
1. Use query parameterization

Use prepared statements in Java to parameterize your SQL statements.

   String query = "SELECT * FROM USERS WHERE 

lastname = " + parameter;

   String query = "SELECT * FROM USERS WHERE 

lastname = ?";

   PreparedStatement statement = 

connection.prepareStatement(query);

   statement.setString(1, parameter);

2. Use OpenID Connect with 2FA

OpenID Connect (OIDC) provides user information via an ID token in 
addition to an access token. Query the /userinfo endpoint for 
additional user information.

3. Scan your dependencies for known 
vulnerabilities

Ensure your application does not use dependencies with known 
vulnerabilities. Use a tool like Snyk to:

            Test your app dependencies for known vulnerabilities

            Automatically fix any existing issues 

            Continuously monitor your projects for new vulnerabilities   
            over time

4. Handle sensitive data with care

Sanitize the toString() methods of your domain entities.

If using Lombok, annotate sensitive classes. @ToString.Exclude

Use @JsonIgnore and @JsonIgnoreProperties 
to prevent sensitive properties from being serialized or deserialized.

Cheat sheet: 10 Java security best practices

5. Sanitize all input

Consider using the OWASP Java encoding library to sanitize input.

Assume all input is potentially malicious, and check for inappropriate 
characters (whitelist preferable).

6. Configure your XML parsers to prevent XXE 

Disable features that allow XXE on your SAXParserFactory and SAXParser, or 
equivalent.   

SAXParserFactory factory = SAXParserFactory.
newInstance();
SAXParser saxParser = factory.newSAXParser();

factory.setFeature("http://xml.org/sax/features/
external-general-entities", false);
saxParser.getXMLReader().setFea-
ture("http://xml.org/sax/fea-
tures/external-general-entities", false);
factory.setFeature("http://apache.org/xml/
features/disallow-doctype-decl", true);

7. Avoid Java serialization

If you must implement the serialization interface, override the readObject 
method to throw an exception.

private final void readObject(ObjectInputStream in) 
throws java.io.IOException {
   throw new java.io.IOException("Not allowed");
}

If you have to deserialize, use the ValidatingObjectInputStream from Apache 
Commons IO to add some safety checks.

FileInputStream fileInput = new FileInputStream
(fileName);
ValidatingObjectInputStream in = new Validatin

gObjectInputStream(fileInput);
in.accept(Foo.class);

Foo foo_ = (Foo) in.readObject();

8. Use strong encryption and hashing algo-
rithms

Always use existing encryption libraries, such as Google Tink, rather 
than doing it yourself.

For password hashing, consider using BCrypt or SCrypt. If using 
Spring, you can use it’s built-in BCryptPasswordEncoder and 
SCryptPasswordEncoder for your hashing needs.

9. Enable the Java security manager

Enable via JVM properties on startup:

-Djava.security.manager

Create a policy that you use for your applications:

-Djava.security.policy==/my/custom.policy

 10. Centralize logging and monitoring

Log auditable events, such as exceptions, logins and failed logins 
with useful information including their origin.

Centralize logs from multiple servers with tools like Kibana.

Monitor key system resources that indicate attack spikes or load 
from specific IP addresses. 

 @BrianVerm 
Developer Advocate 
at Snyk

Authors

@manicode 
Java Champion & 
Manicode Security 
founder


