
01Code/IDE
 

Code developmen�
� Explanation: This step involves writing and developing cod�
� Recommended tooling�

� Snyk IDE: Helps with real-time vulnerability scanning of code, OS libraries, containers and cloud 
infrastructure (https://snyk.io/platform/ide-plugins/)�

� Snyk CLI: Helps find and fix vulnerabilities locally (https://docs.snyk.io/snyk-cli)�
� Pre-commit hooks�

� GitGuardian CLI: run ggshield to detect hardcoded secrets and policy breaks.



Sample command�
� Install Snyk CLI: `npm install snyk -g�
� Install GitGuardian ggshield: `brew install gitguardian/tap/ggshield`


First time use: `ggshield auth login�
� Run Snyk CLI: `snyk test`, `snyk code test`, `snyk container test`, `snyk iac test�
� Run GitGuardian ggshield: `ggshield secret scan repo .`



Secrets managemen�
� Encrypt your secrets using SOPS�
� Use a secrets manager (or a vault).



→ Honeytoken in source code (How to Secure Your SCM Repositories with GitGuardian Honeytokens)

02Merge/Git
 

Code Integratio�
� Explanation: Integrate code changes with the main branch of the repositor�
� Recommended Tooling:�

� GitGuardian Check Run: Scans and ensures secrets are not inadvertently merged into the main or 
feature branch during integration



Automated Code Revie�
� Explanation. Review the code for quality, security, and adherence to coding standard�
� Recommended Tooling�

� Snyk Open Source: Helps find and fix security vulnerabilities and license issues in OS dependencie�
� Snyk Code: real-time SAS�
� Snyk Automatic Pull Requests for Snyk Open Sourc�
� GitGuardian: Detects secrets and sensitive information in code during the review process

03 CI/CD
 

Continuous integration/continuous deploymen�
� Explanation: Automate the building, testing, and deployment of code changes�
� Recommended tooling�

� SnykCI/CD integration to scan for vulnerabilities during the build process�
� GitGuardian’s ggshield gating the CI to ensures 0 secrets exposed in production.�
� GitGuardian Honeytoken in the CI service: Be alerted if your build system is 

compromised  (https://blog.gitguardian.com/how-to-add-gitguardian-honeytokens-in-
ci-cd-pipelines)�

� Scan for vulnerabilities and secrets in container images�
� Snyk Open Source for hardcoded secrets, Snyk Code and Snyk Container for most 

secure images/package�
� `ggshield secret scan docker`

04Deploy
 

Cloud deploymen�
� Explanation: Deploy the code to a cloud environment via infrastructure as code



→ Secrets in Terraform (https://blog.gitguardian.com/how-to-handle-secrets-in-terraform/)

→ Secrets in Kubernetes (https://blog.gitguardian.com/how-to-handle-secrets-in-
kubernetes/)

05Cloud
 

Cloud security monitorin�
� Explanation: Monitor cloud environments for security risks, misconfigurations, and 

exposed secrets�
� Recommended tooling�

� Snyk IaC unifies security visibility and governance from IDE to running cloud 
environments using a single policy engine and rule set�

� Logging, threat detectio�
� Secrets best practices: IAM, rotation, short-lived secrets



→ Cloud Security Essentials (https://snyk.io/series/cloud-security/) 

5 Tips to Supercharge App Security from Code to Cloud

Sign up to SnykSign up for GitGuardian

https://snyk.io/platform/ide-plugins/
https://docs.snyk.io/snyk-cli
https://blog.gitguardian.com/a-comprehensive-guide-to-sops/
https://blog.gitguardian.com/how-to-secure-your-scm-repositories-with-gitguardian-honeytokens/
https://blog.gitguardian.com/how-to-add-gitguardian-honeytokens-in-ci-cd-pipelines
https://blog.gitguardian.com/how-to-add-gitguardian-honeytokens-in-ci-cd-pipelines
https://blog.gitguardian.com/how-to-handle-secrets-in-terraform/
https://blog.gitguardian.com/how-to-handle-secrets-in-kubernetes/
https://blog.gitguardian.com/how-to-handle-secrets-in-kubernetes/
https://snyk.io/series/cloud-security/
https://snyk.co/ufTSv
https://dashboard.gitguardian.com/auth/signup?utm_source=website&utm_medium=product&utm_campaign=gim_desc_page

