
Cheat Sheet: 10 React Security Best Practices

1. Default XSS Protection with Data Binding

Use default data binding with curly braces {} and React will
automatically escape values to protect against XSS attacks.
Note that this protection only occurs when rendering textContent and
not when rendering HTML attributes.

Use JSX data binding syntax {} to place data in your elements.
Ex. <div>{data}</div>.

Avoid dynamic attribute values without custom validation.
Don’t use <form action={data}>...

2. Dangerous URLs

URLs can contain dynamic script content via javascript: protocol urls.
Validate URLs before use.

Use validation to assure your links are http or https to avoid
javascript: URL based script injection. Achieve URL validation
using a native URL parsing function then match the parsed
protocol property to an allow list.

3. Rendering HTML

It is possible to insert HTML directly into rendered DOM nodes using
dangerouslySetInnerHTML. Any content inserted this way must be
sanitized beforehand.

Use a sanitization library like DOMPurify on any values before
placing them into the dangerouslySetInnerHTML prop.

import purify from "dompurify";

<div dangerouslySetInnerHTML={{__html:purify.sanitize(data)
}} />

4. Direct DOM Access

Accessing the DOM to inject content into DOM nodes directly should be
avoided. Use dangerouslySetInnerHTML if you must inject HTML and
sanitize it before injecting it using DOMPurify.

Avoid using refs and findDomNode() to access rendered DOM
elements to directly inject content via innerHTML and similar
properties and methods.

5. Server-side Rendering

Data binding will provide automatic content escaping when using
server-side rendering functions like ReactDOMServer.renderTo-
String() and ReactDOMServer.renderToStaticMarkup().

Avoid concatenating strings onto the output of renderTo
String() and renderToStaticMarkup() before sending the
strings to the client for hydration or rendering.

6. Known Vulnerabilities in Dependencies

Some versions of third-party components might contain security
issues. Check your dependencies and update when better versions
become available.

Use a tool like the free 3nyk cli to check for
vulnerabilities.

Automatically fix vulnerabilities with 3nyk by integrating
with your source code management system to receive
automated fixes.

$ npx snyk test

7. JSON State

It is common to send JSON data along with server-side rendered React
pages. Always escape < characters with a benign value to avoid
injection attacks.

Avoid unescaped HTML significant values in JSON state
objects.

<script>
// WARNING: See the following for security

issues around embedding JSON in HTML:
// https://redux.js.org/recipes/server-ren-

dering/#security-considerations
window.__PRELOADED_STATE__ = ${JSON.stringi-

fy(preloadedState).replace(
/</g,
'\\u003c')}

</script>

8. Vulnerable Versions of React

The React library has had a few high severity vulnerabilities in the past,
so it is a good idea to stay up-to-date with the latest version.

Avoid vulnerable versions of the react and react-dom by
verifying that you are on the latest version using npm outdated
to see the latest versions.

Use 3nyk to automatically update to new versions when
vulnerabilities exist in the versions you are using.

9. Linters

Install Linters configurations and plugins that will automatically detect
security issues in your code and offer remediation advice.

Use the ESLint React security config to detect security issues in
our code base.

Configure a pre-commit hook that fails when security related
linter issues are detected using a library like husky.

10. Dangerous Library Code

Library code is often used to perform dangerous operations like directly
inserting HTML into the DOM. Review library code manually or with
linters to detect unsafe usage of React’s security mechanisms.

Avoid libraries that do use dangerouslySetInnerHTML,
innerHTML, unvalidated URLs or other unsafe patterns.

Use security linters on your node_modules folder to detect
unsafe patterns in your library code.

Ron Perris
Developer Advocate at Snyk

Liran Tal
Node.js Security WG & Developer Advocate
at Snyk

