
01

02

03
06

05

04 07

08

09

10

10 Best Practices to Containerize Java Applications with Docker

Author

Brian Vermeer

@BrianVerm

Don’t run Java apps as root

Docker defaults to running the process in the
container as the root user, which is a precarious
security practice. Use a low privileged user and
proper filesystem permissions:

�

� Create a new user�
� Give the user only necessary permissions�
� Call USER youruser.

Gracefully tear down Java applications

Avoid an abrupt termination of a running Java application
that halts live
connections; either use an application
server or create a shutdown hook. 
Try using a process
signal event handler:

Runtime.getRuntime().addShutdownHook 
(yourShutdownThread);

Keep unnecessary files out of your Java
container images using .dockerignore

Use .dockerignore to ensure�

� no debug log files appear in your container�
� no secrets are accidentally leaking�
� a small Docker base image without redundant and

unnecessary files.

Make sure Java is container-aware

Old JVM versions don’t respect Docker memory and CPU
settings. Make
sure the JVM is container-aware�

� Use Java 10�
� Use Java 8 update 191+

Be careful with automatic Docker container
generation tools

Tools like Spring Boot Docker image creation and JIB
are great tools 
to automatically build Docker images.
However, you are not aware of all 
security concerns. So,
be careful when using these!

When using these tools, properly investigate all aspects of Java container security
or create a specific Dockerfile implementing all best practices.

Use explicit and deterministic
Docker base image tags
� Avoid

� Avoid

� Avoid

Instead of generic image aliases, use SHA256
hashes or specific image version tags for
deterministic builds.

For example�

�

FROM openjd�

FROM maven:openjd�

FROM maven:3-jdk11

FROM maven:3.6.3-jdk-11-
slim@sha256:68ce1cd457891f

Find and fix security
vulnerabilities in your Java
Docker image

Docker base images may include security
vulnerabilities in the software toolchain they
bundle, including the Java Runtime Environment
itself.

Scan and fix security vulnerabilities with the free

Snyk Container tool which also provides base

image recommendations�

� npm install -g sny�
� snyk aut�
� snyk container test myimage 
--file=Dockerfile

Properly handle events to safely
terminate a Java application

Docker creates processes—such as PID 1—and
they must inherently handle process signals to
function properly. This is why you should avoid
any of these variations:

Instead, use a lightweight init system, such as
dumb-init, to properly initialize the Java process
with signals support:

� CMD “java” “-jar” “application.jar�

� CMD “start-app.sh”

Only install what you need for
prod in the Java container image

You do not need a JDK, the Java code, and a build
tool like Maven or Gradle in your production
image. Instead, use the product of your Java build�

� Copy the Jar or War�
� Use a Java Runtime Environment (JRE).

� CMD “dumb-init” “java” “-jar” 
“application.jar”

Use multi-stage builds to further
reduce production image size

Separate your building image from your
production image.

�

� Build your artifacts in the build stage with all
possible tools and secrets you need�

� Copy the resulting artifact(s) to the most
minimal production image.

Last edit: Aug. 24, 2022

https://engineeringblog.yelp.com/2016/01/dumb-init-an-init-for-docker.html

