

EKS36-2KF0B0S14

EKS/EKM36

MOTOR FEEDBACK SYSTEMS ROTARY HIPERFACE DSL®

Illustration may differ

Ordering information

Туре	Part no.
EKS36-2KF0B0S14	1103061

Other models and accessories → www.sick.com/EKS_EKM36

Detailed technical data

Features

Special device	✓
Specialty	Low-resistance connection cable between housing potential and mass $^{1)}$ Hybrid ball bearing
Standard reference device	EKS36-2KF0B020A, 1084232

¹⁾ If encoders with hybrid bearings are exposed to high temperatures and high shock and vibration stresses, this could result in decreased availability. The user must perform suitable tests.

Safety-related parameters

Safety integrity level	SIL 2 (IEC 61508), SILCL2 (EN 62061) 1)
Category	3 (EN ISO 13849)
Test rate	1 h
Maximum demand rate	200 μs
Performance level	PL d (EN ISO 13849)
Safety-related resolution	Channel 1 = 20 bit, channel 2 = 9 bit
PFH _D : Probability of dangerous failure per hour	4 x 10 ^{-8 2)}
T _M (mission time)	20 years (EN ISO 13849)
MTTFd: mean time to dangerous failure	500 years (EN ISO 13849)

 $^{^{1)}}$ For more detailed information on the exact configuration of your machine/unit, please consult your relevant SICK branch office.

Performance

Position	
Resolution per revolution	20 bit
Signal noise (σ)	± 4 " (See "signal noise" and "attenuation" diagrams)
Number of the absolute ascertainable revolutions	
Available memory area	8,192 Byte
Measurement step per revolution	1,048,576
Vibration	
Measurement principle	Optical

²⁾ The values displayed apply to a diagnostic degree of coverage of 90%, which must be achieved by the external drive system.

Interfaces

Type of code for the absolute value	Binary
Code sequence	Increasing, when turning the shaft For clockwise rotation, looking in direction "A" (see dimensional drawing)
Communication interface	HIPERFACE DSL®
Initialization time	Max. 500 ms ¹⁾
Measurement external temperature resistance	32 bit value, without prefix (1 Ω) 0 209.600 Ω At –40 °C +160 °C: NTC +-2K; PTC+-3K

 $^{^{1)}}$ From reaching a permitted operating voltage.

Electrical data

Connection type	Male connector, 4-pin
Supply voltage	7 V 12 V
Warm-up time voltage ramp	Max. 180 ms ¹⁾
Recommended supply voltage	8 V
Current consumption	≤ 150 mA (See current consumption diagram) ²⁾
Output frequency for the digital positionvalue	0 kHz 75 kHz

¹⁾ Duration of voltage ramp between 0 and 7.0 V.

Mechanical data

Shaft version	Tapered shaft
Flange type / stator coupling	Stator coupling
Dimensions	See dimensional drawing
Weight	0.1 kg
Moment of inertia of the rotor	4.5 gcm ²
Operating speed	≤ 12,000 min ⁻¹
Angular acceleration	≤ 500,000 rad/s²
Operating torque	0.2 Ncm
Start up torque	0.3 Ncm
Permissible movement static	\pm 0.1 mm, \pm 0.5 mm radial, axial
Permissible movement dynamic	± 0.05 mm radial ± 0.1 mm axial
Life of ball bearings	3.6 x 10^9 revolutions

Ambient data

Operating temperature range	-20 °C +115 °C ¹⁾
Storage temperature range	-40 °C +125 °C ²⁾
Relative humidity/condensation	90 %, Condensation not permitted

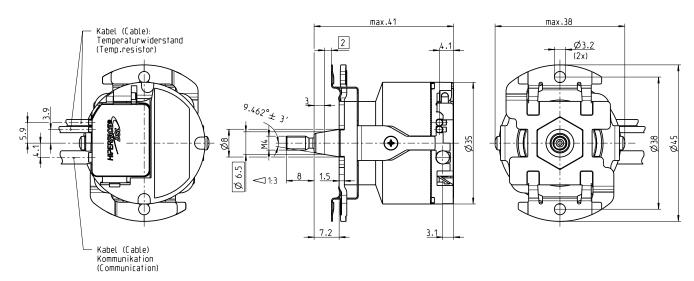
¹⁾ Given typical thermal connection between motor flange and encoder stator coupling. The max. internal sensor temperature may not exceed 125 °C.

 $^{^{2)}}$ Current rating applies when using interface circuit suggestions as shown in HIPERFACE DSL @ manual (8017595).

²⁾ Without package.

³⁾ The EMC according to the standards quoted is achieved when the motor feedback system is mounted in an electrically conductive housing, which is connected to the central earthing point of the motor controller via a cable screen. The GND-(0 V) connection of the supply voltage is also grounded here. If other shielding concepts are used, users must perform their own tests.

⁴⁾ With mating connector inserted and closed cover.

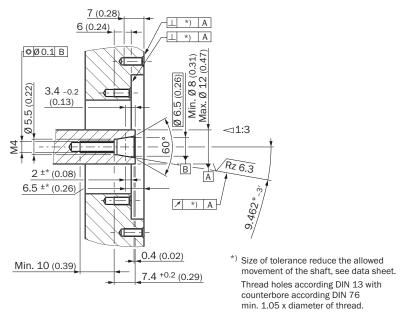

Resistance to shocks	100 g, 6 ms (according to EN 60068-2-27)
Frequency range of resistance to vibrations	50 g, 10 Hz 2,000 Hz (EN 60068-2-6)
EMC	According to EN 61000-6-2, EN 61000-6-4 and IEC 61326-3 3)
Enclosure rating	IP40, with mating connector inserted and closed cover (IEC 60529-1) 4)

¹⁾ Given typical thermal connection between motor flange and encoder stator coupling. The max. internal sensor temperature may not exceed 125 °C.

Classifications

ECLASS 5.0	27270590
ECLASS 5.1.4	27270590
LULA33 3.1.4	21210000
ECLASS 6.0	27270590
ECLASS 6.2	27270590
ECLASS 7.0	27270590
ECLASS 8.0	27270590
ECLASS 8.1	27270590
ECLASS 9.0	27270590
ECLASS 10.0	27273805
ECLASS 11.0	27273901
ECLASS 12.0	27273901
ETIM 5.0	EC001486
ETIM 6.0	EC001486
ETIM 7.0	EC001486
ETIM 8.0	EC001486
UNSPSC 16.0901	41112113

Dimensional drawing (Dimensions in mm (inch))



²⁾ Without package.

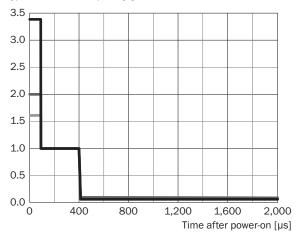
³⁾ The EMC according to the standards quoted is achieved when the motor feedback system is mounted in an electrically conductive housing, which is connected to the central earthing point of the motor controller via a cable screen. The GND-(0 V) connection of the supply voltage is also grounded here. If other shielding concepts are used, users must perform their own tests.

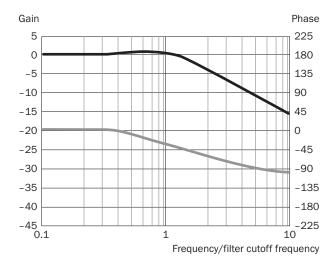
 $^{^{\}rm 4)}$ With mating connector inserted and closed cover.

Attachment specifications

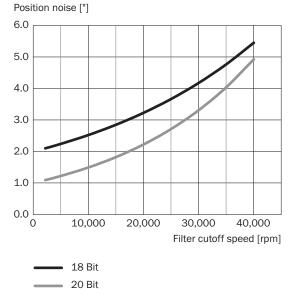
- ① Nominal position
- ② The size of the tolerance reduces the permissible wave movement, see data sheet
- ③ Threaded holes in accordance with DIN 13 with recesses in accordance with DIN 76 min. 1.05 x thread diameter


PIN assignment


Temperature sensor pin assignment


PIN	Signal	Explanation
1	T+	Thermistor connection
2	T-	Thermistor connection (to ground)
Recommended outer diameter of set of stranded wires: 2.2 mm \pm 0.1 mm		
Recommended mating connector: Harwin M80-8990205		

Diagrams



7 V 8 V 12 V

Gain [dB]

Phase [°]

Signal noise is measured as 1 standard deviation (σ) of the value distribution. Position filter cutoff speed is set by ressource 10Ah, see page 11.

Recommended accessories

Other models and accessories → www.sick.com/EKS_EKM36

	Brief description	Туре	Part no.	
Other mounting	Other mounting accessories			
	Mounting tools	BEF-MW-EKX36	2060224	
Plug connecto	ors and cables			
		DOL-0B02-G0M2XC1	2062083	
		DOL-0B02-G0M3AC2	2108944	
		DOL-0B02-G0M3XC1	2091818	
		DOL-0B02-G0M4XC1	2086286	
		DOL-0B03-G0M4XC1	2087314	

SICK AT A GLANCE

SICK is one of the leading manufacturers of intelligent sensors and sensor solutions for industrial applications. A unique range of products and services creates the perfect basis for controlling processes securely and efficiently, protecting individuals from accidents and preventing damage to the environment.

We have extensive experience in a wide range of industries and understand their processes and requirements. With intelligent sensors, we can deliver exactly what our customers need. In application centers in Europe, Asia and North America, system solutions are tested and optimized in accordance with customer specifications. All this makes us a reliable supplier and development partner.

Comprehensive services complete our offering: SICK LifeTime Services provide support throughout the machine life cycle and ensure safety and productivity.

For us, that is "Sensor Intelligence."

WORLDWIDE PRESENCE:

Contacts and other locations -www.sick.com

