5 Tips to Supercharge App Security from Code to Cloud snyk ‘ () citGuardian

Code/IDE ci/cbp

Code development Continuous integration/continuous deployment
+ Explanation: This step involves writing and developing code + Explanation: Automate the building, testing, and deployment of code changes.
* Recommended tooling: * Recommended tooling:
+ Snyk IDE: Helps with real-time vulnerability scanning of code, OS libraries, containers and cloud + SnykCI/CD integration to scan for vulnerabilities during the build process.
infrastructure (https:/snyk.io/platform/ide-plugins/). + GitGuardian's ggshield gating the Cl to ensures 0 secrets exposed in production.
+ Snyk CLI: Helps find and fix vulnerabilities locally (https://docs.snyk.io/snyk-cli). + GitGuardian Honeytoken in the Cl service: Be alerted if your build system is
* Pre-commit hooks: compromised (| : .gitquardian.com/how-to-add-gitguardian-honeytokens-in
- GitGuardian CLI: run ggshield to detect hardcoded secrets and policy breaks. )-
« Scan for vulnerabilities and secrets in container images:
Sample commands * Snyk Open Source for hardcoded secrets, Snyk Code and Snyk Container for most
+ Install Snyk CLI: 'npm install snyk -g° secure images/packages
- Install GitGuardian ggshield: "brew install gitguardian/tap/ggshield" + “ggshield secret scan docker"
First time use: "ggshield auth login"
* Run Snyk CLI: “snyk test’, “snyk code test’, 'snyk container test’, “snyk iac test’
* Run GitGuardian ggshield: “ggshield secret scan repo .°

Deploy
Secrets management

« Encrypt your secrets bising SOPS. Cloud deployment
+ Use a secrets manager (or a vault). + Explanation: Deploy the code to a cloud environment via infrastructure as code

— Honeytoken in source code (How to Secure Your SCM Repositories with GitGuardian Honeytokens) — Secrets in Terraform (https:/blog.qgitquardian.com/how-to-handle-secrets-in-terraform/)
— Secrets in Kubernetes (https:/blog.gitquardian.com/how-to-handle-secrets-in{

kubernetes/)

Merge/Git

Code Integration Cloud
+ Explanation: Integrate code changes with the main branch of the repository
+ Recommended Tooling: Cloud security monitoring
+ GitGuardian Check Run: Scans and ensures secrets are not inadvertently merged into the main or « Explanation: Monitor cloud environments for security risks, misconfigurations, and
feature branch during integration exposed secrets.
+ Recommended tooling:
Automated Code Review + Snyk laC unifies security visibility and governance from IDE to running cloud
+ Explanation. Review the code for quality, security, and adherence to coding standards environments using a single policy engine and rule set.
+ Recommended Tooling: * Logging, threat detection
+ Snyk Open Source: Helps find and fix security vulnerabilities and license issues in OS dependencies « Secrets best practices: IAM, rotation, short-lived secrets
+ Snyk Code: real-time SAST
+ Snyk Automatic Pull Requests for Snyk Open Source — Cloud Security Essentials (https:/snyk.io/series/cloud-security/)
+ GitGuardian: Detects secrets and sensitive information in code during the review process

Sign up for GitGuardian



https://snyk.io/platform/ide-plugins/
https://docs.snyk.io/snyk-cli
https://blog.gitguardian.com/a-comprehensive-guide-to-sops/
https://blog.gitguardian.com/how-to-secure-your-scm-repositories-with-gitguardian-honeytokens/
https://blog.gitguardian.com/how-to-add-gitguardian-honeytokens-in-ci-cd-pipelines
https://blog.gitguardian.com/how-to-add-gitguardian-honeytokens-in-ci-cd-pipelines
https://blog.gitguardian.com/how-to-handle-secrets-in-terraform/
https://blog.gitguardian.com/how-to-handle-secrets-in-kubernetes/
https://blog.gitguardian.com/how-to-handle-secrets-in-kubernetes/
https://snyk.io/series/cloud-security/
https://snyk.co/ufTSv
https://dashboard.gitguardian.com/auth/signup?utm_source=website&utm_medium=product&utm_campaign=gim_desc_page

