Product Environmental Profile

ODACE Electronic Floor Thermostat

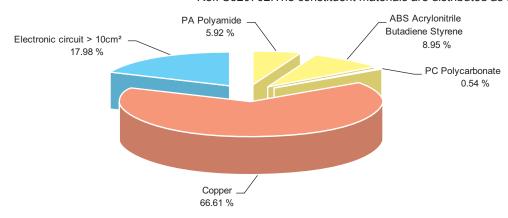
Product Environmental Profile - PEP

Product Overview -

The main function of the ODACE Electronic Floor thermostat heat w/sensor 10 A product range is to control floor temperature.

This range consists of: Electronic thermostats room heat / cool and floor heat w/sensor The representative product used for the analysis is ODACE Electronic Floor thermostat heat w/sensor 10 A Ref: S520507 and ODACE 1 gang Outer Plate Styl white Ref: S520702.

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with the similar technology.


The extrapolation rules are described in the following chapters.

The environmental analysis was performed in conformity with ISO 14040.

This analysis takes the stages of the life cycle of the product into account.

Constituent materials.

The mass of the product range is from 200 g and 205 g no including packaging. It is 203 g for the ODACE Electronic floor thermostats heat w/sensor 10 A Ref: S520507 and the ODACE 1 gang Outer Plate Styl white Ref: S520702. The constituent materials are distributed as follows:

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or in the authorised proportions, lead, mercury, cadmium, chromium hexavalent, flame retardant (polybromobiphenyles PBB, polybromodiphenylthers PBDE) as mentioned in the Directive.

Manufacturing.

The ODACE Electronic floor thermostat product range is manufactured at a Schneider Electric production site on which an ISO 14001 certified environmental management system has been established.

Distribution -

The weight and volume of the packaging have been reduced, in compliance with the European Union's packaging directive.

The ODACE Electronic floor thermostat packaging weight is 37.98 g. It consists of :

MATERIAL	WEIGHT
PET (Polyethylene Terephthalate, Film)	2.2
Paper (Recycled, With Deinking)	6.38
Cardboard (96 % recycled, grey board)	28
PE (Low Density, LDPE, Film)	1.4
Total	37.98

The product distribution flows have been optimised by setting up local distribution centres close to the market areas.

Product Environmental Profile - PEP

Utilization _

The products of the ODACE Electronic floor thermostat and ODACE 1 gang Outer Plate Styl white range do not generate environmental pollution requiring special precautionary measures (noise, emissions, and so on) in using phase.

The dissipated power depends on the conditions under which the product is implemented and used.

The electrical power consumed by the ODACE Electronic floor thermostat and ODACE 1 gang Outer Plate Styl white range spreads out between 1 W and 1.3 W.

It is 1.3 W in active mode and 40 % in standby mode for the referenced ODACE Electronic floor thermostats heat w/sensor 10 A Ref: S520507.

End of life.

At end of life, the products in the ODACE Electronic floor thermostats have been optimized to decrease the amount of waste and valorise the components and materials of the product in the usual end of life treatment process.

The design and information have been achieved so as components are able to enter the usual end of life treatment processes as appropriate: depollution if recommended, reuse and/or dismantling if recommended so as to increase the recycling performances and shredding for separating the rest of materials.

The potential of recyclability of the products has been evaluated using the Codde "recyclability and recoverability calculation method" (version V1, 20 Sep. 2008) and published by ADEME (French Agency for Environment and Energy Management).

According this method, the potential recyclability ratio is: 76 %.

The recommendations to optimize the recycling performance are detailed in the product "End of Life Instructions" of this product range.

Environmental impacts

The environmental impacts were analysed for the Manufacturing (M) phases, the Distribution (D) and the Utilization (U) phases.

This product range is included in the category Energy consuming (assumed lifetime service is 10 years and using scenario: Loading rate is 100 % and uptime percentage is 100 %).

The EIME (Environmental Impact and Management Explorer) software, version 4.0, and its database, version 10.0 were used for the life cycle assessment (LCA).

The calculation has been done on ODACE Electronic floor thermostats heat w/sensor 10 A Ref: S520507 and ODACE 1 gang Outer Plate Styl white Ref: S520702.

The electrical power model used is European model.

Presentation of the product environmental impacts:

Indicator	Unit	For 1 ODACE Electronic floor thermostats heat w/sensor 10 A Ref: S520507 and ODACE 1 gang Outer Plate Styl Ref: S520702				
		S = M + D + U	M	D	U	
Raw Material Depletion	Y-1	3.03E ⁻¹⁴	2.92E ⁻¹⁴	4.47E-17	1.04E ⁻¹⁵	
Energy Depletion	MJ	9.50E ⁺⁰²	19.193	2.772	9.28E ⁺⁰²	
Water Depletion	dm3	1.63E ⁺⁰²	18.566	1.199	1.43E ⁺⁰²	
Global Warming	g ~CO2	4.88E ⁺⁰⁴	1.27E ⁺⁰³	1.21E ⁺⁰²	4.74E ⁺⁰⁴	
Ozone Depletion	g ~CFC-11	4.63E ⁻⁰³	4.81E ⁻⁰⁴	6.78E ⁻⁰⁵	4.08E ⁻⁰³	
Air Toxicity	m3	9.95E ⁺⁰⁶	7.93E ⁺⁰⁵	2.57E ⁺⁰⁴	9.14E ⁺⁰⁶	
Photochemical Ozone Creation	g ~C2H4	17.106	5.54E ⁻⁰¹	9.86E ⁻⁰²	1.65E ⁺⁰¹	
Air Acidification	g ~H+	8.222	7.01E ⁻⁰¹	1.82E ⁻⁰²	7.50E ⁺⁰⁰	
Water Toxicity	dm3	1.18E ⁺⁰⁴	2.81E ⁺⁰²	33.922	1.15E ⁺⁰⁴	
Water Eutrophication	g ~PO4	2.27E ⁻⁰¹	7.61E ⁻⁰²	1.54E ⁻⁰²	1.35E ⁻⁰¹	
Hazardous Waste Production	kg	7.70E ⁻⁰¹	1.42E ⁻⁰²	1.47E ⁻⁰⁴	7.56E ⁻⁰¹	

The life cycle analysis shows that the U phase (M, D or U phase) is the life cycle phase which has the greatest impact on the majority of environmental indicators. The environmental parameters of this phase have been optimized at the design stage.

Product Environmental Profile - PEP

System approach -

As the product of the range are designed in accordance with the RoHS Directive (European Directive 2002/95/EC of 27 January 2003). they can be incorporated without any restriction within an assembly or an installation submitted to this Directive.

N.B.: please note that the environmental impacts of the product depend on the use and installation conditions of the product.

Impacts values given above are only valid within the context specified and cannot be directly used to draw up the environmental assessment of the installation.

Glossary.

Raw Material Depletion (RMD)

This indicator quantifies the consumption of raw materials during the life cycle of the product. It is expressed as the fraction of natural resources that disappear each year, with respect to all the annual reserves of the material.

Energy Depletion (ED)

This indicator gives the quantity of energy consumed, whether it be from fossil, hydroelectric, nuclear or other sources.

This indicator takes into account the energy from the material produced during combustion. It is expressed in MJ.

Water Depletion (WD)

This indicator calculates the volume of water consumed, including drinking water and water from industrial sources. It is expressed in dm3.

Global Warming (GW)

The global warming of the planet is the result of the increase in the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is quantified in gram equivalent of CO₂.

Ozone Depletion (OD)

This indicator defines the contribution to the phenomenon of the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent of CFC-11.

Photochemical Ozone Creation (POC)

This indicator quantifies the contribution to the "smog" phenomenon (the photochemical oxidation of certain gases which generates ozone) and is expressed in gram equivalent of ethylene (C₂H₄).

Air Acidification (AA)

The acid substances present in the atmosphere are carried by rain. A high level of acidity in the rain can cause damage to forests. The contribution of acidification is calculated using the acidification potentials of the substances concerned and is expressed in mode equivalent of H+.

Hazardous Waste Production (HWP)

This indicator calculates the quantity of specially treated waste created during all the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the production of electrical power, etc. It is expressed in kg.

Registration No.: SCHN-2011-242-V0 | Programme information: www.pep-ecopassport.org

PEP in compliance with PEPecopassport according to PEP-AP0011 rules

ACV rules are available from PEP editor on request

Schneider Electric Industries SAS

35, rue Joseph Monier CS30323 F - 92506 Rueil Malmaison Cedex

RCS Nanterre 954 503 439 Capital social 896 313 776 € www.schneider-electric.com

We are committed to safeguarding our planet by "Combining innovation and continuous improvement to meet the new environmental challenges".

Published by: Schneider Electric

2010 - Schneider Electric - All rights reserved