
Cheat sheet: 10 Serverless Security Best Practices

1. Patch function dependencies

Track the libraries you use in each function, flag vulnerabilities in
those libraries, and monitor them continuously.

Use Snyk via the CLI, GitHub, Serverless Framework plugin or
direct FaaS hooks.

2. Adopt the principle of least privilege

Managing granular permissions for hundreds or thousands of
functions is very hard to do, but important nonetheless.

 Avoid globally defined roles and resource access
 permissions for functions.

 Minimize access rights to resources for functions using
 fine-grained permissions for each function with Serverless
 Framework manifests.

 Enforce the runtime least-privilege principle by making use
 of security libraries that disable access to system resources.

 Use dedicated users and minimalistic permissions when
 accessing third-party services.

3. Maintain isolated function perimeters

Treat every function as its own security perimeter to ensure that a
compromise in one function doesn’t escalate to other functions and
resources:

 Do not rely on function access and invocation ordering

 Sanitize function input and treat event data as untrusted

 Adopt, mandate and re-use security libraries across your
 functions

4. Deploy functions in minimal granularity

Deploy functions in minimal granularity to avoid implicit global roles
for all functions and bundling unnecessary code and dependencies.

5. Sanitize event input to avoid injection

The input received by a function may originate from different data sources,
which makes it complicated to track and ensure that untrusted data has been
validated before use.

Due to the event-driven nature of serverless architecture, properly validate
and sanitize data that is received through a function to avoid injection
attacks.

6. Employ API gateways as a security buffer

Don’t expose functions directly to user interaction. Instead leverage your
cloud providers’ API gateway capabilities to add another layer of security in
front of your function. API gateways can be used for:

 Filtering input data based on request and response mapping models

 Offloading authentication concerns from your functions core
 business logic

 DDOS protection, traffic throttling and rate limiting.

7. Monitor and log functions

Audit and monitor how and what functions are accessing to ensure no illegal
paths are taken, and monitor security vulnerabilities in functions:

Cloud provider tools like AWS X-Ray and Azure Monitor help
monitor resources accessed by functions such as CPU, memory,
function run time, functions data flow, and alike to create a baseline,
alerts and pro-active mitigation.

Implement verbose and safe logging of function events, and use a
central logging system to gain better observability.

Use function tags to provide increased visibility and easier
maintenance

Use Snyk to integrate with your cloud provider’s deployed functions
and continuously monitor for security vulnerabilities in deployed
code.

8. Follow secure coding conventions for
application code

With no servers to hack, attackers will shift their attention to the
application layer, so take extra care to secure your code. The
OWASP Top 10 is a good place to start.

9. Secure and verify data in transit

Small functions and stateless apps lead to more use of third party
services, raising the risk of those functions and apps being attacked
and of MITM attacks. Be sure to:

 Leverage HTTPS for a secure communication medium

 Verify SSL certificates to ensure the remote identity; halt
 communication upon failure to verify

 Treat responses from 3rd party services as untrusted user
 input

10. Manage secrets in secure storage

Sensitive information can easily be leaked and out-of-date
credentials are prone to rainbow table attacks if you fail to adopt
proper secret management solutions.

 Do not store secrets in application code, environment
 variables or in a source code management system, either
 encrypted or otherwise.

 For sensitive information, utilize a secret storage that
 enables both runtime access, as well as easy and routine
 key rotation.

@liran_tal
Node.js Security WG & Developer
Advocate at Snyk

@guypod
Co-founder at Snyk

Authors

https://app.snyk.io/signup
https://snyk.io/docs/using-snyk/
https://snyk.io/docs/github/
https://github.com/snyk/serverless-snyk
https://serverless.com/
https://serverless.com/
https://app.snyk.io/signup

