

VERP-NTDCD VMWARE NSX-T DATA CENTER: DESIGN

DURATION	LEVEL	TECHNOLOGY	DELIVERY METHOD	TRAINING CREDITS
5 Days	Intermediate	VMware	ILT / VILT	NA

INTRODUCTION

This five-day course provides comprehensive training on considerations and practices to design a VMware NSX-T™ Data Center environment as part of a software-defined data center strategy. This course prepares the student with the skills to lead the design of NSX-T Data Center offered in release 3.2, including design principles, processes, and frameworks. The student gains a deeper understanding of the NSX-T Data Center architecture and how it can be used to create solutions to address the customer's business needs.

AUDIENCE PROFILE

Network and security architects and consultants who design the enterprise and data center networks and VMware NSX® environments

PREREQUISITES

Before taking this course, you must complete the following course:

VMware NSX-T Data Center: Install, Configure, Manage [V3.2]

You should also have the understanding or knowledge of these technologies:

- Good understanding of TCP/IP services and protocols
- Knowledge and working experience of computer networking and security, including:
- Switching and routing technologies (L2-L3)
- Network and application delivery services (L4-L7)
- Firewalling (L4-L7)
- vSphere environments

The VMware Certified Professional – Network Virtualization certification is recommended.

COURSE OBJECTIVES

After completing this course, delegates will be able to:

- Describe and apply a design framework
- Apply a design process for gathering requirements, constraints, assumptions, and risks
- Design a VMware vSphere® virtual data center to support NSX-T Data Center requirements
- Create a VMware NSX® Manager™ cluster design
- Create a VMware NSX® Edge[™] cluster design to support traffic and service requirements in NSX-T Data Center
- Design logical switching and routing
- Recognize NSX-T Data Center security best practices
- Design logical network services
- Design a physical network to support network virtualization in a software-defined data center
- Create a design to support the NSX-T Data Center infrastructure across multiple sites
- Describe the factors that drive performance in NSX-T Data Center

MODULES

Module 1: Course Introduction

- Introduction and course logistics
- Course objectives

Module 2: Design Concepts

- Identify design terms
- Describe framework and project methodology
- Describe VMware Validated Design™
- Identify customers' requirements, assumptions, constraints, and risks
- Explain the conceptual design
- Explain the logical design
- Explain the physical design

Module 3: NSX Architecture and Components

- Recognize the main elements in the NSX-T Data Center architecture
- Describe the NSX management cluster and the management plane

COURSE OUTLINE

- Identify the functions and components of management, control, and data planes
- Describe the NSX Manager sizing options
- Recognize the justification and implication of NSX manager cluster design decisions
- Identify the NSX management cluster design options

Module 4: NSX Edge Design

- Explain the leading practices for edge design
- Describe the NSX Edge VM reference designs
- Describe the bare-metal NSX Edge reference designs
- Explain the leading practices for edge cluster design
- Explain the effect of stateful services placement
- Explain the growth patterns for edge clusters
- Identify design considerations when using L2 bridging services

Module 5: NSX Logical Switching Design

- Describe concepts and terminology in logical switching
- Identify segment and transport zone design considerations
- Identify virtual switch design considerations
- Identify uplink profile, VMware vSphere® Network
- I/O Control profile, and transport node profile design considerations
- Identify Geneve tunneling design considerations
- Identify BUM replication mode design considerations

Module 6: NSX Logical Routing Design

- Explain the function and features of logical routing
- Describe NSX-T Data Center single-tier and multitier routing architectures
- Identify guidelines when selecting a routing topology

- Describe the BGP and OSPF routing protocol configuration options
- Explain gateway high availability modes of operation and failure detection mechanisms
- Identify how multitier architectures provide control over stateful service location
- Identify VRF Lite requirements and considerations
- Identify the typical NSX scalable architectures

Module 7: NSX Security Design

- Identify different security features available in NSX-T Data Center
- Describe the advantages of an NSX Distributed Firewall
- Describe the use of NSX Gateway Firewall as a perimeter firewall and as an intertenant firewall
- Determine a security policy methodology
- Recognize the NSX-T Data Center security best practices

Module 8: NSX Network Services

- Identify the stateful services available in different edge cluster high availability modes
- Describe failover detection mechanisms
- Explain the design considerations for integratingVMware NSX® Advanced Load Balancer™ with NSX-T Data Center
- Describe stateful and stateless
 NSX-T Data Center NAT
- Identify benefits of NSX-T Data Center DHCP
- Identify benefits of metadata proxy
- Describe IPSec VPN and L2 VPN

Module 9: Physical Infrastructure Design

 Identify the components of a switch fabric design

- Assess Layer 2 and Layer 3 switch fabric design implications
- Review guidelines when designing top-of-rack switches
- Review options for connecting transport hosts to the switch fabric
- Describe typical designs for VMware ESXi™ compute hypervisors with two pNICs
- Describe typical designs for ESXi compute hypervisors with four or more pNICs
- Describe a typical design for a KVM compute hypervisor with two pNICs
- Differentiate dedicated and collapsed cluster approaches to SDDC design

Module 10: NSX Multilocation Design

- Explain scale considerations in an NSX-T Data Center multisite design
- Describe the main components of the NSX Federation architecture
- Describe the stretched networking capability in Federation
- Describe stretched security use cases in Federation
- Compare Federation disaster recovery designs

Module 11: NSX Optimization

- Describe Geneve Offload
- Describe the benefits of Receive Side Scaling and Geneve Rx Filters
- Explain the benefits of SSL Offload
- Describe the effect of Multi-TEP, MTU size, and NIC speed on throughput
- Explain the available N-VDS enhanced datapath modes and use cases
- List the key performance factors for compute nodes and NSX Edge nodes

ASSOCIATED CERTIFICATIONS & EXAM

This course prepares delegates to write the VMware Professional NSX-T Data Center 3.0 (3V0-41.20) exam.