
.NET open source
security insights

powered by

TL;DR										 3

.NET security insights 							 4

The security footprint of a typical .NET project 				 5

Understanding dependencies 						 6

The most commonly seen vulnerabilities in .NET projects 		 8

system.net.http 								 9

system.io.pipelines 								 11

microsoft.aspnetcore.server.kestrel.core 					 12

The most commonly found .NET vulnerability types 			 14

What can Snyk tell us about security in the .NET ecosystem?		 16

Vulnerability spotlight 							 17

Known .NET vulnerabilities tend to be high severity 			 18

Security spotlight: fixing vulnerabilities 					 19

Conclusion 									 20

Table of contents

All rights reserved. 2019 © Snyk 3

TL;DR

 NuGet stats

èè 150,000+ unique packages

èè 1.6 million package versions

èè 20 billion total downloads

èè 26% increase in packages between 2018

and 2019

 .NET vulnerability database*

èè 100% of vulnerabilities have

available remediation

èè 71% vulnerabilities rated as high severity

èè 2/3 of known vulnerabilities are RCE,

XSS, or DoS



 Dependency scans*

èè 5,744 distinct direct dependencies

found in .NET projects that we monitor

èè 1,819 distinct indirect dependencies

found in .NET projects that we monitor

èè An average project has 11 direct, and

76 indirect dependencies

èè An average project has 5 unique high

severity vulnerabilities, 2 unique medium

severity vulnerabilities, and 1 unique low

severity vulnerabilities

èè Every project scanned can remediate

all vulnerabilities



* Data taken from the Snyk Vulnerability database, and Snyk scan data.



Security takeaways

 Bad news

èè On average, your apps each have

around 8 known vulnerabilities

èè The vast majority are high severity

 Good news

èè You can eliminate every single

vulnerability by upgrading

All rights reserved. 2019 © Snyk 4

.NET security insights

.NET is a growing ecosystem. Whether it is because it has strong industry support from Microsoft, because it has quality

developer tools, or because it spans multiple languages and uses, there is no doubt that .NET is holding strong. NuGet

is .NET's widely used package manager. It boasts 154,385 unique packages, 1,663,564 package versions, and more than

20 billion package downloads as of the time of this writing. Snyk’s 2019 State of Open Source Security reported a 26%

growth in indexed NuGet packages between 2018 and 2019.

You can learn a lot about your .NET project and how to make it more secure by scanning your repository with Snyk. But

you may still have questions. You may be wondering how your project compares to others that have been scanned or

you may be wondering about trends within the .NET ecosystem as a whole.

This report aims to cover these questions and includes the following:

èè The security footprint of a typical .NET project

èè The most common vulnerabilities seen in .NET applications, including information about the corresponding libraries

èè An examination of the known vulnerabilities on the ecosystem level, including vulnerability types, severity levels,
and more

The numbers presented in this report are correct as of the time of writing this report, and are expected to change over time.

They should be viewed in relative terms, and as a starting point of discussion.

5All rights reserved. 2019 © Snyk

The security footprint of a typical .NET project

Snyk has already performed thousands of scans

for .NET projects since releasing support for the

ecosystem in 2017. We can now describe a composite

average project, to give our users an idea of what

they might find when they try to scan one of their

.NET projects.

We have found 5,744 unique direct dependencies

and 1,819 indirect dependencies within all of the

.NET project scans we have performed. An average

project has around 11 direct dependencies and 76

indirect dependencies.

Share of distinct direct vs.
distinct indirect dependencies

Average makeup of dependency tree

1819

5744

76

11.2

Indirect dependenciesDirect dependencies

Understanding dependencies

Direct dependency
A direct dependency is an open source

project that the developer has selected and

purposefully installs.

Indirect dependency
An indirect dependency is a dependency of

your dependency. Many open source projects

utilize other open source projects. When you

install your direct dependencies, the indirect

dependencies get installed as well. Developers

are typically pretty aware of their direct

dependencies, but may not be as aware of their

indirect dependencies.

Path
A path describes how an open source

dependency is introduced to your project.

For instance, let’s say you have two direct

dependencies called Project A and Project B.

Both of these projects introduce indirect

dependencies, including Project C.

Project C is associated with two different paths,

because it is installed by both Project A and

Project B. If Project C includes vulnerabilities, a

developer must consider both of these paths in

order to remediate the vulnerabilities.

7All rights reserved. 2019 © Snyk

The following graphs describe the projects in which

we found vulnerabilities. From the scans that have

been performed by Snyk, it is clear that for a given

project, a vulnerability is likely to be introduced via

multiple paths. For instance, you may specify a given

package as a direct dependency, but it may show up

a second time as an indirect dependency if that same

package is also used or referenced by another package

within your app. Both cases must be addressed if we

want to truly remediate the vulnerability.

But the best news is that all of the known

vulnerabilities found in the .NET ecosystem have

available remediation, meaning that once our users

knew of the security vulnerabilities, there were steps

they could take to secure their project.

Vulnerability severity breakdown

46%

54%

0.2%

 LowMediumHigh

Vulnerability paths

34.3

3

0

10

30

40

5.6

LowHigh Medium

4.8

1.9 1.1

Vulnerabilities

Paths

All of the known
vulnerabilities found in

the .NET ecosystem have
available remediation

8All rights reserved. 2019 © Snyk

The most commonly seen vulnerabilities in .NET projects

Now let’s look at the top ten libraries that currently

are impacting our users most, because they most

frequently appear in Snyk project scans.

Let’s start by looking at the characteristics of the

top 10, and then take a deeper look at three of

these libraries that include particularly interesting

vulnerabilities. Included in the table are the minimum

version upgrades you need to make to move to a vuln-

free version.

When reviewing this table, a few things stand out.

First, the ASP.NET Core Kestrel cross-platform web

server is both popular, and has seen a number of high

severity vulnerabilities derived from several different

related libraries.

Second, the total number of vulnerabilities for

these libraries is generally low, but the severities are

generally high. Using the Snyk vulnerability database

and data from the NuGet registry, let’s dig into the

top three of these libraries to learn how they are used,

how popular they are, and what known vulnerabilities

they contain.

Place Library Use Vulnerabilites
Minimum known
vuln free version

Lifetime Downloads

1 system.net.http A programming interface for
modern HTTP applications

5  high
1  medium

4.3.2 81 million

2 system.io.pipelines Single producer, single consumer
byte buffer management tool 1  high 4.5.1 8.5 million

3 microsoft.aspnetcore.
server.kestrel.core

Core component of ASP.NET Core
Kestrel cross-platform web server

2  high
2  medium

2.1.7 22 million

4 system.net.websockets.
websocketprotocol

Protocol that enables two-way
persistent communication

channels over TCP connections
1  medium 4.5.3 3.6 million

5 microsoft.data.odata Data access protocol for the web 1  high 5.8.4 42.4 million

6 microsoft.aspnetcore.
websockets

Web socket middleware for use
on top of opaque servers

1  high
1  medium

2.1.7 or 2.2.1 12.5 million

7 system.security.
cryptography.xml

Library providing classes
to support the creation
 and validation of XML

digital signatures

1  high 4.4.2 13.6 million

8
microsoft.aspnetcore.

server.kestrel.transport.
abstractions

Transport abstractions for the
ASP.NET Core Kestrel cross-

platform web server
1  high

2.0.3 or
2.1.0-rc1-final

22.1 million

9 system.net.security
Library providing secure network
communication between client

and server endpoints

3  high
1  medium

4.0.1 or 4.3.1 42.6 million

10 microsoft.aspnetcore.
identity

Membership system for building
ASP.NET Core web applications 1  high 2.0.4 or 2.1.2 18.3 million

Libraries associated with most commonly occurring vulnerabilities

https://snyk.io/vuln/nuget:system.net.http
https://snyk.io/vuln/nuget:system.io.pipelines
https://snyk.io/vuln/nuget:microsoft.aspnetcore.server.kestrel.core
https://snyk.io/vuln/nuget:microsoft.aspnetcore.server.kestrel.core
https://snyk.io/vuln/nuget:system.net.websockets.websocketprotocol
https://snyk.io/vuln/nuget:system.net.websockets.websocketprotocol
https://snyk.io/vuln/nuget:microsoft.data.odata
https://snyk.io/vuln/nuget:microsoft.aspnetcore.websockets
https://snyk.io/vuln/nuget:microsoft.aspnetcore.websockets
https://snyk.io/vuln/nuget:system.security.cryptography.xml
https://snyk.io/vuln/nuget:system.security.cryptography.xml
https://snyk.io/vuln/nuget:microsoft.aspnetcore.server.kestrel.transport.abstractions
https://snyk.io/vuln/nuget:microsoft.aspnetcore.server.kestrel.transport.abstractions
https://snyk.io/vuln/nuget:microsoft.aspnetcore.server.kestrel.transport.abstractions
https://snyk.io/vuln/nuget:system.net.security
https://snyk.io/vuln/nuget:microsoft.aspnetcore.identity
https://snyk.io/vuln/nuget:microsoft.aspnetcore.identity

All rights reserved. 2019 © Snyk 9

system.net.http

system.net.http provides a programming interface for modern HTTP applications. This includes HTTP

client components that allow applications to consume web services over HTTP, and HTTP components that can

be used by both clients and servers for parsing HTTP headers.

Popularity
system.net.http has about 81 million lifetime

downloads. The current version (4.3.4) accounts

for around 3.4 million downloads. System.http.net

averages around 31,000 downloads a day.

Vulnerabilities
There is good and bad news with respect to

vulnerabilities in system.net.http. First, the

good news. The most recent version of this library

(4.3.4) has no known vulnerabilities. If you use this

library, upgrade to the most recent version!

But now for the bad news. This library includes

a number of high severity vulnerabilities in its

other versions. One of these vulnerabilities is only

present in very old versions, but there are four high

severity vulnerabilities and one medium severity

vulnerability for versions below 4.1.2 and for

versions 4.3 - 4.3.2 inclusive.

Package Vuln type Vuln sev CVSS score
Upgrade

available?

system.net.http Information Exposure  high 7.5 

system.net.http Information Disclosure  high 7.5 

system.net.http Improper Certificate Validation  high 7.5 

system.net.http Denial of Service (DoS)  high 7.5 

system.net.http Privilege Escalation  high 7.3 

system.net.http Authentication Bypass  medium 5.3 

system.net.http vulnerability breakdown

https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETHTTP-72899
https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETHTTP-72439
https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETHTTP-60046
https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETHTTP-60045
https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETHTTP-60047
https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETHTTP-60048

All rights reserved. 2019 © Snyk 10

These vulnerabilities are of multiple types, including

information disclosure, improper certificate validation,

privilege escalation, authentication bypass, and

denial of service. NuGet provides some interesting

statistics for this library, including what versions have

been downloaded and how often and even includes

granular information from the last 6 weeks.

Unfortunately, these statistics show that only 16%

of the downloads of this library in the past six weeks

were for the most recent version (the only version

completely free from known vulnerabilities). That

means that over the last six weeks, 84% of package

downloads were of versions that include multiple,

known, high severity vulnerabilities.

The numbers on NuGet do provide a ray of hope.

The most recent version (4.3.4) has been out for 7

months, but it looks like the pace of adoption has

been picking up recently. Version 4.3.4 has been

downloaded approximately 3.3 million times, but

1.2 million of the downloads occurred in the last

six weeks.

Vulnerable system.net.http package downloads

16%

84%

Non-vulnerable downloads

Vulnerable downloads

84% of system.net.http
package downloads

contained multiple high
severity vulnerabilities

All rights reserved. 2019 © Snyk 11

system.io.pipelines

The system.io.pipelines library is a single

producer, single consumer byte buffer management

tool. In short, this library makes it easier to do high

performance I/O (input/output) in .NET.

Popularity
system.io.pipelines has been downloaded

approximately 8.4 million times, including around

600k downloads of the most recent version (4.5.3).

Version 4.6.0 is currently in preview.

Vulnerabilities
Currently, there is only a single known vulnerability

associated with the system.io.pipelines

library. Similar to the previously discussed system.

net.http library, there is good and bad news

with respect to the vulnerability in system.

io.pipelines.

First the bad news. The single high severity

vulnerability associated with this library is a denial

of service vulnerability—which has the capacity to

crash your website. The vulnerability in question has

a high severity score, and if exploited can prevent

legitimate users from accessing your website, run up

your server costs, and cause you many headaches.

Now for the good news. The single high severity

vulnerability associated with this library is a denial

of service vulnerability.

Yes! This is good news as well. Unlike other

vulnerabilities, denial of service attacks usually

do not aim at breaching security. Despite the

headaches that such a vulnerability can cause, it is

reassuring that although it is likely to cost you your

uptime rate, the vulnerability is not likely to lead to

a loss of data or personal information.

Our recommendation? Upgrade system.io.pipelines

to version 4.5.1 or higher and keep an eye on the

security status of this new and useful library!

system.io.pipelines vulnerability breakdown

Package Vuln type Vuln sev CVSS score
Upgrade

available?

system.io.pipelines Denial of Service  high 7.5 

https://snyk.io/vuln/SNYK-DOTNET-SYSTEMIOPIPELINES-72389

All rights reserved. 2019 © Snyk 12

microsoft.aspnetcore.server.kestrel.core

The microsoft.aspnetcore.server.

kestrel.core library is the core component of ASP.

NET Core Kestrel cross-platform web server. Kestrel is

an event-driven, asynchronous I/O-based server and is

generally considered to be the favored web server for

new asp.net applications.

Popularity
microsoft.aspnetcore.server.kestrel.

core claims more than 22 million lifetime downloads.

Around 630k of these downloads are for the most

recent version (2.2.0), which was released in late 2018.

Vulnerabilities
This library currently has four known vulnerabilities,

including two denial of service vulnerabilities of

medium severity and a denial of service and a privilege

escalation of high severity. The good news for this

library is that the two most recent versions (2.1.7 and

2.2.0) are free from known vulnerabilities.

The bad news with respect to this library is that

a related library (microsoft.aspnetcore.

server.kestrel.transport.abstractions)

also appears on the list. If you are using

microsoft.aspnetcore.server.kestrel.

core, you are also likely to be using other libraries

with common vulnerabilities.

Additionally, it is important to remember that

Kestrel is not a fully featured web server and is

often run behind another library. Your choice to run

Kestrel independently versus running it behind a

library like NGINX or IIS is going to have an impact

on how you approach your security.

Package Vuln type Vuln sev CVSS score
Upgrade

available?

microsoft.aspnetcore.server
.kestrel.core Denial of Service  high 8.8 

microsoft.aspnetcore.server
.kestrel.core Privilege Escalation  high 8.8 

microsoft.aspnetcore.server
.kestrel.core Denial of Service  medium 6.5 

microsoft.aspnetcore.server
.kestrel.core Denial of Service  medium 5.8 

microsoft.aspnetcore.server.kestrel.core vulnerability breakdown

https://snyk.io/vuln/SNYK-DOTNET-MICROSOFTASPNETCORESERVERKESTRELCORE-60241
https://snyk.io/vuln/SNYK-DOTNET-MICROSOFTASPNETCORESERVERKESTRELCORE-60239
https://snyk.io/vuln/SNYK-DOTNET-MICROSOFTASPNETCORESERVERKESTRELCORE-60261
https://snyk.io/vuln/SNYK-DOTNET-MICROSOFTASPNETCORESERVERKESTRELCORE-72893

All rights reserved. 2019 © Snyk 13

The remainder of the 20 most popular libraries

containing the most commonly seen are described

in the following table.

Now let’s look at vulnerability types, severities,

and remediations related to these vulnerabilities.

More of the most commonly seen vulnerabilities

Package Vuln type Vuln sev CVSS score Upgrade
available?

system.net.websockets
.websocketprotocol Denial of Service  medium 5.9 

microsoft.data.odata Denial of Service  high 7.5 

microsoft.aspnetcore.
websockets Denial of Service  high 7.5 

microsoft.aspnetcore.
websockets Denial of Service  medium 5.9 

system.security.cryptography.
xml Denial of Service  high 7.5 

microsoft.aspnetcore.server.
kestrel.transport.abstractions Denial of Service  high 8.8 

system.net.security Improper Certificate
Validation  high 7.5 

system.net.security Denial of Service  high 7.5 

system.net.security Privilege Escalation  high 7.3 

https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETWEBSOCKETSWEBSOCKETPROTOCOL-72894
https://snyk.io/vuln/SNYK-DOTNET-MICROSOFTDATAODATA-72486
https://snyk.io/vuln/SNYK-DOTNET-MICROSOFTASPNETCOREWEBSOCKETS-72898
https://snyk.io/vuln/SNYK-DOTNET-MICROSOFTASPNETCOREWEBSOCKETS-72891
https://snyk.io/vuln/SNYK-DOTNET-SYSTEMSECURITYCRYPTOGRAPHYXML-60244
https://snyk.io/vuln/SNYK-DOTNET-MICROSOFTASPNETCORESERVERKESTRELTRANSPORTABSTRACTIONS-60242
https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETSECURITY-60070
https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETSECURITY-60070
https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETSECURITY-60069
https://snyk.io/vuln/SNYK-DOTNET-SYSTEMNETSECURITY-60071

All rights reserved. 2019 © Snyk 14

The most commonly found .NET vulnerability types

Within the most commonly seen vulnerabilities, we

see a variety of vulnerability types. More than half of

the vulnerabilities in the top ten however, are denial of

service vulnerabilities. Denial of service (DoS) describes

a family of attacks, all aimed at making a system

inaccessible to its intended and legitimate users.

This has interesting security implications because

unlike other vulnerabilities, DoS attacks usually

do not aim at breaching security. Rather, they are

focused on making websites and services unavailable

to genuine users resulting in downtime.

One popular denial of service vulnerability is a DDoS

(distributed denial of service), an attack that attempts

to clog network pipes to the system by generating a

large volume of traffic from many machines.

When it comes to open source libraries, DoS

vulnerabilities allow attackers to trigger such a

crash or crippling of the service by using a flaw

either in the application code or from the use of open

source libraries.

Two common types of DoS vulnerabilities are:

èè High CPU/Memory Consumption- An attacker
sending crafted requests that could cause the
system to take a disproportionate amount of time
to process.

èè Crash - An attacker sending crafted requests that

could cause the system to crash.

Although no one wants a costly denial of service

attack and the bad press, downtime, and lost revenue

potentially associated with it, a breach of security that

surfaces sensitive information could be much worse.

Most common vulnerabilities by type

Denial of Service (DoS)

Privilege Escalation

Improper Certificate Validation

Information Exposure

Information Disclosure

Authentication Bypass

50 10

8
4

3

1

1

1

1

MediumHigh

All rights reserved. 2019 © Snyk 15

Vulnerability severity
The bad news that comes from this data is that three

quarters of the most commonly seen vulnerabilities

have a high severity rating. Medium severity

vulnerabilities account for the remaining quarter of

the top twenty vulnerabilities. We saw no low severity

vulnerabilities. CVSS scores ranged from 5.3 through

8.8, with a median of 7.5.

A general trend we have seen in the .NET ecosystem

is that projects had tended not to have high numbers

of vulnerabilities. This may lead people to think

that they can put security on the back burner, but

the statistics on severity ratings show why this is

faulty thinking. Known vulnerabilities may not be as

common within the .NET ecosystem, but the ones

that are present can cause serious disruptions and

damage if not addressed.

Every vulnerability can
be fixed
The majority of the vulnerabilities in the top twenty

may be rated as high severity, but there is good

news as well. Every single vulnerability within

Snyk’s top 20 had available remediation. This is

excellent news. It is good to know about a security

vulnerability, even if remediation is not available,

but nothing beats actionable advice that leads to a

more secure project.

Most common vulnerabilities by severity

 Low

Medium

High

25%

75%

0%

Every single vulnerability
within Snyk’s top 20 had

available remediation

All rights reserved. 2019 © Snyk 16

What can Snyk tell us about security in the .NET ecosystem?

Now that we have considered the most commonly

seen vulnerabilities, let’s take a higher level look at

the .NET ecosystem. What types of vulnerabilities are

common within the ecosystem? Does the trend of

high severity vulnerabilities hold true when we look at

the ecosystem as a whole?

Vulnerability types
The following table breaks down the types of

vulnerabilities present, for all vulnerabilities with one

or more percent share across the .NET ecosystem. It

includes the number of distinct vulnerabilities of a

given type found in Snyk’s vulnerability database and

its percent share.

Despite the large variety, just three vulnerability types

make up the majority of the vulnerabilities found.

Remote code execution (RCE), cross-site scripting

(XSS), and denial of service (DoS) vulnerabilities

account for 2/3 of .NET vulnerabilities found in Snyk’s

vulnerability database.

0% 20% 40%

1.6%

1.5%

2.6%

2.2%

Information Exposure

Regular Expression
Denial of Service

Resources Downloaded
Over Insecure Protocol

Information Disclosure

Access Restriction Bypass

Other

1.1%

9.1%

10% 30% 50%

Remote Code Execution

Cross-site Scripting

Denial of Service

Privilege Escalation

Authentication Bypass

Improper Certificate
Validation

41%

13.2%

12.4%

7.7%

4.2%

3.5%

Vulnerability types at the ecosystem level

2/3 of .NET vulnerabilities
are RCE, XSS or DoS

Vulnerability spotlight

Remote code execution
Remote code execution describes a type of

vulnerability that occurs when an attacker is

able to execute arbitrary commands or code

in your application. The code execution can

happen over a network and is therefore not tied

to any specific geography.

Cross-site scripting
A cross-site scripting attack occurs when

the attacker tricks a legitimate web-based

application or site to accept a request as

originating from a trusted source. This is done

by escaping the context of the web application;

the web application then delivers that data

to its users along with other trusted dynamic

content, without validating it.

Denial of service
Denial of service describes a family of attacks,

all aimed at making a system inaccessible to

its intended and legitimate users. Unlike other

vulnerabilities, DoS attacks usually do not aim

at breaching security. Rather, they are focused

on making websites and services unavailable

to genuine users resulting in downtime.

This section is a handy review for anyone wanting more information on the top three vulnerability types in the .NET ecosystem.

<script>

document.cookie

ProcessBuilder()

exec

bash

All rights reserved. 2019 © Snyk 18

Known .NET vulnerabilities tend to be high severity

Earlier, when we we considered the top 20 most commonly

seen vulnerabilities, we found that the majority were high

severity. Does this trend hold true when considering all the

.NET vulnerabilities in Snyk’s database? Yes! High severity

vulnerabilities account for 70.7% of total. Medium severity

vulnerabilities account for the next largest share, at 26.9%.

Only 2.4% of .NET vulnerabilities in Snyk’s database are

considered low severity.

This may seem to paint a bleak picture of .NET security.

That is a large share of high severity vulnerabilities.

However, at the time of this writing, every vulnerability

found by Snyk in a dependency scan has had a remediation

available. Although we cannot be 100% certain as to why

this is true, it is possible that this is in part because of the

support that the .NET ecosystem receives from Microsoft.

Vulnerability severity at the ecosystem level

27%

71%

2%

 Low

Medium

High

100% of .Net
vulnerabilities can

be remediated

Security spotlight: fixing vulnerabilities

Upgrade
Once a vulnerability is found, project maintainers will

typically include a fix (if possible) in a future version,

though the timeline can vary widely. Keeping up to

date with release versions is generally a good way to

stay on top of security vulnerabilities.

Sometimes it is difficult to upgrade a dependency. This

can be because dependencies interact with each other

and with your code.

Direct vs indirect
Remediating vulnerabilities in direct dependencies is

usually straightforward. Upgrade the dependency to

the minimum version that includes the fix.

Remediating vulnerabilities in indirect dependencies

requires two things: a fixed version of the indirect

dependency and a version of the direct dependency

that utilizes that fixed version.

If these two conditions are met, upgrading the

associated direct dependency to a version that

utilizes the fixed version of the indirect dependency

will remediate the issue.

If no fix is available at the level of the direct

dependency, developers can upgrade the indirect

dependency to resolve the issue. However, this

has the potential to cause compatibility problems

between the dependencies.

Vulnerability in indirect dependencyVulnerability in direct dependency

 Direct Dependency

		  Indirect Dependency

		  Indirect Dependency

		  Indirect Dependency

Can be upgraded independently, but
may cause compatibility problems

Upgrade to a version that utilizes a version of
the indirect dependency that includes a fix

Upgrade to version that includes fix  Direct Dependency

		  Indirect Dependency

		  Indirect Dependency

		  Indirect Dependency

All rights reserved. 2019 © Snyk 20

Conclusion

In the .NET ecosystem, the number of vulnerabilities per package is low, but the severity of those vulnerabilities tends

to be high. This means less time is likely needed to resolve the problems (lower investment) but you are addressing

potentially dangerous security problems (high return). In other words, by addressing known vulnerabilities in the .NET

packages that you use, you are taking a security step that has a high return on investment.

At Snyk, our goal is to help people use open source and stay secure. Part of that goal includes building tools to help

people find and automatically fix known vulnerabilities in their dependencies, but identifying and properly disclosing

new vulnerabilities is important as well. The .NET ecosystem does not currently have a centralized place to report

vulnerabilities in open source libraries. Snyk is a CVE Numbering Authority (CNA), meaning we are able to assign a new

vulnerability a CVE number (basically an ID for a vulnerability) and add the vulnerability to relevant databases. As a

CNA, Snyk can help you responsibly report vulnerabilities.

You can learn more about this process here: https://snyk.io/vulnerability-disclosure.

https://snyk.io/vulnerability-disclosure

London

1 Mark Square

London EC2A 4EG

Office info

 Tel Aviv

40 Yavne st.,

first floor

Boston

WeWork 9th Floor

501 Boylston St

Boston, MA 02116

Twitter: @snyksec

Web: https://snyk.io

Report author

Hayley Denbraver (@hayleydenb)

Report design

Growth Labs (@GrowthLabsMKTG)

Snyk helps you use open source and stay secure.

Get started at snyk.io

https://twitter.com/snyksec
http://snyk.io
https://twitter.com/hayleydenb
https://snyk.io

