
10 best practices to containerize Node.js web applications with Docker

Authors

@liran_tal

@goldbergyoni

Use officially supported and deterministic
image tags

� Avoid

� Avoid

� Avoid

Avoid Alpine which isn't officially supported. Avoid other image tags
which have a high software footprint. Prefer a slimmer, up-to-date
and LTS version�

�

FROM nod�

FROM node:lt�

FROM node:14-alpine

FROM node:16.17.0-bullseye-slim

01

Don’t run Node.js apps as root

Docker defaults to running the process in the container as the
root
user, which is a precarious security practice. Use a low
privileged
user and proper filesystem permissions�

�

�

USER nod�

 COPY --chown=node:node . /usr/src/app

04

Gracefully tear down Node.js apps

Avoid an abrupt termination of a running Node.js
application
that halts live connections. Instead, use a
process signal
event handler:

async function closeGracefully(signal) {

await fastify.close()

process.kill(process.pid, signal);

}

process.on('SIGINT', closeGracefully)

06

Install only production dependencies

Avoid pulling devDependencies and non-deterministic
package
install like the ones below�

� Avoid

� Avoid

� Avoid

Instead, ensure you are installing only production
dependencies
in a reproducible way�

�

RUN npm instal�

RUN yarn instal�

RUN npm ci

RUN npm ci --only=production

02

Properly handle events to safely

terminate a Node.js application

Docker creates processes as PID 1, and they must
inherently
handle process signals to function properly.
This is why you
should avoid any of these variations�

�

�

�

�

Instead, use a lightweight init system, such as dumb-init,

to properly spawn the Node.js runtime process with

signals support�

�

CMD “npm” “start�

 CMD [“yarn”, “start”�

 CMD “node” “server.js�

 CMD “start-app.sh”

CMD [“dumb-init”, “node”, “server.js”]

05

Optimize Node.js apps for production

Some Node.js libraries and frameworks will only enable
production-
related optimization if they detect that the
NODE_ENV env var set
to production�

� ENV NODE_ENV production

03

Find and fix security vulnerabilities

in
your Node.js Docker image

Docker base images may include security vulnerabilities

in the software toolchain they bundle, including the
Node.js
runtime itself. Scan and fix security vulnerabilities
with the
free Snyk Container tool which also provides
base
image recommendations�

� npm install -g sny�

� snyk aut�

� snyk container test node:16.17.0-bullseye- 
 slim --file=Dockerfile

07

Mount secrets into the Docker image

Secrets are a tricky thing to manage. Avoid the following

security pitfalls�

�

�

Instead, use the built-in secrets mounting. To mount a
.npmrc file
for package install�

� In the Dockerfile:

� Then build the image with:

passing secrets via build arguments in non
multi-stage build�

 putting secrets inside the Dockerfile

RUN

--mount=type=secret,id=npmrc,

target=/usr/src/app/.npmrc npm ci

--only=productio�

docker build .

--build-arg NPM_TOKEN=1234 --secret

id=npmrc,src=.npmrc

10

Use multi-stage builds

Avoid having one big build stage when attempting to
clean up
sensitive data from it or dangling dependencies.
Instead, use
multi-stage Docker image builds and separate
concerns between
the build flow and the creation of a
production base image.

08

Use .dockerignore

Use .dockerignore to ensure�

� Iocal artifacts of node_modules/ aren’t copied into
the
container image�

� sensitive files, such as .npmrc, .env or others,
aren’t leaked
into the container image�

� a small Docker base image without redundant and

unnecessary files.

09

