
Product Environmental Profile

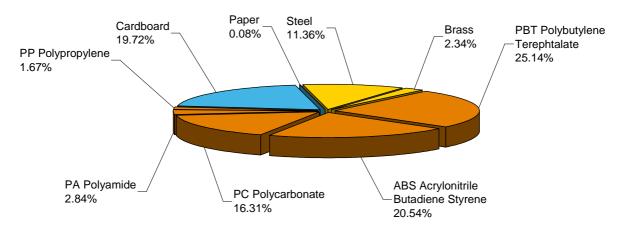
OVALIS 2 way switch with claws

Product Environmental Profile - PEP

Product overview

The main purpose of the "OVALIS 2 way switch with claws" is to give solutions for comfort or for light management.

This range consists of: 2 way switches / fan control switches / fan control push-buttons.


The representative product used for the analysis is OVALIS 2 way switch with claws (\$265204).

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the product range is from 65 g and 75 g including packaging. It is 71.85 g for the OVALIS 2 way switch with claws Ref: S265204 The constituent materials are distributed as follows:

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive

Manufacturing

The OVALIS 2 way switch with claws product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized, based on the European Union's packaging directive. The OVALIS 2 way switch with claws packaging weight is 15.43 g. It consists of Cardboard 14.17 g, Paper 0.06 g and PP Polypropylene 1.2 g.

The product distribution flows have been optimised by setting up local distribution centres close to the market areas.

Use

The products of the OVALIS 2 way switch with claws range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

End of life

At end of life, the products in the OVALIS 2 way switch with claws have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range doesn't need any special end-of-life treatment. According to countries' practices this product can enter the usual end-of-life treatment process.

The recyclability potential of the products has been evaluated using the "Code- BV recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio is: 29.13%.

Product Environmental Profile - PEP

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I) Use (U), and End of life (E).

Modelling hypothesis and method: the calculation was performed on the OVALIS 2 way switch with claws Ref: S265204

- product packaging: is included
- installation components: no special components included.
- scenario for the Use phase: this product range is included in the category Energy passing product: (assumed service life is 20 years)

The electrical power model used for calculation is EUROPEAN model.

End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Presentation of the product environmental impacts

Environmental indicators	Unit	For 1 OVALIS 2 way switch with claws Ref: S265204					
		S = M + D + I + U + E	М	D	- 1	U	E
Raw Material Depletion	Y-1	1.19E-16	1.18E-16	1.17E-19	0.00E+00	0.00E+00	1.46E-19
Energy Depletion	MJ	8.13E+00	7.939	8.59E-02	0.00E+00	0.00E+00	1.07E-01
Water depletion	dm ³	2.10E+00	2.082	8.15E-03	0.00E+00	0.00E+00	1.02E-02
Global Warming	g≈CO ₂	4.22E+02	4.07E+02	6.767	0.00E+00	0.00E+00	8.50E+00
Ozone Depletion	g≈CFC-11	8.15E-05	7.07E-05	4.81E-06	0.00E+00	0.00E+00	6.01E-06
Air Toxicity	m ³	1.03E+05	1.00E+05	1.28E+03	0.00E+00	0.00E+00	1.60E+03
Photochemical Ozone Creation	g≈C ₂ H ₄	2.97E-01	2.84E-01	5.81E-03	0.00E+00	0.00E+00	7.27E-03
Air acidification	g≈H ⁺	8.06E-02	7.86E-02	8.67E-04	0.00E+00	0.00E+00	1.08E-03
Water Toxicity	dm ³	2.10E+02	2.09E+02	8.50E-01	0.00E+00	0.00E+00	1.06E+00
Water Eutrophication	g≈PO ₄	5.54E-02	5.52E-02	1.13E-04	0.00E+00	0.00E+00	1.41E-04
Hazardous waste production	kg	6.47E-03	6.46E-03	2.53E-06	0.00E+00	0.00E+00	3.16E-06

Life cycle assessment has been performed with the EIME software (Environmental Impact and Management Explorer), version 4.0, and with its database version V4.0 (BDD10,0,2008).

The M phase is the life cycle phase which has the greatest impact on the majority of environmental indicators.

System approach

For many commercial references in the Ovalis range, the outer frame and the insert are packaged in the same box. By comparison with other ranges in Schneider or competitors, this fact brings an environnemtal benefit by having less packaging with approximately a 10% reduction for the carton surface used.

As the products of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003), they can be incorporated without any restriction in an assembly or an installation subject to this Directive.

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Product Environmental Profile - PEP

Glossary

Raw Material Depletion (RMD)

Energy Depletion (ED)

Water Depletion (WD)

Global Warming (GW)

Ozone Depletion (OD)

Air Toxicity (AT)

Photochemical Ozone Creation (POC)

Air Acidification (AA)

Water Toxicity (WT)

Water Eutrophication (WE)

Hazardous Waste Production (HWP)

This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.

This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources.

This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.

This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm³.

The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is quantified in gram equivalent of CO_2 .

This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.

This indicator represents the air toxicity in a human environment. It takes into account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.

This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C_2H_4).

The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests.

The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H^+ .

This indicator represents the water toxicity. It takes into account the usually accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the water volume needed to dilute these substances down to acceptable concentrations.

Eutrophication is a natural process defined, as the enrichment in mineral salts of marine or lake waters, or a process accelerated by human intervention, defined as the enrichment in nutritive elements (phosphorous compounds, nitrogen compounds and organic matter). This indicator calculates the water eutrophication of lakes and marine waters by the release of specific substances in the effluents. It is expressed in grams equivalency of PO43-(phosphate).

This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.

Schneider Electric Industries SAS

35, rue Joseph Monier CS 30323 F- 92506 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 896 313 776 €

www.schneider-electric.com