
Cheatsheet: 8 best practices to prevent SQL injection attacks

1. Do not rely on client-side
input validation

Client-side validation can be bypassed
by executing raw HTTP calls using curl
or tools like postman.

Always perform server-side validation.

2. Restrict database users
Create specific database users for your
application with limited privileges.

Application users don’t need to DROP or
TRUNCATE tables generally.

3. Prepared statements and
query parameterization

Don’t concatenate user input with the
query literal.

Use real prepared statements if possible.

Add untrusted input as parameters to
the query.

4. Scan your code for SQLi
Use a SAST tool like Snyk Code
to detect SQL injection in your
custom code.

5. ORM layer

Use an ORM layer to map database
results to objects. This prevents a lot
of explicit SQL queries.

Be aware of custom queries also in
specific dialects like HQL.

Scan used ORM libraries with
Snyk Open Source for hidden SQL
injection vulnerabilities.

6. Prevent blocklisting
Don’t rely on blocklisting user input
to prevent SQL injection.

Maintaining a blocklist is challenging,
and takes a lot of effort. Some
keywords or characters can also be
legitimate names.

7. Input validation

Validation input is in general a good
practice to lower security risk.

Might be a good alternative when
prepared statements are not an option.

Good practice in a multi-layer
defense strategy.

8. Watch out with
stored procedures

Stored database procedures are not by
default safe.

Be aware that stored procedures can
also be vulnerable to SQL injection
when implemented wrongly.

Check the documentation if you need
to resort to this method.

www.snyk.io

Brian Vermeer
@BrianVerm
Developer Advocate at Snyk

https://twitter.com/BrianVerm/
http://snyk.io

