
1. Developer-focused
If developers aren’t using an SCA tool because it slows them
down or hampers development, it will simply not be adopted,
and hence won't deliver the promised security benefits.
A developer-friendly SCA must:

• Be intuitive and easy to set up and use.

 Integrate with existing development workflows and
 tools such as Git and IDEs in a frictionless manner.

• Be automated and actionable - not only surface issues
 but also guide developers on the path to remediation
 with automation and actionable fix advice.

2. Ecosystem support & integrations
An SCA tool must be able to cover the core programming
languages and frameworks used to build your applications.
Likewise, it should provide integrations across the SDLC. Be
sure that the tool provides both an easy integration and one
that actually provides results as expected.

 Tip! Focus on tools that provide deep support for
 the core languages used in your development.

3. Dependency analysis
80% of vulnerabilities in open source packages are identified
in transitive dependencies! This means that the vast majority
of vulnerabilities in your code base are introduced by
dependencies you had no idea you were using in the first
place. An SCA tool must be able to accurately interpret all
the dependencies in an application to provide practitioners
with full visibility.

4. Accurate & actionable
 vulnerability detection
The ability of an SCA tool to accurately identify whether an
open source package contains vulnerabilities or not depends
on the security data it relies on. Be sure the vulnerability data
the SCA tool relies on is first and foremost accurate but also
comprehensive, timely, and actionable.

5. Prioritization
SCA tools will often identify hundreds if not thousands of
issues that quickly pile up into backlogs that can easily
overwhelm teams. Select an SCA tool that helps you
prioritize where best to invest resources for the best impact.
Verify the tool can:

• Go beyond CVSS scoring for assessing risk.

 Provide deep application-level context on
 vulnerabilities. Is a vulnerability reachable?
 Is it exploitable?

• Automate prioritization across projects and teams.

6. Remediation
Dive deeper into the remediation advice the SCA tool
provides around a vulnerability and the workflows it
supports to drive actionability. Is there enough information
available for understanding where and how to apply a fix?
Are automated workflows available?

7. Governance & control
Does the SCA tool provide you with the control you need to
control the use of open source in your applications? At the
very least, ensure the SCA tool provides policies for defining
and automatically enforcing the security and compliance
guidelines accepted by your organization.

8. Reporting
Keeping track of the various open source packages being
used as well the licences they include is important for various
reasons and different business stakeholders. Verify an SCA tool
provides you with oversight to track your posture over time and
enables you to generate, and share, a BoM report on your open
source inventory.

9. Automation & extensibility
The larger you grow, the more challenging it is to perform all
the manual operations involved in SCA processes. The ability
to automate tasks such as adding new projects and users, or
scanning new builds, drives efficiency and also helps reduce
friction with existing development workflows. Verify the
SCA tool provides you with a robust API that enables
the automation, customization and integration of SCA
processes into your existing workflows and systems.

10. Cloud native applications
Remember, applications today are assembled from containers
and other components, extending the original definition of SCA
and defining a new set of capabilities needed. Check if the SCA
tool can identify security vulnerabilities in container images
and infrastructure as code, as well as help drive remediation.

Cheat Sheet: 10 key requirements for choosing
a Software Composition Analysis (SCA) tool

See Snyk in Action

