
Cheat sheet: 8 Azure Repos security best practices

1. Never store credentials as code/config
in Azure Repos.

• Block sensitive data being pushed to Azure Repos
 by adding git-secrets or a git pre-commit hook.

• Break the build using the same tools when necessary.

• Audit for slipped secrets with GitRob or truffleHog.

• Use Azure KeyVault to store your keys and secrets
 in a Vault.

2. Removing sensitive data

If sensitive data makes it to a repo after all:

• Invalidate tokens and passwords.

• Remove the info and clear the Git history (force
 push rewrite history).

• Assess impact of leaked private info.

3. Tightly control access

Failures in security are often the results of humans making
poor decisions. Mandate the following practices for your
contributors:

• Never let developers share Azure repos accounts/
 passwords.

• Properly secure any laptops/devices with access to
 your source code.

• Diligently revoke access from Azure repos users
 who are no longer working with you.

Manage team access to data. Give contributors only access
to what they need to do their work.

4. Add a SECURITY.md file

You should include a SECURITY.md file that highlights
security -related information for your project. This should
contain:

Disclosure policy
Define the procedure that describes what a reporter
needs to do in order to fully disclose a problem safely
when a security issue is found, including who to
contact and how. Consider HackerOne’s community
edition or simply a ‘security@’ email.

Security update policy
Define how you intend to update project users about
new security vulnerabilities as they are found.

Security-related configuration
Define the settings that your project users should
configure that impact the security posture of
deploying this project, such as HTTPS, authorization
and many others.

Known security gaps & future enhancements
These are security improvements you haven’t gotten
to yet. Inform your project users that those security
controls aren’t in place, and perhaps suggest they
contribute an implementation!

5. Use Personal Access Tokens (PATs)

Personal access tokens are alternate passwords that can be used
to authenticate one to Azure DevOps as well as other Microsoft
tools such as Visual Studio.

6. Provide granular permissions
and groups for users

Following the rule of least privilege, ensure that
contributors exist in the correct groups and therefore
have the necessary permissions to work. Try to restrict
administrative actions where possible.

Additionally, monitor changes in requirements as
contributors leave or step back from the project.

7. Add security testing to PRs

Use Azure Repos hooks to check that your PRs don’t
introduce new vulnerabilities with Snyk.

8. Rotate SSH keys and personal
access tokens

Azure Repos access can be done using SSH keys or
personal user tokens (in lieu of a password). But what
happens if those tokens are stolen and you didn’t know?

Be sure to refresh your keys and tokens periodically,
mitigating any damage caused by keys that leaked out.

Edward Thompson
Microsoft
ethomson@microsoft.com

Simon Maple
Snyk
simon@snyk.io

https://github.com/awslabs/git-secrets
https://githooks.com/
https://github.com/michenriksen/gitrob
https://github.com/dxa4481/truffleHog
https://help.github.com/en/articles/removing-sensitive-data-from-a-repository
https://help.github.com/en/articles/removing-sensitive-data-from-a-repository
https://www.hackerone.com/product/community
https://www.hackerone.com/product/community
https://snyk.io/blog/securing-azure-repos-with-snyk/
mailto:ethomson@microsoft.com
mailto:simon@snyk.io

