
10 best practices for securely developing with AI
AI-assisted applications AI-assisted development AI models

Mitigate AI-generated code security risks for free with Snyk.


Learn more >

Prompt injection

Prompt injection (similar to SQL injection) is the manipulation of an 
LLM by providing inputs designed to trick the LLM into performing 
tasks it shouldn’t be allowed to do

 Educate your teams on prompt injection, and consider gamifying 
the learning with a tool like Gandalf from Lakera

 Use the principles of least privilege between your LLM and your 
data/functionality

 Limit the sensitive data your LLM has access to

 Treat your LLM like user data and sanitize actions and responses

 Use function calling where possible to avoid unstructured data 
which might change the context for the LLM/desired behavio

 Be familiar with indirect prompt injection as well, in which data 
sources are poisone

 Avoid user supplied prompts directly, unless necessary, is the 
best form of defense.

01
Keep a human in the loop

For developers: Use caution around AI-generated code: validate 
during code review and integrate code security tooling into the IDE 
(like Snyk) to test first-party code and third-party/OSS libraries.


For apps: This is particularly important when using autonomous 
agents available through Langchain etc., which give AI direct exec 
access

 Use caution around allowing your LLM to execute functions/
system calls

 Use caution around allowing your LLM to manipulate/change 
important/sensitive data.

04

Don’t provide IP/private info to public GPT 
engines

 Don’t share anything you wouldn’t want to be publicly known. 
Assume anything you put into a public AI engine will be used for 
future training. 

 Investigate enterprise-ready versions of your AI tooling

 Educate your teams on acceptable policy when using GPT tools.

06

Restrict data access for your LLM

 Treat your LLM like your user data, and be careful of direct access 
between your LLM and data

 Adhere to the rules of least privilege

 Don’t give your LLM more data than it needs to do its job.


Add input and output guard checks around your LLM interactions to 
sanitize input from users and output from LLM.

02

Secure your vulnerabilities

 Treat generated code, like inexperienced developer code: validate, 
test, and correct in code reviews primarily in the IDE

 Use tools like Snyk Code to automate the testing of your AI-
generated code

 Test and fix first-party code in the IDE (where code is generated)

 Consider always manually verifying open source libraries 
recommended by AI. And use tools like Snyk Open Source and 
Snyk Advisor to test AI-suggested open source libraries.

05

Beware of hallucinations and misleading 
data

 LLMs will hallucinate and confidently tell you they are right. 
You always need to validate their output

 Treat your LLM like your user data and validate and sanitize 
its output

 Don’t allow your LLM to be able to execute dangerous 
functions without validation

 Consider human interaction as needed to avoid data affecting 
critical systems/sensitive data

09

Use good training data

 Fine-tune your LLM model (expensive, slow

 Use different in-context learning techniques (fast, fairly 
accurate, easy, cheap

 Validate/verify data sources

 Sandbox data sources so external data can’t be added easily

 Perform attestation/signing of data.

08

Get to know the OWASP Top 10 for LLMs

OWASP has produced a top 10 list for LLMs based on the views of 
nearly 500 experts, including Snyk. Check out our OWASP Top 10 
Considerations for Addressing LLM Risks cheat sheet.

03

Use hybrid AI models where you can

 Use the right tool for the job. Consider all forms of AI, including 
symbolic AI, as is used in Snyk Code, to represent knowledge 
using symbols, rules, and logic to perform tasks

 Symbolic AI's main use case is to build intelligence into very 
small domains using limited data sets. This is great when data 
has to follow specific formatting and rules

 LLMs are best at creating broad answers with general purpose 
problems where absolute accuracy is less important. Symbolic 
AI is great at fine-tuning and validating generic answers.

07

Keep track of your AI supply chain

 List the data source dependencies you’re using for the training/
tuning of your LLM

 Use attestation/signing techniques to validate the data you use

 If AI recommends usage of tools, or SDKS, responsibly evaluate 
and validate everything manually. Attackers will spoof SDKs and 
tools that AIs are likely to recommend.

10

https://snyk.io/lp/secure-ai-generated-code/
https://learn.snyk.io/lesson/sql-injection/
https://gandalf.lakera.ai/
https://lakera.ai/
https://platform.openai.com/docs/guides/gpt/function-calling
https://snyk.io/platform/ide-plugins/
https://openai.com/enterprise
https://snyk.io/product/snyk-code/
https://snyk.io/lp/secure-ai-generated-code/
https://snyk.io/lp/secure-ai-generated-code/
https://snyk.io/product/open-source-security-management/
https://snyk.io/advisor/
https://snyk.io/blog/addressing-risks-in-the-owasp-top-10-for-llms/
https://snyk.io/blog/addressing-risks-in-the-owasp-top-10-for-llms/
https://snyk.io/product/snyk-code/
https://snyk.io/lp/secure-ai-generated-code/?utm_campaign=secure-ai-best-practices&utm_medium=content-secure-ai-best-practices&utm_source=secure-ai-best-practices

