MULTI-MAX

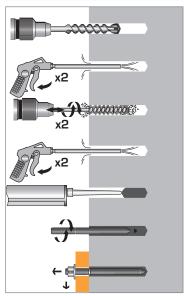
Résine chimique vinylester pour béton non fissuré

APPLICATION

- Fixation de charpentes métalliques
- Fixation de machines (résiste aux vibrations)
- Fixation de silos de stockage, supports de tuyauteries
- Fixation de panneaux indicateurs
- Fixation de barrières de sécurité

Caractéristiques techniques

Dimensions	Prof. ancrage min.	Epaisseur min. support	Ø filetage	Profondeur perçage	Ø perçage	Ø passage	Couple de serrage	
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Nm)	
	h _{ef}	h _{min}	d	h ₀	do	df	T _{inst}	
M8	80	110	8	80	10	9	10	
M10	90	120	10	90	12	12	20	
M12	110	140	12	110	14	14	30	
M16	125	160	16	125	18	18	60	
M20	170	220	20	170	25	22	120	
M24	210	265	24	210	28	26	200	
MULTI-MAX Résine v	MULTI-MAX Résine vinylester cartouche deux composants 410 ml Code : 060047							
MULTI-MAX Résine v	inylester cart	ouche deux co	mposants 28	30 ml		Code :	060040	


MATIÈRE

Tige filetée zinguée M8-M24 : Acier classe 5.8, 8.8 et 10.9 façonné à froid NF A35-053

• Tige filetée inox A4 M8-M24 : Inox A4

Propriétés mécaniques des chevilles									
Dimension	is	M8	M10	M12	M16	M20	M24		
f _{uk} (N/mm ²)	Résistance à la traction min.	520	520	520	520	520	520		
fyk (N/mm²)	Limite d'élasticité	420	420	420	420	420	420		
$\mathbf{M^0}_{\mathbf{rk,s}}$ (Nm)	Moment de flexion caractéristique	19,5	38,8	68,1	173,1	337,5	583,7		
M (Nm)	Moment de flexion admissible	9,75	19,4	34,0	86,5	168,7	291,8		
As (mm ²)	Section résistante	36,6	58	84,3	157	227	326,9		
War (mm3)	Module d'inertie en flexion	31.2	62.3	109.2	277.5	482 4	833.7		

MÉTHODE DE POSE*

*Nettoyage Premium :

- 2 aller-retour de soufflage à l'air comprimé
- 2 aller-retour de brossage avec écouvillon sur mandrin
- 2 aller-retour de soufflage à l'air comprimé

		d'une charge

Température	Temps max. de manipulation	Temps de polymérisation
30°C < T ≤ 40°C	2 min	35 min
20°C < T ≤ 30°C	4 min	45 min
10°C < T ≤ 20°C	6 min	60 min
5°C < T ≤ 10°C	12 min	90 min
0°C < T ≤ 5°C	18 min	180 min
-5°C < T ≤ 0°C	-	360 min

2/4 Tiges filetées zinguées & inoxydables

Les charges spécifiées sur cette page permettent de juger les performances du produit, mais ne peuvent pas être utilisées pour le dimensionnement. Il faut utiliser les performances données dans les pages suivantes (3/4 et 4/4).

Nombre de scellements par cartouche **M8** M10 M12 M16 M20 **M24 Dimensions** Ø perçage (mm) 10 12 14 18 25 28 Profondeur perçage (mm) 80 90 110 125 170 210 Nbre de scellements pour une cartouche MULTI-MAX 410 ml 109 67 40 21 8 5 MULTI-MAX 280 ml 74 46 28 15 4 6

Charges moyennes de ruine (N_{Ru,m}, V_{Ru,m})/résistances caractéristiques (N_{Rk}, V_{Rk}) en kN

Les charges moyennes de ruine sont issues des résultats d'essais dans les conditions admissibles d'emploi, et les résistances caractéristiques sont déterminées statistiquement.

TRACTION

Dimensions	M8	M10	M12	M16	M20	M24
h _{ef}	80	90	110	125	170	210
$N_{Ru,m}$	21,1	29,6	41,1	58,5	99,5	138,3
N _{Rk}	18,1	25,4	35,2	50,3	85,5	118,8

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20	M24
$V_{Ru,m}$	15,92	22,75	32,8	56,2	73,6	115,0
V_{Rk}	10,98	18,9	25,3	46,8	59,02	95,8

Charges limites ultimes (N_{Rd}, V_{Rd}) pour une cheville en pleine masse en kN

*Valeurs issues d'essais (tiges classe 10.9) $V_{Rd} = \frac{V_{Rk} *}{\gamma_{Ms}}$

TRACTION

Dimensions	M8	M10	M12	M16	M20	M24
h _{ef}	80	90	110	125	170	210
N _{Rd}	12,1	14,1	19,6	27,9	47,5	66,0

 $\gamma_{Mc} = 1.5$ pour M8 et $\gamma_{Mc} = 1.8$ pour M10 à M24

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20	M24
V_{Rd}	7,7	13,2	17,7	32,7	39,3	63,9
4.40	10 \ 140			400 \ 140	4	

 $\gamma_{Ms} = 1.43$ pour M8 à M16 et $\gamma_{Ms} = 1.5$ pour M20 à M24

Charges recommandées (N_{rec}, V_{rec}) pour une cheville en pleine masse en kN

 $N_{rec} = \frac{N_{Rk} *}{\gamma_{M} \cdot \gamma_{F}}$

*Valeurs issues d'essais (tiges classe 10.9) $V_{rec} = \frac{V_{Rk} *}{\gamma_{M.\gamma_F}}$

TRACTION

Dimensions	M8	M10	M12	M16	M20	M24
h _{ef}	80	90	110	125	170	210
N _{rec}	8,6	10,1	14,0	19,9	33,9	47,1

 $\gamma_F=1.4$; $\gamma_{Mc}=1.5$ pour M8 et $\gamma_{Mc}=1.8$ pour M10 à M24

CISAILLEMENT

Dimensions	M8	M10	M12	M16	M20	M24
V_{rec}	5,5	9,4	12,6	23,4	28,1	45,6
1 1	4 40	10 > 140		4	400 \ 140	4

 $\gamma_F = 1.4$; $\gamma_{Ms} = 1.43$ pour M8 à M16 et $\gamma_{Ms} = 1.5$ pour M20 à M24

SPIT Méthode CC (valeurs issues de l'ETE)

TRACTION en kN

Résistance à la rupture extraction-glissement pour béton sec, humide (1)

$$N_{Rd,p} = N_{Rd,p}^0$$
 . f_b

$N^0_{Rd,p}$			r	l upture ext	Résistance traction-gl	
Dimensions	M8	M10	M12	M16	M20	M24
h _{ef}	80	90	110	125	170	210
-40°C à +40°C	12,1	14,1	19,6	27,9	47,5	66,0

 $\gamma_{Mc} = 1.5$ pour M8 et $\gamma_{Mc} = 1.8$ pour M10 à M24

¬ Résistance à la rupture cône béton pour béton sec, humide (1)

$$N_{Rd,c} = N_{Rd,c}^0$$
 . f_b . Ψ_s . $\Psi_{c,N}$

$N^{O}_{Rd,p}$			Résistance	à l'ELU -	rupture cô	ne béton
Dimensions	M8	M10	M12	M16	M20	M24
h _{ef}	80	90	110	125	170	210
-40°C à +40°C	24,0	23,9	32,3	39,1	62,1	85,2

 $\gamma_{Mc}=$ 1,5 pour M8 et $\gamma_{Mc}=$ 1,8 pour M10 à M24

¬ Résistance à la rupture béton en bord de dalle

$$V_{Rd,c} = V_{Rd,c}^0$$
 . f_b . $f_{\beta,V}$. $\Psi_{S-C,V}$

V ⁰ _{Rd,c}	Résistance à l'ELU - rupture béton bord de dalle à la distance aux bords minimale (C _{min})									
Dimensions	M8	M8 M10 M12 M16 M20 I								
h _{ef}	80	80	90	110	125	170				
C _{min}	40	50	60	80	100	120				
S _{min}	40	50	60	80	100	120				
V ⁰ Rd,c	2,5	3,8	5,5	9,4	15,4	21,9				

 $\gamma_{Mc} = 1,5$

¬ Résistance à la rupture par effet de levier

$$V_{Rd,cp} = V_{Rd,cp}^0$$
 . f_b . Ψ_s . $\Psi_{c,N}$

V ^O Rd,cp	Résistance à l'ELU - rupture par effet levier								
Dimensions	M8	M8 M10 M12 M16 M20 M2							
h _{ef}	80	90	110	125	170	210			
-40°C à +40°C	24,1	33,9	47,0	67,0	113,9	158,3			

$$\gamma_{Mcp} = 1,5$$

¬ Résistance à la rupture acier

$N_{Rd,s}$			Résistance à l'ELU - rupture acier						
Dimensions	M8	M10	M12	M16	M20	M24			
Tige classe 5.8*	12,0	19,3	28,0	52,0	81,3	118,0			
Tige classe 8.8*	19,3	30,7	44,7	84,0	130,7	188,0			
Tige classe 10.9*	26,4	41,4	60,0	112,1	175,0	252,1			
Tige inox A4	13,7	21,7	31,6	58,8	91,7	132,1			

Tige standard classe 5.8 et 8.8 : $\gamma_{Ms} = 1,5$ Tige standard classe 10.9 : $\gamma_{Ms} = 1.4$ Tige standard inox A4 : $\gamma_{Ms} = 1.87$

(1) Le béton se trouvant dans la zone de l'ancrage est saturé en eau. Le scellement peut être effectué sans avoir à éliminer l'eau, dans ce cas les valeurs ci-dessus ne peuvent être prises en compte, il faut utiliser les valeurs de l'ETE dédiées pour l'utilisation, selon la catégorie 2.

¬ Résistance à la rupture acier

$V_{Rd,s}$			Résistance à l'ELU - rupture acier					
Dimensions	M8	M10	M12	M16	M20	M24		
Tige classe 5.8*	7,36	11,6	16,9	31,2	48,8	70,4		
Tige classe 8.8*	11,68	18,6	27,0	50,4	78,4	112,8		
Tige classe 10.9*	12,2	19,3	28,1	52,0	81,3	117,3		
Tige inox A4	7,3	11,9	17,3	32,7	51,3	73,1		

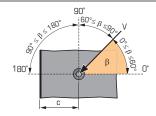
Tige standard classe 5.8 et 8.8 : $\gamma_{Ms} = 1,25$

Tige standard classe 10.9 : $\gamma_{Ms} = 1.5$

Tige standard inox A4 : $\gamma_{Ms} = 1,56$

 $N_{Rd} = min(N_{Rd,p}; N_{Rd,c}; N_{Rd,s})$ $\beta_N = N_{Sd} / N_{Rd} \le 1$

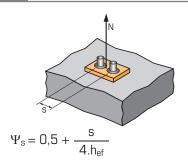
 $V_{Rd} = min(V_{Rd,c}; V_{Rd,cp}; V_{Rd,s})$ $\beta_V = V_{Sd} / V_{Rd} \le 1$


$\beta_N + \beta_V \le 1.2$

f_b INFLUENCE DE LA RESISTANCE DU BETON

Classe de béton	f _b
C25/30	1,02
C30/37	1,04
C40/50	1,07
C50/60	1,09

INFLUENCE DE LA DIRECTION DE LA CHARGE DE CISAILLEMENT


Angle β [°]	f _{β,} ν
0 à 55	1
60	1,1
70	1,2
80	1,5
90 à 180	2

SPIT Méthode CC (valeurs issues de l'ETE)

INFLUENCE DE L'ENTRAXE SUR LA CHARGE DE TRACTION POUR LA RUPTURE CONE BETON


 $s_{min} < s < s_{cr,N}$ $s_{cr,N} = 2.h_{ef}$

 Ψ_{S} doit être utilisé pour chaque entraxe agissant sur le groupe de chevilles.

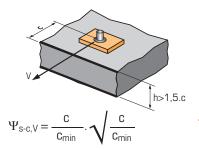
ENTRAXE S		Coeff	efficient de réduction $\Psi_{ extsf{s}}$ Béton non fissuré				
Dimensions	M8	M10	M12	M16			
40	0,58						
50	0,60	0,59					
60	0,63	0,61	0,59				
80	0,67	0,65	0,62	0,61			
100	0,71	0,69	0,65	0,63			
150	0,81	0,78	0,73	0,70			
200	0,92	0,87	0,80	0,77			
250	1,00	0,96	0,88	0,83			
300		1,00	0,95	0,90			
330			1,00	0,94			
375				1,00			

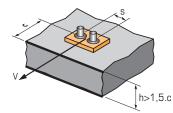
ENTRAXE S	Coefficient de réduction Béton non fissu					
Dimensions	M20	M24				
100	0,60					
120	0,62	0,60				
150	0,65	0,62				
180	0,68	0,64				
200	0,70	0,66				
250	0,75	0,70				
350	0,84	0,78				
450	0,94	0,86				
510	1,00	0,90				
630		1,00				
750		1,00				

Yen Influence de la distance aux bords sur la charge de traction pour la rupture cone beton

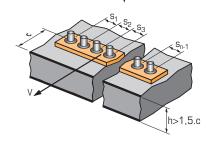
 $c_{min} < c < c_{cr,N}$

 $c_{cr,N} = h_{ef}$


 $\Psi_{\text{c,N}}$ doit être utilisé pour chaque distance aux bords agissant sur le groupe de chevilles.


DISTANCES AUX BORDS C		Coeffic	ient de rédu Béton n	oction $\Psi_{c,N}$
Dimensions	M8	M10	M12	M16
40	0,50			
50	0,56	0,53		
60	0,63	0,58	0,52	
80	0,75	0,69	0,61	0,57
120	1,00	0,92	0,80	0,73
135		1,00	0,86	0,79
165			1,00	0,91
190				1,00

DISTANCES AUX BORDS C	Coefficient de réduction $\Psi_{ extsf{c,N}}$ Béton non fissuré					
Dimensions	M20 M24					
100	0,54					
120	0,60	0,54				
150	0,69	0,61				
180	0,78	0,68				
200	0,84	0,73				
255	1,00	0,86				
315		1,00				


Coefficient de réduction $\Psi_{s,r,v}$

$\Psi_{ ext{s-c,V}}$ Influence de la distance aux bords sur la charge de cisaillement pour la rupture bord de dalle

$$\Psi_{\text{s-c,V}} = \frac{3.\text{c} + \text{s}}{6.\text{c}_{\text{min}}} \cdot \sqrt{\frac{\text{c}}{\text{c}_{\text{min}}}}$$

¬ Cas d'une cheville unitaire

										В	e réductio éton non	fissuré
C C _{min}	1,0	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
$\Psi_{s-c,V}$	1,00	1,31	1,66	2,02	2,41	2,83	3,26	3,72	4,19	4,69	5,20	5,72

¬ Cas d'un groupe de 2 chevilles

										В	éton non	fissuré
S Cmin	1,O	1,2	1,4	1,6	1,8	2,0	2,2	2,4	2,6	2,8	3,0	3,2
1,0	0,67	0,84	1,03	1,22	1,43	1,65	1,88	2,12	2,36	2,62	2,89	3,16
1,5	0,75	0,93	1,12	1,33	1,54	1,77	2,00	2,25	2,50	2,76	3,03	3,31
2,0	0,83	1,02	1,22	1,43	1,65	1,89	2,12	2,38	2,63	2,90	3,18	3,46
2,5	0,92	1,11	1,32	1,54	1,77	2,00	2,25	2,50	2,77	3,04	3,32	3,61
3,0	1,00	1,20	1,42	1,64	1,88	2,12	2,37	2,63	2,90	3,18	3,46	3,76
3,5		1,30	1,52	1,75	1,99	2,24	2,50	2,76	3,04	3,32	3,61	3,91
4,0			1,62	1,86	2,10	2,36	2,62	2,89	3,17	3,46	3,75	4,05
4,5				1,96	2,21	2,47	2,74	3,02	3,31	3,60	3,90	4,20
5,0					2,33	2,59	2,87	3,15	3,44	3,74	4,04	4,35
5,5						2,71	2,99	3,28	3,71	4,02	4,33	4,65
6,0						2,83	3,11	3,41	3,71	4,02	4,33	4,65

Cas d'un groupe de 3 chevilles et plus

$$\Psi_{\text{s-c,V}} = \frac{3.c \, + \, s_1 \, + \, s_2 \, + \, s_3 \, + \ldots + \, s_{\text{n-1}}}{3.n.c_{\text{min}}} \, . \, \sqrt{\frac{c}{c_{\text{min}}}}$$