
www.snyk.io

Python Security
Best Practices
Cheat Sheet
2021

1. Always sanitize external data
Various issue types stem from unsanitized external data flowing into 
sinks. It is a best practice to sanitize external data close to the source.

 2. Scan your code
There are a variety of tools available to scan your source code, 
but they work best when they integrate directly into your IDE.

 3. Be careful when downloading packages
It’s important that you can trust open source packages before adding 
them to your project. Check for the liveliness of the community and the 
security history of the package. Also, watch out for typosquatting when 
choosing a package.

 4. Review your dependency licenses
Open source dependencies come with a license that could impact 
your project (and even force you to publish your code, too). 
Check on the license beforehand and make sure you comply.

 5. Do not use a pre-installed Python version
Most distributions of Linux (and some generic container images) come 
with a Python version preinstalled. Unfortunately, the versions are typically 
not well-maintained, so it’s a best practice to perform the specific 
installation yourself.

 6. Use Python’s capability for virtual environments
Python comes with a nice support of virtual environments that helps separate 
projects and their dependencies. It is a best practice to make use of this 
functionality. Most tools and IDEs support it out of the box.

7. Set DEBUG = False in production
During development, it is extremely helpful to have extended debugging 
messaging. Be sure to lower the output level post-development, as you 
don’t want to allow this rich information out of your production environment.

 8. Be careful with string formatting
Python apps suffer quite frequently from puzzling string encoding. 
Be careful with strings and think about their encoding when calling 
APIs or using them internally.

 9. Deserialize very cautiously
Python is extremely versatile and it is possible to deserialize external 
data directly into internal class representations. This presents the danger 
of adding or changing classes or members with malicious content. 
Additionally, when deserializing, limit the size to prevent overloading.

 10. Use Python type annotations
Python recently added the capability to add annotations to types. 
While this does not influence the interpreter, it can be used by static analysis 
tools. This is a best practice for all development, not just secure development.

 Secure your Python code for free
Scan your Python code for quality and security issues and get fix 
advice right in your IDE.

Try Snyk

https://snyk.io/learn/application-security/static-application-security-testing/
https://snyk.io/product/snyk-code/
https://snyk.io/advisor/
https://snyk.io/blog/typosquatting-attacks/
https://snyk.io/product/open-source-security-management/
https://snyk.io/lp/python-snyk-code-checker/



