI

automatically creates fix PRs to upgrade vulnerable

packages for the developers, through integrations

with systems such as GitHub.

The situation with React is similar - npm audit

misses all three React related vulnerabilities. Out

of the three publicly known vulnerabilities (two

affecting the react core library, and one affecting

the react-dom core library), only the latter has

a CVE assigned that is tracked in the National

Vulnerability Database (https://nvd.nist.gov).

https://nvd.nist.gov/

14All rights reserved. 2019 © Snyk

Angular vs. React: comparing vulnerability severities

We can gain further insights into the overall risk

posed by the security issues that were found for

React-based and Angular-based frontend projects

by exploring their severity scores.

What is CVSS?
To do this, we should briefly review the scoring

system (CVSS). Similarly to the way in which

general bugs in source code are associated with

a severity such as high or medium, security bugs,

which we refer to as security vulnerabilities, are

also associated with a severity that contributes to

determining the potential risk for an organization.

Security vulnerabilities are assigned severity

through the Common Vulnerability Scoring System

(CVSS), which is employed as the de-facto standard

by the FIRST organization and is widely used to

score Common Vulnerabilities and Exposures, often

referred to in short as CVEs.

To easily compare vulnerabilities, the CVSS translates

its numerical scores into ranges, associating each

range to its severity type.

An in-depth explanation of CVSS and its challenges

is available at https://snyk.io/blog/scoring-security-

vulnerabilities-101-introducing-cvss-for-cve/.

Throughout the report, we refer to CVSS v2 scoring,

which is shown in the following table:

Severity Score

0.1 - 3.9  low

4.0 - 6.9  medium

7.0 - 10.00  high

https://snyk.io/blog/scoring-security-vulnerabilities-101-introducing-cvss-for-cve/
https://snyk.io/blog/scoring-security-vulnerabilities-101-introducing-cvss-for-cve/

15All rights reserved. 2019 © Snyk

Angular and React:
CVSS results
While very few vulnerabilities have been discovered

within core React packages, they are all Cross-Site

Scripting vulnerabilities and have been steadily

disclosed every couple of years. Their CVSS scores

range between 6.5 and 7.1—or, in other words, they

are all medium to high severity vulnerabilities.

Looking into Angular v1.x security vulnerabilities,

we can see that Angular v1.5 exhibits the most

vulnerabilities, with seven vulnerabilities in

total-three high and four medium. Luckily, the

vulnerabilities further decrease as the version

matures, in terms of both severity and count. In

2019, we haven’t yet seen any newly disclosed

vulnerabilities for any Angular versions at all!

Dec 2013

7.1
XSS

Aug 2018

6.5
XSS

March 2015

6.5
XSS

Time of public disclosure

React core project vulnerability severities over time

Angular v1.x vulnerability count per year by severity

0

1

2

3

4

201520142013 2016 2017 2018

High

Medium

Low

16All rights reserved. 2019 © Snyk

The variety of vulnerability types disclosed across

all Angular 1.x versions is hardly a concern but

rather, security risks manifest themselves in other

aspects. Most notable is the severity of its most

common vulnerability type, repeatedly disclosed

across versions. In fact, Cross-Site Scripting

(XSS) vulnerabilities are a great security concern

across the frontend world. And this is no different

for Angular. This is reflected in the data we

found here, with ten XSS vulnerabilities in total

appearing across the Angular 1.x versions.

Angular v1.x vulnerability by type

0 4 8

Protection Bypass

Unsafe Object
Deserialization

Arbitrary Command
Execution

JSONP Callback Attack

Clickjacking

Content Security Policy
(CSP) Bypass

10

2 6 10

Cross-site Scripting (XSS)

Arbitrary Script Injection

Arbitrary Code Execution

2

2

1

1

1

1

1

1

17All rights reserved. 2019 © Snyk

Time-to-fix, time-to-release

An important factor to weigh for the security

posture of open source projects is how quickly

maintainers and collaborators are able to respond

to security vulnerabilities with timely fixes and

to publish releases for their users. We looked

at both the Angular and the React core projects

for these metrics, tracking the history of known

vulnerabilities that have already been handled in

each in order to chart this data.

Starting with Angular v1.x, the following chart

is sorted by the time period in ascending order,

starting from as early as June 2013 for the AngularJS

first vulnerability and up until June 2018. The

chart shows the number of days it took to fix a

vulnerability from when it was reported publicly to

the project and until the time it took for the team

to release a version that included the fix to which

downstream users could upgrade. Low time-to-

fix numbers show that the development team

could respond to a security report quickly, and low

time-to-release numbers show that the team could

quickly spin up an official fix for upgrade by users.

Average time to fix and release by year

0 days

20 days

40 days

2013 2014 2015 2016 2017 2018

60 days

Avg time to fixAvg time to release

18All rights reserved. 2019 © Snyk

As we can see, the first vulnerability reported

for Angular received a fix in the code repository

within a single day, but it took 74 days for that

fix to be published as an official release to which

users could upgrade.

With Angular v1.x releases we observed an

average of 7.47 days to fix a security vulnerability,

and an average of 20.5 days to publish a release

that included a security fix.

An exception to the data on the previous page

is one JSONP Callback Attack vulnerability that

took 570 days to remediate with an actual fix,

and 64 days from the fix committed to the

source code repository, and until it was

officially released.

React has significantly fewer vulnerabilities, with

a mere three security vulnerabilities affecting the

core project. Two out of the three vulnerabilities

were reported and handled internally within the

React team and so the time-to-fix appears as 0 days,

with only one day to publish an official release. The

third vulnerability is a Cross-Site Scripting security

vulnerability, dating back to React v0.4 and v0.5,

which took a significant amount of time-to-fix

(176 days), followed by a 27-day delay to release a

security fix.

https://snyk.io/vuln/npm:angular:20150315
https://snyk.io/vuln/npm:react:20131217

2Angular and React module ecosystems:
security risks

In this section, we review the security risk of the indirect independencies for both Angular and

React, and then we also review the direct dependencies, first for Angular and then for React.

The modules reviewed in this part do not represent a complete list of vulnerable React and

Angular modules; some modules may have special naming conventions (such as all modules

prefixed ng-, angular-, or react- for example) that would not appear in the pattern-based

search we conducted.

20All rights reserved. 2019 © Snyk

The security risk of indirect dependencies

More often than not, projects based on React

or Angular are generated with a scaffolding tool

that provides a boilerplate with which to begin

developing. With React, the developer go-to

practice is to use the create-react-app npm

package that creates a pre-configured project

starting point, such as by implementing the Jest

testing framework, CSS processors and other

already built-in tooling. In Angular, this is made

possible thanks to the @angular/cli npm package.

To compare the dependency health and state

of the security (which reflect the level of overall

security risk) for React and Angular boilerplates, we

generated a sample project which resulted in rather

good news - both of them include development

dependencies with vulnerabilities, but neither

contain any production dependency security issues.

Following are the security vulnerabilities that are introduced in your code right from the get-go when starting a

project by using the Angular or React boilerplate:

It’s worthy to note that Angular relies on 952 dependencies, which contain a total of two vulnerabilities; React

relies on 1257 dependencies, containing three vulnerabilities and one potential license compatibility issue.

With regards to licensing, we consider license compliance to be an important factor in overall dependency health, in addition to security

issues, and for this reason include license checks in our scans as well. The results we received for licensing were based on the default

configurations that were defined for our license policies prior to scanning. Based on those results, we can see that the generated React

project has a dependency on the mdn-data package, which in turn makes use of Mozilla’s copyleft license MPL-2.0. If you plan to

distribute your React application with on-prem installations or other similar setups that include the mdn-data dependency, then you

should check licensing requirements to make sure your project complies. Additionally, we advise ensuring your projects are scanned

based on the advice you receive from your organization’s unique policies, which may or may not raise flags for additional indirect

dependencies of React as well.

Boilerplate
Vulnerable

module
Indirect vulnerability

Indirect
vulnerability

severity

Yearly module
downloads

Fixable?

Angular jasmine-core ReDoS  low 94,559,055 

Angular useragent ReDoS  high 70,181,373 

React lodash Prototype Pollution  high 1,005,518,049 

React mdn-data MPL-2.0 License issue  high 89,291,454 

React mixin-deep Prototype Pollution  high 328,052,052 

React set-value Prototype Pollution  high 629,781,760 

https://snyk.io/vuln/npm:mdn-data
https://snyk.io/vuln/search?q=jasmine-core&type=npm
https://snyk.io/vuln/search?q=useragent&type=npm
https://snyk.io/vuln/search?q=lodash&type=npm
https://snyk.io/vuln/npm:mdn-data
https://snyk.io/vuln/search?q=mixin-deep&type=npm
https://snyk.io/vuln/search?q=set-value&type=npm

21All rights reserved. 2019 © Snyk

Remediating vulnerable paths

A path describes how an open source dependency

is introduced to your project. For instance, let’s say

you have two direct dependencies called Project

A and Project B. Both of these projects introduce

dependency, Project C. Project C is now associated

with two different paths, because it is installed by

both Project A and Project B. If Project C includes

vulnerabilities, a developer must consider both of

these paths in order to remediate the vulnerabilities.

With React, the three vulnerabilities spread over

16,293 vulnerable paths. Remediating the vulnerability

via package upgrades becomes a daunting task with so

many packages in the dependency chain that require

an upgrade. In contrast, both Angular’s vulnerabilities

are remediated easily via only two vulnerable paths.

The following image was taken from an August

2019 security scan report for a project generated

with React’s create-react-app npm package. The

report reveals the dependency chain problem to be

addressed for a single security vulnerability.

Due to the prominent usage of lodash throughout

the ecosystem, its vulnerable version is ultimately

used by thousands of dependency paths.

Remediating the vulnerability requires pulling new

versions of lodash from every single one of the

affected packages in the entire dependency chain.

22All rights reserved. 2019 © Snyk

Vulnerabilities in the Angular module ecosystem

In the Angular ecosystem, module vulnerabilities

manifest themselves in three areas:

àà Angular ecosystem modules

àà Malicious versions of modules

àà Developer tooling

When we look at the Angular module

ecosystem, we can see the following modules

stand out most due to their download counts

and associated vulnerabilities:

Module name Vulnerability type
Number of

vulnerabilities
Vulnerability

severity
Yearly module

downloads
Fix exists?

ngx-bootstrap Cross-Site Scripting
(XSS) 1  medium 6,275,854 

ag-grid-community Cross-Site Scripting
(XSS) 1  medium 2,710,764 

ag-grid Cross-Site Scripting
(XSS) 3  medium 2,203,913 

ng-dialog Denial of Service (DoS) 1  medium 580,674 

angular-gettext Cross-Site Scripting
(XSS) 1  medium 514,937 

angular-jwt Access Restriction
Bypass 1  medium 514,470 

textangular Cross-Site Scripting
(XSS) 2  medium 384,629 

angular-froala Cross-Site Scripting
(XSS) 1  medium 104,436 

angular-redactor Cross-Site Scripting
(XSS) 1  medium 64,094 

i18n-node-angular Denial of Service (DoS) 1  high 4229 

https://snyk.io/vuln/search?q=ngx-bootstrap&type=npm
https://snyk.io/vuln/search?q=ag-grid-community&type=npm
https://snyk.io/vuln/search?q=ag-grid&type=npm
https://snyk.io/vuln/search?q=ng-dialog&type=npm
https://snyk.io/vuln/search?q=angular-gettext&type=npm
https://snyk.io/vuln/search?q=angular-jwt&type=npm
https://snyk.io/vuln/search?q=textangular&type=npm
https://snyk.io/vuln/search?q=angular-froala&type=npm
https://snyk.io/vuln/search?q=angular-redactor&type=npm
https://snyk.io/vuln/search?q=i18n-node-angular&type=npm

23All rights reserved. 2019 © Snyk

If we line up the vulnerability types based on the

number of downloads of the modules that contain

them, we can clearly see that XSS vulnerabilities are

at the head of the chart, as is also indicated in the

OWASP Top 10 web security risks to watch out for:

Vulnerability type distribution by
module download count

4%

92%

4%

Denial of Service

Access Restriction Bypass

Cross-site Scripting

24All rights reserved. 2019 © Snyk

Malicious Angular modules
In total, we were able to track down three

malicious versions published for the following

angular modules: angular-bmap, ng-ui-library,

ngx-pica.

angular-bmap is perhaps the least interesting as

can be observed in its dependency health page

- it features eight published versions all date

back to September 2017. Nevertheless, a 0.0.9

version of angular-bmap has been published that

includes malicious code that exfiltrates sensitive

information related to password and credit cards

from forms and sends them off to the attacker

controlled URL of https://js-metrics.com/minjs.

php?pl=. This malicious 0.0.9 version has been

yanked off of the npm registry.

Unlike the Angular bmap module, ng-ui-library

is still maintained and features over 150 versions

published, seven of them in 2019 alone. However,

ng-ui-library version 1.0.987 specifically has been

found to contain the same malicious code that

we’ve seen in angular-bmap. ng-ui-library still gets

nearly 400-3000 downloads a month.

Joining the same malicious code that harvests credit

card information is a malicious version of ngx-pica,

which is an Angular v5 and Angular v7 compatible

module to resize images in the browser, featuring

about 800 monthly downloads.

Interestingly enough, all of these malicious versions

were only found recently. They were all disclosed

in June 2019, even though the malicious code was

pushed in a month-old release by that time.

Angular developer tooling
As part of the module ecosystem findings, we

spotted one module that is used as a general-

purpose HTTP server for serving single-page

application resources for projects built with

Angular, React, Vue and others.

The module angular-http-server was found

vulnerable to directory traversal - twice. Both

vulnerable versions are a year old and there are

already a half of a dozen newer versions published.

Even though the module maintainer clearly

states that it is not recommended to use this tool

as a production-ready service, downloads for it

have been ramping up this year with a recorded

downloads count of 20,670 in May 2019.

Due to the growing adoption of this Angular HTTP

server developer tool we should point out that

there’s a public exploit for this vulnerability.

https://snyk.io/vuln/npm:angular-bmap
https://snyk.io/vuln/SNYK-JS-NGUILIBRARY-449527
https://snyk.io/vuln/SNYK-JS-NGXPICA-449519
https://snyk.io/vuln/npm:angular-bmap
https://js-metrics.com/minjs.php?pl=
https://js-metrics.com/minjs.php?pl=
https://snyk.io/vuln/SNYK-JS-NGUILIBRARY-449527
https://snyk.io/vuln/npm:ng-ui-library
https://snyk.io/vuln/npm:ng-ui-library
https://snyk.io/vuln/SNYK-JS-NGXPICA-449519
https://snyk.io/vuln/npm:angular-http-server

25All rights reserved. 2019 © Snyk

Vulnerabilities in the React module ecosystem

As with Angular, we found that the React ecosystem

includes several malicious modules published at some

point. The following represents the distribution of

security vulnerability types and their counts across

all vulnerable modules that we found, highlighting

specifically four malicious packages react-datepicker-

plus, react-dates-sc, awesome_react_utility, react-

server-native.

All four malicious modules have the same malicious

code that harvests credit card and other sensitive

information; this attack compromised modules on the

React ecosystem as well.

This goes further to emphasize that as a maintainer

of an open source project it is critical to enable multi-

factor authentication such as 2FA support that the npm

package registry supports, to avoid putting your users

at risk of someone else compromising your account and

publishing malicious versions of your package.

If you haven’t done so yet, we urge you to enable 2FA

on your npmjs.org developer account and follow other

npm security best practices.

React ecosystem modules -
distribution of vulnerability types

0 2 4

CSV Injection

Malicious Package

Arbitrary Code
Execution

Cross-Site Scripting

Resources Downloaded
over Insecure Protocol

Zip Slip - Arbitrary File
Write via Archive

1 3 5

Insecure Randomness

Number of vulnerabilities found

https://snyk.io/vuln/npm:react-datepicker-plus
https://snyk.io/vuln/npm:react-datepicker-plus
https://snyk.io/vuln/npm:react-dates-sc
https://snyk.io/vuln/SNYK-JS-AWESOMEREACTUTILITY-451009
https://snyk.io/vuln/SNYK-JS-REACTSERVERNATIVE-450976
https://snyk.io/vuln/SNYK-JS-REACTSERVERNATIVE-450976
https://snyk.io/blog/ten-npm-security-best-practices/
https://snyk.io/blog/ten-npm-security-best-practices/

26All rights reserved. 2019 © Snyk

Notable vulnerable modules that we tracked in

React’s ecosystem:

àà A high severity XSS vulnerability in

react-marked-markdown which has no

fix available, but this react component

wrapper around the marked JavaScript

markdown library still gets thousands of

downloads, totaling 65,790 in the past

12 months.

àà For the preact users among you, the preact-

render-to-string library is vulnerable to

Cross-Site Scripting in all versions prior to

3.7.2. This library is growing in usage across

the last 12 months and totaling in 3,228,049

downloads for this time-frame.

àà If you’re doing tooltips in your frontend

React application you might be one of the

users of react-tooltip which received just

shy of one million downloads (994,903)

in July 2019 alone. This library however

is vulnerable to Cross-Site Scripting

attacks for all versions prior to 3.8.1 as was

disclosed in September 2018.

àà If you are working with SVGs a lot, good

chances you are using react-svg which features

1,446,442 downloads in the past 12 months. In

April 2018 a high severity Cross-Site Scripting

vulnerability was disclosed by security

researcher Ron Perris affecting all versions prior

to 2.2.18.

àà A CSV Injection vulnerability in mui-datatables

disclosed in March 2019. This react library

provides a table data related UI component

based on the material ui framework and

features more than 350,000 downloads in the

past 12 months.

When we track all the vulnerable React modules we

found, we count eight security vulnerabilities over

the last three years with two in 2017, six in 2018 and

two up until August 2019. This calls for responsible

usage of open source and making sure you find and fix

vulnerabilities as quickly as possible.

https://snyk.io/vuln/npm:react-marked-markdown
https://snyk.io/vuln/search?q=marked&type=npm
https://snyk.io/vuln/npm:preact-render-to-string:20180802
https://snyk.io/vuln/npm:preact-render-to-string:20180802
https://snyk.io/vuln/npm:react-tooltip
https://snyk.io/vuln/npm:react-svg:20180427
https://snyk.io/vuln/SNYK-JS-MUIDATATABLES-174185

Spotlight: Next.js security vulnerabilities

Next.js is the popular React framework delivered from ZEIT,

empowering web developers to harness their knowledge of React in

order to build SEO-friendly web applications, Server-side rendering

applications, Progress Web Applications (PWA) and even Electron-

based applications, all based on the Next.js framework.

Next.js continues to gain developer adoption, with 8,414,925

downloads over the past 12 months. As the project continues to grow it

becomes increasingly important to take a look at its security status.

We tracked three high Directory Traversal vulnerabilities, and two

medium severity Cross-Site Scripting vulnerabilities impacting the

Next.js React framework during the course of 2017 through 2018.

We should also point out that the ZEIT Security team swiftly addressed

all five security vulnerabilities and provided a fix through an upgrade

path for the Next.js framework within a week’s time.

Overall, ZEIT employs strong security practices that should be

replicated by other open source projects.

Particularly notable includes:

àà The team responds quickly to security disclosures by

releasing timely security fixes. This translates into a small

window during which time there is an actual security risk;

ZEIT provides users with an upgrade path so they can quickly

mitigate the vulnerability.

àà To avoid security regressions the team has written security unit

tests to ensure that security mistakes do not repeat themselves.

àà Release notes clearly communicate security-related information,

its impact and any steps users are required to follow in order to

stay up-to-date with a security fix.

àà The project maintains a mailing-list dedicated to security reports,

a responsible disclosure policy and a dedicated email contact for

reporting issues.

ZEIT and their management of the Next.js framework is a great

example of good open source security policies; ZEIT takes matters

seriously and demonstrates a true commitment to the overall

security of their users with policies and actions that should be

adopted by others.

https://github.com/zeit/next.js/blob/master/test/integration/production/test/security.js
https://github.com/zeit/next.js/blob/master/test/integration/production/test/security.js
https://github.com/zeit/next.js/releases/tag/7.0.2
https://zeit.co/security

3Angular and React projects: overall
security posture

In this section, we explore both the Angular and the React project security postures.

This includes secure coding conventions, built-in in secure capabilities, responsible

disclosure policies, and dedicated security documentation for the project.

The following table lays out a few of the security components we found to be essential

for best-practice maintenance of any open source package, and an indication of how

Angular and React manage said components (if at all).

29All rights reserved. 2019 © Snyk

Item Angular React

Security page  https://angular.io/guide/security

 React’s website (https://reactjs.org) does not mention any security

guidelines, except for the dangerouslySetInnerHTML function reference

in the DOM Elements section of the API Reference documentation.

Security contact  security@angular.io  No security contact

Responsible disclosure

policy

 Backed by the internal security teams at Google and based on

Google security philosophy.

Reference: https://www.google.com/about/appsecurity/

 No responsible disclosure policy

Examples of

vulnerable projects

 https://angular.io/generated/live-examples/security/stackblitz.

html
 No references to any examples of vulnerable projects

Built-in sanitization

 DomSanitizer provides a built-in sanitization

function for untrusted values.

Reference: https://angular.io/api/platform-browser/DomSanitizer#sanitize

 Potentially malicious input sanitization is at the users' discretion to be

implemented via 3rd-party libraries, such as DOMPurify.

Reference: https://github.com/cure53/DOMPurify

Content Security

Policy (CSP)

 CSP compatibility for Angular v1.x directives.

Reference: https://docs.angularjs.org/api/ng/directive/ngCsp
 Not relevant for React

Cross-Site Request

Forgery (CSRF)

 CSRF built-in support through Angular’s

HttpClient service.

Reference: https://angular.io/guide/http and

https://docs.angularjs.org/api/ng/service/$http

 Not relevant for React as a view library. This is up to the developers to

handle using custom code or community modules.

Security policy components

https://angular.io/guide/security
https://reactjs.org
mailto:security@angular.io
https://www.google.com/about/appsecurity/
https://angular.io/generated/live-examples/security/stackblitz.html
https://angular.io/generated/live-examples/security/stackblitz.html
https://angular.io/api/platform-browser/DomSanitizer#sanitize
https://github.com/cure53/DOMPurify
https://docs.angularjs.org/api/ng/directive/ngCsp
https://angular.io/guide/http
https://docs.angularjs.org/api/ng/service/$http

30All rights reserved. 2019 © Snyk

Secure coding

Angular secure
coding practices
Angular v2 and later, have a completely

different architecture than Angular v1, such as

unidirectional data binding. What’s more, the

v2 and later versions have left automatic data

interpolation via watchers behind, as well as

other techniques that were often the cause for

many of the Angular v1 security vulnerabilities.

Ahead of Time (AoT) compilation mitigates issues

such as Angular templating expression injection

and allows for build-time security instead

of run-time security. However, dynamically

interpolating templates on the client-side still

leaves the door open for security vulnerabilities

in the form of Angular code injection. In their

own best practices documentation, Angular

clearly emphasize that this dynamic interpolating

is highly unadvisable. With respect to Angular’s

documentation, these are highly discouraged as

Angular’s best practices clearly point out.

To mitigate Cross-Site Scripting vulnerabilities,

Angular employs by default context-aware output

encoding, or malicious code sanitization. Moreover,

method naming conventions are much better

understood, in terms of their impact, if a developer

consciously chooses to use them, as opposed to

earlier Angular versions, namely Angular v1.x.

Methods such as

bypassSecurityTrustHtml(value) or

bypassSecurityTrustUrl() implicitly convey the

dangers of using them to insert data into the DOM.

Moreso, Angular provides a built-in DomSanitizer to

explicitly sanitize values.

React secure coding practices
React by default encodes almost all data values

when creating DOM elements. To provide users with

an escape hatch to insert HTML content into the

DOM, React is equipped with the eloquently-named

function dangerouslySetInnerHTML(), clearly

conveying the dangers of using it.

Contexts that are unattended by the React security

model and are handled by the users include creating:

àà HTML anchor (link) elements with user-

provided input as the source for the href

attribute value. This mostly applies to versions

prior to the recently released React v16.9 which

mitigates javascript:-based URLs in href

attribute values and other contexts such as

form actions, iFrame sources, and others.

àà React components from user-provided input

React’s server-side rendering could potentially

introduce XSS vulnerabilities if malicious user input

is injected as-is to a JavaScript context without being

properly encoded or sanitized.

31All rights reserved. 2019 © Snyk

HTTP security

Starting with version 1.2, Angular v1.x release branches have introduced compatibility support for Content

Security Policy (CSP) which is necessary due to the use of eval() and Function() methodology to

interpolate expressions.

Cross-Site Request Forgery (CSRF) enables web applications to trust the origin of a request. In newer

Angular versions, CSRF support mechanism is built-in to the HTTP client with the @angular/common/

http module. In Angular v1.x versions similar capability is supported through the $http provider.

Unlike Angular, React doesn’t include an HTTP client and as such, it is unable to provide CSRF support

out-of-the-box. As React aims to be a minimalistic view library, handling this concern is up to the developer,

using custom code or community-powered modules.

4Security vulnerabilities found in other
frontend ecosystem projects

After reviewing Angular and React as major JavaScript frameworks, we’ll take a brief

review of selected JavaScript and CSS frameworks: Vue.js, jQuery and Bootstrap.

33All rights reserved. 2019 © Snyk

Vue.js security

The Vue.js frontend framework attracts no

less popularity from web developers than

its counterparts React or Angular, and was

downloaded 40,054,897 times in the past 12

months and featured as the second most starred

project on GitHub with more than 145,000 stars.

We tracked four vulnerabilities in total for Vue.js

core project, three medium and one low regular

expressions denial of service vulnerability,

spanning from December 2017 to August 2018

with a shared Cross-Site Scripting vulnerability

that was found in React’s server-side rendering

with react-dom component.

As for Vue’s module ecosystem, we found the

following are worth noting:

àà bootstrap-vue has 4,620,136 downloads

recorded for the past 12 months and includes a

high severity Cross-Site Scripting vulnerability

that was disclosed in January 2019 and affects

all versions prior to <2.0.0-rc.12.

àà vue-backbone had a malicious version

published, associated with malicious package

attempts that we mentioned earlier across

Angular and React ecosystem modules. vue-

backbone was downloaded 11,658 in the past

12 months.

https://snyk.io/vuln/npm:vue
https://snyk.io/vuln/npm:vue
https://snyk.io/vuln/npm:bootstrap-vue
https://snyk.io/vuln/npm:vue-backbone

34All rights reserved. 2019 © Snyk

Bootstrap security

Bootstrap is a component library that leverages

CSS and JavaScript to enable developers to build

websites and has a strong historical affiliation

with jQuery through plugins that enhance the

frameowkr’s core capabilities.

Bootstrap is the third-most starred project

in GitHub with more than 130,000 stars, and

79,185,409 downloads in the past 12 months

from the npm package registry. Modern web

application frameworks like React have even

extended Bootstrap by packaging it for React

based web development with projects like

reactstrap and react-bootstrap which receive

about 20 million downloads each in the past

12 months.

As we look at known security issues for the

Bootstrap project, we can track a total of seven

Cross-Site Scripting vulnerabilities, three

of which were disclosed in 2019 for recent

Bootstrap v3 versions, as well as three security

vulnerabilities disclosed in 2018, one of which

affects the newer 4.x Bootstrap release.

All vulnerabilities have security fixes and provide an

upgrade path for users to remediate the risks.

We were also able to track several modules in the

Bootstrap ecosystem that are vulnerable. Most

notable are:

àà bootstrap-markdown with more than

300,000 downloads in the past 12 months

despite having an unfixed Cross-Site Scripting

vulnerability affecting all versions

àà Vue.js developers using bootstrap-vuejs had

their usage of this module contributed to

4,620,136 downloads in the past 12 months

and worth to note that a recently disclosed

high severity Cross-Site Scripting vulnerability

affects all versions prior to bootstrap-vue

2.0.0-rc.12 which only a February 2019 release

had addressed.

àà bootstrap-select featured 2,159,450 downloads

in the past 12 months and has a high severity

Cross-Site Scripting vulnerability that the Snyk

research team surfaced thanks to its threat

intelligence system.

https://snyk.io/vuln/search?q=bootstrap&type=npm
https://snyk.io/vuln/search?q=bootstrap&type=npm
https://snyk.io/vuln/npm:bootstrap-markdown
https://snyk.io/vuln/npm:bootstrap-markdown
https://snyk.io/vuln/npm:bootstrap-vue
https://snyk.io/vuln/SNYK-JS-BOOTSTRAPSELECT-173741
https://snyk.io/vuln/SNYK-JS-BOOTSTRAPSELECT-173741

35All rights reserved. 2019 © Snyk

jQuery security

jQuery took web development by storm a decade

ago but since then web development have been

revolutionized further with single page application

technologies such as Angular, and React. That said,

according to W3Techs which regularly run surveys

and report on web technology usage jQuery is

being used within 73% of websites they scanned in

August 2019.

A Snyk study from 2017 further amplifies this

when it reported that 77% of sites use at least

one vulnerable JavaScript library and pointed out

jQuery was detected in 79% of the top 5,000 URLs

from Alexa. If you’re still not convinced, npm’s

downloads for the jQuery npm module account to

120,641,977 for the last 12 months alone.

In total, we tracked six security vulnerabilities

affecting jQuery across all of its releases to date,

four of which are medium severity Cross-Site

Scripting vulnerabilities, one is a medium severity

Prototype Pollution vulnerability, and lastly, one is

a low Denial of Service vulnerability. If you’re not

using jQuery 3.4.0 and above which was released

only recently, on 10th of Apr, 2019, then you are using

vulnerable jQuery versions.

Since jQuery is usually found in web applications as a

legacy component it is important to also understand its

version usage patterns and their state of security.

W3Techs reports that of all websites using jQuery,

it’s 1.x release is dominating with 83.4% of share and

version 2 and 3 lag far behind with roughly 8% of all

jQuery usage. When looking at the known security

vulnerabilities and map them out to jQuery versions

we found that four medium severity Cross-Site

Scripting vulnerabilities are affecting jQuery v1

which is potentially concerning considering the

83.4% market share for anybody not employing

software composition analysis to find and fix

vulnerabilities in their open source components.

jQuery vulnerability count by version

17%

54%

29%

jQuery 3.x

jQuery 2.x

jQuery 1.x

https://snyk.io/blog/77-percent-of-sites-still-vulnerable/
https://snyk.io/blog/77-percent-of-sites-still-vulnerable/

36All rights reserved. 2019 © Snyk

Many websites and web applications will further

make use of jQuery libraries to extend the

capabilities of jQuery and will turn to community-

powered libraries to do so.

We found 13 vulnerable jQuery libraries as

provided in the following table and offer the

following observations:

àà Three jQuery libraries are malicious versions

of open source community modules. As we

can’t account for the downloads of the actual

vulnerable versions since this isn’t available

from the npm registry, we should call out

jquery.js which is a malicious package and

accounted for 5,444 downloads in the past

12 months.

àà jQuery libraries jquery-mobile, jquery-file-

upload and jquery-colorbox account to

more than 340,000 downloads in the past

12 months, despite including Arbitrary Code

Execution and Cross-Site Scripting security

vulnerabilities and not having any upgrade

path to remediate them.

Malicious packages have no fix information.

jQuery library
name Vulnerability type Disclosure date Vulnerability

severity
Yearly module

downloads Fix exists?

jquery-airload Malicious Package 2019-08-06  high 322 n/a

jquery.json-
viewer Cross-Site Scripting 2019-07-03  medium 17,898 

github-jquery-
widgets Malicious Package 2019-06-07  high 232 n/a

jquery-mobile Cross-Site Scripting 2019-05-04  medium 54,991 

jquery-file-
upload

Arbitrary Code
Execution 2018-11-02  low 19,442 

jquery.terminal Cross-Site Scripting 2018-08-19  medium 79,982 

jquery.csssr.
validation

Regular Expression Denial
of Service (ReDoS) 2018-02-13  high 3,069 

jquery-colorbox Cross-Site Scripting 2017-11-14  medium 268,513 

jquery.js Malicious Package 2017-08-02  high 5,444 n/a

jquery-ui Cross-Site Scripting 2016-07-21  high 8,934,683 

jquery-ujs Cross-Site Request
Forgery (CSRF) 2015-06-24  medium 5,763,710 

jquery-migrate Cross-Site Scripting 2013-04-18  medium 1,831,735 

jquery-ui Cross-Site Request
Forgery (CSRF) 2012-11-26  medium 8,934,683 

jquery-mobile Cross-Site Scripting 2012-08-01  medium 54,991 

jquery-ui Cross-Site Scripting 2010-09-02  medium 8,934,683 

https://snyk.io/vuln/npm:jquery-mobile
https://snyk.io/vuln/npm:jquery-file-upload
https://snyk.io/vuln/npm:jquery-file-upload
https://snyk.io/vuln/npm:jquery-colorbox
https://snyk.io/vuln/npm:jquery-airload
https://snyk.io/vuln/npm:jquery.json-viewer
https://snyk.io/vuln/npm:jquery.json-viewer
https://snyk.io/vuln/npm:github-jquery-widgets
https://snyk.io/vuln/npm:github-jquery-widgets
https://snyk.io/vuln/npm:jquery-mobile
https://snyk.io/vuln/npm:jquery-file-upload
https://snyk.io/vuln/npm:jquery-file-upload
https://snyk.io/vuln/npm:jquery.terminal
https://snyk.io/vuln/npm:jquery.csssr.validation
https://snyk.io/vuln/npm:jquery.csssr.validation
https://snyk.io/vuln/npm:jquery-colorbox
https://snyk.io/vuln/npm:jquery.js
https://snyk.io/vuln/npm:jquery-ui
https://snyk.io/vuln/npm:jquery-ujs
https://snyk.io/vuln/npm:jquery-migrate
https://snyk.io/vuln/npm:jquery-ui
https://snyk.io/vuln/npm:jquery-mobile
https://snyk.io/vuln/npm:jquery-ui

London

1 Mark Square

London EC2A 4EG

Office info

 Tel Aviv

40 Yavne st., first floor

Boston

WeWork 9th Floor

501 Boylston St

Boston, MA 02116

Twitter: @snyksec

Web: https://snyk.io

Report author: Liran Tal (@liran_tal)

Thank you to our friends, and community leaders, Chris Heilmann

(@codepo8), Ron Perris (@ronperris), Daniel Rufde (@danielrufde),

Stephen Fluin (@stephenfluin), Sebastian Markbåge

(@sebmarkbage) and Rachel Cheyfitz (@spinningrachel)

who took the time to provide technical reviews of this report.

Report design: Growth Labs (@GrowthLabsMKTG)

Use open source. Stay secure.

http://twitter.com/snyksec
https://snyk.io
http://twitter.com/liran_tal
http://twitter.com/codepo8
http://twitter.com/ronperris
http://twitter.com/danielrufde
http://twitter.com/stephenfluin
http://twitter.com/sebmarkbage
https://twitter.com/spinningrachel
http://twitter.com/GrowthLabsMKTG

