
10 best practices to containerize Node.js web applications with Docker

Authors

@liran_tal

@goldbergyoni

Use officially supported and deterministic
image tags

 Avoid

 Avoid

 Avoid

Avoid Alpine which isn't officially supported. Avoid other image tags
which have a high software footprint. Prefer a slimmer, up-to-date
and LTS version

FROM nod

FROM node:lt

FROM node:14-alpine

FROM node:16.17.0-bullseye-slim

01

Don’t run Node.js apps as root

Docker defaults to running the process in the container as theroot
user, which is a precarious security practice. Use a lowprivileged
user and proper filesystem permissions

USER nod

 COPY --chown=node:node . /usr/src/app

04

Gracefully tear down Node.js apps

Avoid an abrupt termination of a running Node.jsapplication
that halts live connections. Instead, use aprocess signal
event handler:

async function closeGracefully(signal) {
await fastify.close()

process.kill(process.pid, signal);

}

process.on('SIGINT', closeGracefully)

06

Install only production dependencies

Avoid pulling devDependencies and non-deterministicpackage
install like the ones below

 Avoid

 Avoid

 Avoid

Instead, ensure you are installing only productiondependencies
in a reproducible way

RUN npm instal

RUN yarn instal

RUN npm ci

RUN npm ci --only=production

02

Properly handle events to safely

terminate a Node.js application

Docker creates processes as PID 1, and they mustinherently
handle process signals to function properly.This is why you
should avoid any of these variations

Instead, use a lightweight init system, such as dumb-init,
to properly spawn the Node.js runtime process with
signals support

CMD “npm” “start

 CMD [“yarn”, “start”

 CMD “node” “server.js

 CMD “start-app.sh”

CMD [“dumb-init”, “node”, “server.js”]

05

Optimize Node.js apps for production

Some Node.js libraries and frameworks will only enableproduction-
related optimization if they detect that theNODE_ENV env var set
to production

 ENV NODE_ENV production

03

Find and fix security vulnerabilities

inyour Node.js Docker image

Docker base images may include security vulnerabilities
in the software toolchain they bundle, including theNode.js
runtime itself. Scan and fix security vulnerabilitieswith the
free Snyk Container tool which also providesbase
image recommendations

 npm install -g sny

 snyk aut

 snyk container test node:16.17.0-bullseye- 
 slim --file=Dockerfile

07

Mount secrets into the Docker image

Secrets are a tricky thing to manage. Avoid the following
security pitfalls

Instead, use the built-in secrets mounting. To mount a.npmrc file
for package install

 In the Dockerfile:

 Then build the image with:

passing secrets via build arguments in nonmulti-stage build

 putting secrets inside the Dockerfile

RUN
--mount=type=secret,id=npmrc,
target=/usr/src/app/.npmrc npm ci
--only=productio

docker build .
--build-arg NPM_TOKEN=1234 --secret
id=npmrc,src=.npmrc

10

Use multi-stage builds

Avoid having one big build stage when attempting toclean up
sensitive data from it or dangling dependencies.Instead, use
multi-stage Docker image builds and separateconcerns between
the build flow and the creation of aproduction base image.

08

Use .dockerignore

Use .dockerignore to ensure

 Iocal artifacts of node_modules/ aren’t copied intothe
container image

 sensitive files, such as .npmrc, .env or others,aren’t leaked
into the container image

 a small Docker base image without redundant and
unnecessary files.

09

