Product name	Eaton Moeller series NZM molded case circuit breaker electronic
Part no.	NZMS3-4-VE400/250-AVE
EAN	4015081130870
Product Length/Depth	346 millimetre
Product height	260 millimetre
Product width	230 millimetre
Product weight	14 kilogram
Compliances	RoHS conform
Certifications	IEC/EN 60947 IEC
Product Tradename	NZM
Product Type	Molded case circuit breaker
Product Sub Type	Electronic
Application	690 V
Type	Circuit breaker
Circuit breaker frame type	NZM3
Accessories required	NZM3-4-XAVS
Number of poles	Four-pole
Amperage Rating	400 A
Release system	Electronic release
Features	Motor drive optional Protection unit
Special features	2) Up to $240 \mathrm{~mm}^{2}$ can be connected depending on the cable manufacturer. Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated shortcircuit breaking capacity Im) R.m.s. value measurement and "thermal memory" Adjustable time delay setting to overcome current peaks tr at 6 x Ir also infinity (without overload releases) Adjustable delay time tsd i't constant function: switchable Rated current = rated uninterrupted current: 400 A Reduced neutral conductor protection
Voltage rating	$690 \mathrm{~V}-690 \mathrm{~V}$
Rated insulation voltage (Ui)	1000 V AC
Rated impulse withstand voltage (Uimp) at auxiliary contacts	6000 V
Rated impulse withstand voltage (Uimp) at main contacts	8000 V
Current rating of neutral conductor	250 A 60% of phase conductor
Rated short-time withstand current ($\mathrm{t}=0.3 \mathrm{~s}$)	3.3 kA
Rated short-time withstand current ($\mathrm{t}=1 \mathrm{~s}$)	3.3 kA
Instantaneous current setting (li) - min	800 A
Instantaneous current setting (i) - max	4400 A
Overload current setting (Ir) - min	200 A
Overload current setting (Ir) - max	400 A
Short delay current setting (Isd) - min	800 A
Short delay current setting (Isd) - max	4000 A
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	100 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at 400/415 V, 50/60 Hz	70 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	65 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	18 kA
Rated short-circuit breaking capacity Ics (IEC/EN 60947) at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	6 kA
Rated short-circuit making capacity Icm at $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	220 kA

Rated short-circuit making capacity Icm at $400 / 415 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	154 kA
Rated short-circuit making capacity Icm at $440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	143 kA
Rated short-circuit making capacity Icm at $525 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	80 kA
Rated short-circuit making capacity Icm at $690 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	50 kA
Short-circuit total breaktime	$<10 \mathrm{~ms}$
Electrical connection type of main circuit	Screw connection
Isolation	300 V AC (between the auxiliary contacts) 500 V AC (between auxiliary contacts and main contacts)
Number of operations per hour - max	60
Handle type	Rocker lever
Utilization category	A (IEC/EN 60947-2)
Overvoltage category	III
Pollution degree	3
Lifespan, electrical	2000 operations at $415 \mathrm{~V} \mathrm{AC}-3$ 3000 operations at 690 V AC-1 2000 operations at $400 \mathrm{~V} \mathrm{AC}-3$ 5000 operations at $400 \mathrm{~V} \mathrm{AC}-1$ 1000 operations at $690 \mathrm{~V} \mathrm{AC}-3$ 2000 operations at $415 \mathrm{~V} \mathrm{AC}-1$
Direction of incoming supply	As required
Mounting Method	Withdrawable Built-in device slide-in technique (withdrawable)
Degree of protection	IP20 IP20 (basic degree of protection, in the operating controls area)
Degree of protection (IP), front side	IP66 (with door coupling rotary handle) IP40 (with insulating surround)
Degree of protection (terminations)	IP10 (tunnel terminal) IPOO (terminations, phase isolator and strip terminal)
Protection against direct contact	Finger and back-of-hand proof to VDE 0106 part 100
Shock resistance	20 g (half-sinusoidal shock 20 ms)
Number of auxiliary contacts (change-over contacts)	0
Number of auxiliary contacts (normally closed contacts)	0
Number of auxiliary contacts (normally open contacts)	0
Position of connection for main current circuit	Back side
Climatic proofing	Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30
Special features	2) Up to $240 \mathrm{~mm}^{2}$ can be connected depending on the cable manufacturer. Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit breaker (Rated shortcircuit breaking capacity Icn) R.m.s. value measurement and "thermal memory" Adjustable time delay setting to overcome current peaks tr at $6 \mathrm{x} \operatorname{Ir}$ also infinity (without overload releases) Adjustable delay time tsd it constant function: switchable Rated current $=$ rated uninterrupted current: 400 A Reduced neutral conductor protection
Lifespan, mechanical	15000 operations
Standard terminals	Screw connection
Optional terminals	Box terminal. Connection on rear. Tunnel terminal
Terminal capacity (control cable)	$\begin{aligned} & 0.75 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}(1 \mathrm{x}) \\ & 0.75 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}(2 \mathrm{x}) \end{aligned}$
Terminal capacity (aluminum solid conductor/cable)	$16 \mathrm{~mm}^{2}$ (1x) at tunnel terminal
Terminal capacity (aluminum stranded conductor/cable)	$50 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(2 \mathrm{x})$ at 2-hole tunnel terminal $50 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 \mathrm{x})$ at 2 -hole tunnel terminal $25 \mathrm{~mm}^{2}-185 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal
Terminal capacity (copper busbar)	Min. $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection M10 at rear-side screw connection Max. $30 \mathrm{~mm} \times 10 \mathrm{~mm}+30 \mathrm{~mm} \times 5 \mathrm{~mm}$ direct at switch rear-side connection Max. $10 \mathrm{~mm} \times 50 \mathrm{~mm}(2 \mathrm{x})$ at rear-side width extension
Terminal capacity (copper solid conductor/cable)	$16 \mathrm{~mm}^{2}(1 \mathrm{x})$ at tunnel terminal $300 \mathrm{~mm}^{2}(2 \mathrm{x})$ at rear-side width extension $16 \mathrm{~mm}^{2}$ (1x) direct at switch rear-side connection $16 \mathrm{~mm}^{2}(2 x)$ direct at switch rear-side connection $16 \mathrm{~mm}^{2}(2 x)$ at box terminal
Terminal capacity (copper stranded conductor/cable)	$16 \mathrm{~mm}^{2}-185 \mathrm{~mm}^{2}(1 \mathrm{x})$ at 1 -hole tunnel terminal $25 \mathrm{~mm}^{2}-120 \mathrm{~mm}^{2}(2 \mathrm{x})$ at box terminal $35 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(1 \mathrm{x})$ at box terminal $25 \mathrm{~mm}^{2}-240 \mathrm{~mm}^{2}(2 \mathrm{x})$ direct at switch rear-side connection

Rated operational current for specified heat dissipation (In)	400 A
Equipment heat dissipation, current-dependent	72 W
Ambient operating temperature - min	$-25^{\circ} \mathrm{C}$
Ambient operating temperature - max	$70^{\circ} \mathrm{C}$
Ambient storage temperature - min	$40^{\circ} \mathrm{C}$
Ambient storage temperature - max	$70^{\circ} \mathrm{C}$
10.2.2 Corrosion resistance	Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures	Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat	Meets the product standard's requirements.
10.2.3.3 Resist. of insul. mat. to abnormal heat/fire by internal elect. effects	Meets the product standard's requirements.
10.2.4 Resistance to ultra-violet (UV) radiation	Meets the product standard's requirements.
10.2.5 Lifting	Does not apply, since the entire switchgear needs to be evaluated.
10.2.6 Mechanical impact	Does not apply, since the entire switchgear needs to be evaluated.
10.2.7 Inscriptions	Meets the product standard's requirements.
10.3 Degree of protection of assemblies	Does not apply, since the entire switchgear needs to be evaluated.
10.4 Clearances and creepage distances	Meets the product standard's requirements.
10.5 Protection against electric shock	Does not apply, since the entire switchgear needs to be evaluated.
10.6 Incorporation of switching devices and components	Does not apply, since the entire switchgear needs to be evaluated.
10.7 Internal electrical circuits and connections	Is the panel builder's responsibility.
10.8 Connections for external conductors	Is the panel builder's responsibility.
10.9.2 Power-frequency electric strength	Is the panel builder's responsibility.
10.9.3 Impulse withstand voltage	Is the panel builder's responsibility.
10.9.4 Testing of enclosures made of insulating material	Is the panel builder's responsibility.
10.10 Temperature rise	The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
10.11 Short-circuit rating	Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.12 Electromagnetic compatibility	Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.13 Mechanical function	The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.
Functions	Systems, cable, selectivity and generator protection

