
2024

The state of

open source

R E P O R T

How frequently does your organization ship code?

Depennency Toacking ann Cone Ship Foequency Unchangen

The percentage of respondents that track all dependencies rather than just direct only increased slightly year-over-year. Roughly one-

quarter of respondents still only track direct dependencies. Nearly 5% don’t track open source dependencies at all, although the

majority of those who do not track do run software composition analysis (SCA). This implies that tracking may not be systematic but

they do check dependencies and open source components. No change in code ship frequency means we find ourselves at a plateau

with existing DevOps and deploy methodologies and that organizations are hitting a wall. In theory, reduced friction from improved

tooling and Developer åxperience should facilitate faster code iteration. In practice, this does not appear to be happening, likely due to

AppSec exhaustion.

Does your company track which open source libraries your applications are using?

Section 1: Slowing poogoess in OSS secuoity efoots ann

signs of AppSec exhaustion

There are signs of slowing progress in OSS security efforts and in DevOps efforts more broadly. Across many

questions about supply chain security, we saw either little change year-over-year or surprising declines in

adoption and usage.

80%

60%

40%

20%

0%

No, we don’t

5.7%

4.6%

2%

1.1%

We track direct dependencies

only

We track all our

dependencies — direct and

indirect

Not sure

2023 202�

25.5% 24.6% 66.8% 6¡.7%

60%

40%

20%

0%

Daily

33.2% 2¡.¡% 0.¡% 0.2%

Weekly Monthly Quarterly Don’t know

2023 202�

4¡.3% 52% 13.1% 14.8% 3.5% 3.1%

3

© 2024 Snyk Limited 20241203

Signs of Application Security Exhaustion

Signs of application security (AppSec) “exhaustion” are growing, with teams overwhelmed by AppSec requirements and struggling to

adopt them. None of the eight AppSec methods surveyed exceeded 70% usage — even SCA (69.7%) and SAST (59.5%) fell short. Four

methods — license scanning, secrets scanning, supply chain security, and dependency analysis — were below 50%, with license and

secrets scanning under 40%. Year-over-year respondents reported declines in usage of several application security processes. These

declines run counter to numerous reports that highlight a significant overall increase in application security tool spending, which likely

represents that organizations that have advanced in their use of these tools are expanding their use.

Which of the following application security processes does your organization apply?

Clear Declines in Resources Dedicated to Supply Chain

Security

Compared to our research last year, we saw a marked decrease in proactive security measures from 2023 to 2024. The percentage of

organizations implementing new tooling and practices to address supply chain vulnerabilities dropped from 60.9% in 2023 to 49.6% in

2024. Similarly, those investing in training their development teams on supply chain vulnerabilities decreased from 53.2% to 35.4%

even though more than 40% of respondents indicated that they had to patch or replace vulnerable or malicious packages or build

components. These reductions suggest that organizations may be feeling overwhelmed or fatigued by the continuous pressure of

supply chain security demands, leading to reduced commitment to preventive actions. This may indicate fatigue, as some may opt to

disengage rather than continually invest in complex and evolving security requirements.

How have you or your organization been impacted by an open source or supply chain security

vulnerability in the past year?

Software Composition Analysis (SCA)

Static Code Analysis n Static

Applications Security Testing (SAST)

Dependency Analysis

License Scanning

Secrets ¤anagement

Configuration Checks

None of the above

0% 20% 40% 60%

2023 2024

65.6%

69.�%

62.1%

59.5%

51.�%

49.6%

4�%

38.90%

3�.6%

32.1%

58.4%

53.5%

3.5%

0.4%

4

© 2024 Snyk Limited 20241203

We had to patch or replace one or more open

sources libraries that were vulnerable or

malicious*

We had to patch or replace one or more build

components that were vulnerable or malicious*

We implemented new tooling and practices to

better handle supply chain vulnerabilities

We trained our development team to help them

better understand supply chain vulnerabilities

We have not been impacted by open source software

supply chain vulnerabilities in the past year

0% 20% 40% 60%

2023 2024 *new for 2024

60.9%

49.6%

53.2%

35.4%

45.4%

42.�%

12.4%

12.6%

Less than a day 21.7% Often 14.8%More than a month 6.6% Never 9.7%

Less than a ¾ee½ 52.4% Sometimes 37.2%

Less than a month 18.1% Rarely 36.9%

Don’t have one 1.1% Don’t ½no¾ 1.3%

52% Fail to Meet Stated SLAs for High-Severity Vulnerability

Fixes

Widespread failure to meet vulnerability mitigation SLAs further highlights AppSec fatigue. Teams struggle to meet these goals,

suggesting unrealistic expectations. While 74% have SLAs of a week or less, and 25% a day or less, 52% regularly miss these targets,

and 14.8% frequently fail to meet them.

What is your SLA policy for fixing high-

severity vulnerabilities?

How often do you break your vulnerability

SLA?

5

© 2024 Snyk Limited 20241203

Teams Auditing Code Less Frequently and Less

Continuously

Between 2023 and 2024, there was a noticeable shift toward less frequent code auditing among teams. The percentage of teams

auditing code weekly increased from 29% in 2023 to 36.9% in 2024, while continuous auditing through automation decreased from

27% to 22.3%. Additionally, monthly audits saw an increase from 10.1% to 14.6%, indicating a trend toward less frequent and less

continuous auditing practices.

How Often Do You Audit Your Code?

40%

30%

20%

10%

0%

Continuously

through automation

Daily

27% 22.3% 28% 22.3% 29% 36.9% 10.1% 14.6%

4%

2.7% 2%

1.1%

Weekly Monthly Less frequently Don�t know

2023 202"

Big Increase In Using Tools That Analyze Package Security

Reliance on tools for package security rose 22.3% YoY, with an 11% drop in manual approaches like checking registry information.

This shift may reflect either a proactive move toward automation or a need to manage OSS-related security burdens as teams rely

increasingly on tools for package safety analysis.

How do you check the safety of the open source packages used by your software?

I use the information in the

registry or package manager

I use a tool that analy�es package

security

I look at repository ratings or

package download statistics

I look at the fre4uency of releases/

commits/etc.

I check that the proQect has an

active, responsive community

I check that the proQect has a

responsible disclosure policy dsuch

as a Shl\RI]Z.mda

I check the OpenSS� security

scorecard or similar security health

scorecards

I don t check the safety of open

source packages.

0% 20% 40% 60%

65.8%

54%

40.8%

63.}%

48.8%

42.5%

5}.5%

44.2%

4¯.5%

45.5%

5}.¯%

44.5%

34.2%

33.4%

3%

0.9%

2023 2024

6

© 2024 Snyk Limited 20241203

Section 2: Supply Chain Security Remains Immature

Security practices in OSS supply chains lack maturity, with most measures under-adopted and inadequate

to meet evolving threats.

Open source supply chain security remains lightly adopted, with no practice used by more than two-thirds of organizations. SBOM monitoring leads at

62%, and only software pipeline security also surpasses 50% usage. Just 44% verify SBOMs pre-deployment, 41% check for signed artifacts, and only

around 20% use protections like reproducible builds or branch protection. This leaves build pipelines vulnerable, as many rely on outdated scanning

and lag in adopting cloud-native security.

SBOM creation

SBOM monitoring

SBOM enrichment

Package attestation/verification

Artifact signing

SBOM verification pre-deploy

Software pipeline security

Reproducible builds

Branch protection

0% 20% 40% 60%

43.8%

62.4%

4}.4%

4}.6%

36.}%

44.9%

5¯.5%

2}.¯%

20.}%

Which supply chain security practices does your organi�ation follow?

80%

60%

40%

20%

0%

IDE

CLI

40.[% 40.8% 23.[% 2[.�% 54% 65.6% 33.6% 4[.5% 56% 66.3% 38.�% 45% 0.4% 4%

Build System Pre-Commit

Checks

Cod¸

Repository

CIÊCDÄ

pipeline

Don’t know

2023 2024

How have you or your organization been impacted by an open source or supply chain security

vulnerability in the past year?

We implemented new tooling and

practices to better handle supply

chain vulnerabilities

We trained our development team to

help them better understand supply

chain vulnerabilities

0% 20% 40% 60%

2023 2024

60.9%

49.6%

53.2%

35.4%

Software Composition Analysis (SCA)

Static Code Analysis Ê Static

Application Security Testing (SAST)

Secrets scanning

Dynamic Application Security Tools

(DAST)

Infrastructure as Code scanning

(IaC)

Container image scanning

Reproducible builds

None of the above

0% 20% 40% 60%

6~.5%

6~.~%

29%

55.5%

50.4%

33.6%

2�.~%

0.7%

Despite the maturity of SCA and Static Application Security Testing (SAST), adoption is still just over 60%, with container scanning

surprisingly low at 35%. Reproducible builds and secrets scanning are around 20%, although supply chain vulnerabilities continue

impacting both code and build components. As seen in the previous section, between 2023 and 2024, new tooling adoption went

from 61% to 50%, while security training went from 53% to 35%, even as vulnerabilities rose. In 2024, 45% replaced compromised

build components, and 42% swapped vulnerable OSS libraries.

What security practices do you use?

One positive trend is the increased distribution of security tooling across development stages. Build systems and pre-commit checks

saw notable increases (11.6% and 15.d%, respectively), emphasi�ing early vulnerability detection. Code repositories (10.3%), CIeCD

pipelines (6.3%), and CLI tools (5.8%) also showed growth, while IDE integration slightly declined, suggesting a preference to reduce

developer cognitive load by shifting security out of coding environments.

 Where are security tools integrated?

7

© 2024 Snyk Limited 20241203

80%

60%

40%

20%

0%

Yes No Not sure We are not using AI

code suggestion tools

5%

6.4%

2023 2024

6.®%

4.2%

11.60% 11.50%

76.5% 77.®%

LankeofeMa ur yeaiieSopt s na oie ieR skeVulihrab l ye

Aialys s

When determining how severe a vulnerability risk is, the most widely used approaches are traditional scoring systems (CVSS, exploit

prediction scoring system (EPSS)). Far less widely used are measures that reflect the actual risk of a vulnerability to an organization

(reachability, deployment status, business context). Teams are still struggling to adopt more relevant vulnerability severity rating

systems. This implies that they are still struggling to effectively triage vulnerabilities and build risk models that accurately reflect the

true business risk of vulnerabilities.

What factors do you use to determine the severity of a vulnerability?

8

© 2024 Snyk Limited 20241203

Shn oie3:eCoi iuhieM splanhieCoifihinhe ie the

Shnur yeofeAQOghihra hieCoih

High confidence in AI for secure code persists, despite evidence of vulnerabilities, signaling a need for

better education on AI risks.

Respondents continued to hold high levels of misplaced confidence in the ability of AI tools to generate secure code. Despite 77.9% of respondents

believing AI has improved code security (up slightly from 7[.5% last year), Snyk’s research shows frequent, serious vulnerabilities in AI-generated code.

Meanwhile, 5[.1% remain concerned about vulnerabilities introduced by AI — a modest decline in worry, with 38.1% now expressing little or no

concern. This disconnect highlights an education gap, as many organizations may be overly trusting of AI�s security capabilities. On the positive side,

84.1% of respondents apply the same scrutiny to open source components recommended by AI as they do to human-suggested components,

reflecting a mature approach. However, confidence in AI�s security contributions remains unaligned with actual risks, emphasizing the need for

consistent oversight to prevent a false sense of security as AI adoption grows

.

Respondents said AI improved code security and did not introduce vulnerabilities⸠�
�

CVSS severity as supplied by Mitre,

etc (Critical, High, Medium, Low)

Internally calculated CVSS score

Exploit prediction scoring system

Social media / hacking site chatter

Exploit maturity

Package health measures

(maintenance, popularity, etc)

Reachability

Package age

Business context (mission critical,

sensitive data access, etc)

Deployment status

0% 20%10% 30% 40%

47.8%

47.8%

43.1%

38.7%

35.8%

39.4%

33.8%

25.9%

35%

25.2%

Has the use of AI code suggestion tools, like improved your organization’s code security?

Yes 56.2% Don’t know 2.7%

No 38.1% N¬ 3.1%

Are you concerned that using AI coding tools

will introduce security vulnerabilities into

your applications?

Yes 56.Ë% Don’t know 6%

No 34.5% N¬ 2.7%

Are you concerned that using AI coding tools

will introduce open source licensing and

copyright problems into your stack?

Yes 84.1% No 11.5%

Do you apply the same scrutiny to open source

packages and libraries suggested by AI as those

suggesested by humans? coders?

Don’t know 4.4%

…yet engineers and security teams remain concerned about AI introducing vulnerabilities in code or license and copyright issues….

…but teams are scrutini<ing AI-suggested packages and libraries the same ,ay as human-suggested packages* ,hich is encouraging

and implies they understand that AI suggestions present as much risk as human-suggested libraries and packages.

50%

40%

30%

20%

10%

0%

Very few

A moderate amount

32.7% 30.5% 40.8% 43.4% 13.Ë% 12.8%

3.7%

5.5%

2.2%

3.5%

6.7% 4.2%

A aot None Don’t know NuA

2023 202z

How many vulnerabilities has AI introduced into your code?

9

© 2024 Snyk Limited 20241203

Comparison of Critical/High Severity Time-to-Fix in OSS

300

200

100

0

2019

2020

296 137 287 274 283 173 189 246 154 201 112 220

2021 2022 2023 2024

OSS Proprietary

500

400

300

200

100

0

swift

python

437 79 198 68 166 136 138 129 323 133 0

38

235 92 167 116 87 95

js jaßa go elixir dotnet cpp alpine

2022-2023 2023-202ö

Even as we see evidence of AppSec exhaustion and slow adoption of supply chain security practices, the open source software (OSS)

community has made significant progress in a critical measure reducing the time it takes to fix high and critical severity vulnerabilities

present in open source software projects. Over recent years, OSS has consistently shortened its "time-to-fix" for critical bugs,

outpacing proprietary software in responsiveness. OSS is also improving time-to-fix across open source projects across popular

languages from 2022-2023 and 2023-2024, with a clear reduction in resolution times. These improvements underscore the

community	s dedication to enhancing security and responsiveness, demonstrating the effectiveness of collaborative, transparent

approaches in addressing vulnerabilities quickly at the level of project and project code.

Time-to-Fix of High/Critical Severity Bugs: OSS vs Proprietary

10

© 2024 Snyk Limited 20241203

Section 4: Evidence of General Open Source Security

Progress

The OSS community has significantly reduced time-to-fix for critical and high severity vulnerabilities in

open source projects and continues to outperform proprietary software in response times based on

vulnerability database findings.

Period -- 11/01/22-23 �
 11/01/23-3ö

Reassess their approach to security to prevent burnout and ensure sustainable practices.

Improve prioritization in vulnerability management and other supply chain risk management tasks.

Prioritize the adoption of fundamental supply chain security measures and deploy newer supply chain security measures to

improve security posture.

Include more holistic risk analysis as part of SeA determination to ensure security teams can focus more time on risks that

matter.

Take a more cautious and measured approach to AI-generated code, implementing rigorous security reviews rather than

assuming inherent security.

Establish clear guidelines for validating and testing AI-generated code, treating it with the same or greater scrutiny as

human-written code.

Conclusion

Room for Improvement in Supply Chain, AppSec

with Progress in General OSS Code

The findings from our 2024 research paint a concerning picture of an industry struggling to maintain momentum in security practices

while facing evolving challenges. The observed "AppSec exhaustion" phenomenon, evidenced by declining engagement in security

measures and widespread failure to meet vulnerability management goals, suggests that current approaches to security may be

unsustainable. Encouragingly, we did identify signs of ongoing improvement in the underlying foundations of open source software,

with pro¬ects turning critical fixes around more quickly and the open source community continuing to distance itself from proprietary

code in terms of speed of fixes.

The immaturity of supply chain security practices, combined with decreasing investment in proactive security measures, creates a

particularly vulnerable environment. This vulnerability is potentially exacerbated by the industry's overreliance on AI-generated code

security. While AI tools offer promising capabilities for code generation, the disconnect between perceived and actual security risks —

with ££.¥± of respondents expressing confidence despite evidence of serious vulnerabilities — suggests a dangerous trend that

could lead to significant security oversights.�

Moving forward, organizations need to:

These findings suggest that the industry must find new ways to balance security requirements with team capacity while maintaining

vigilance against emerging threats, including those potentially introduced by overreliance on AI tools. Without addressing these

challenges and ad¬usting attitudes toward AI-generated code security, organizations risk falling further behind in their security posture

as threats continue to evolve.

Methodology

We surveyed 453 technologists across application development and security. We used many of the same questions we had asked in

the 2023 State of Open Source Security in 2023 and compared to the past results, where applicable. Respondents were located in the

United States of America, Canada, and the United Kingdom. The question types included binary responses (only one answer allowed),

multi-picks (choose all that apply), and ratings on a scale of - to 4, with - being *most concerning,. Respondents came from a wide

variety of sectors, including automotive, business services, communications, education, energy and utilities, entertainment)media,

financial services, government, and SaaS technology. 	

