
10 Kubernetes Security Context settings you should understand

1. runAsNonRoot � / �

Always set this to true to:

enforce the use of non-root users for your
pod’s containers.

limit access to any host resources
that might mistakenly get exposed
to the container.

2. runAsUser/runAsGroup � / �

These settings can be used to enforce a specific
runtime user and group.

Use with caution—these IDs must exist in the
image for the container to run. Do not use these
as a replacement for runAsNonRoot.

3. seLinuxOptions � / �

This sets the SELinux context which is applied to
the container or pod. Be aware when re-labeling
SELinux contexts that this may allow
unintended access.

4. seccompProfile � / �

Be cautious when using seccomp profiles.
Generally, it’s okay to provide a profile that
is more restrictive than the default, as long as your
process can run under those restrictions. However,
a less restrictive profile can potentially expose calls
to the host system that could be dangerous.

5. privileged /
allowPrivilegeEscalation �

It is usually a bad idea to grant privileged
access to containers. Use specific capability flags
or other Kubernetes APIs instead.

In most cases, you should also explicitly set
allowPrivilegeEscalation to false to
stop processes from attaining higher privileges i.e.
via sudo, setuid.

6. capabilities �

Only provide the minimum required for your
application to function. Linux capabilities
provide fine-grained control over access to
kernel-level calls.

7. readonlyRootFilesystem �

Set this to true whenever possible. In the event
your container was to get compromised, a
read-write filesystem makes it easier for the
attacker to install software or change
configurations. Also, consider making any
volumes mounted to your container read-only
for similar reasons.

8. procMount �

Do not change the procMount from the
Default setting, unless you have very specific
configurations—such as nested containers.

9. fsGroup /
fsGroupChangePolicy �

If other processes depend on the volume’s
pre-existing GID, changing ownership of a
volume using fsGroup can have impacts on
pod startup performance, as well as possible
negative ramifications on shared file systems.

10. sysctls �

Modification of kernel parameters via sysctl
should be avoided—unless you have very
specific requirements—as this may destabilize
the host operating system.

� Pod / � Container

Eric Smalling
@ericsmalling
Sr. Dev. Advocate at Snyk

Matt Jarvis
@mattj_io
Sr. Dev. Advocate at Snyk

https://twitter.com/ericsmalling
https://twitter.com/mattj_io

