
Product Environmental Profile

TeSys contactors for switching 3-phase capacitor banks

Product Environmental Profile - PEP

Product overview

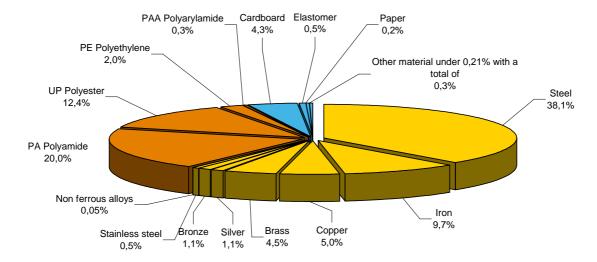
Special contactors LC1 D●K are designed for switching 3-phase, single or multiple-step capacitor banks.

Contactors fitted with a block of early make poles and damping resistors, limiting the value of the current on closing to 60 ln max.

This current limitation increases the life of all the components of the installation, in particular that of the fuses and capacitors.

This range consists of LC1 DFK, DGK, DLK, DMK, DPK, DTK and DWK.

The voltage used is 690V max. and the nominal current is between 18 and 80A.


The representative product used for the analysis is LC1DWK12M7.

The environmental impacts of this referenced product are representative of the impacts of the other products of the range which are developed with a similar technology.

The environmental analysis was performed in conformity with ISO 14040.

Constituent materials

The mass of the product range is from 430 g and 1720 g including packaging. It is 1713 g for the special contactors LC1 D●K. The constituent materials are distributed as follows:

Substance assessment

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2002/95/EC of 27 January 2003) and do not contain, or only contain in the authorised proportions, lead, mercury, cadmium, hexavalent chromium or flame retardants (polybrominated biphenyls - PBB, polybrominated diphenyl ethers - PBDE) as mentioned in the Directive

Manufacturing

The special contactors LC1 D●K product range is manufactured at a Schneider Electric production site on which an ISO14001 certified environmental management system has been established.

Distribution

The weight and volume of the packaging have been optimized, based on the European Union's packaging directive.

The special contactors LC1 D●K packaging weight is 112,1g. It consists of cardboard (74g), paper for the instruction sheet (3,7g), polyethylene foam (24g), polyethylene (9,9g) and paper for label (0,45g).

The product distribution flows have been optimised by setting up local distribution centres close to the market areas.

Product Environmental Profile - PEP

Use

The products of the special contactors LC1 D●K range do not generate environmental pollution (noise, emissions) requiring special precautionary measures in standard use.

The dissipated power depends on the conditions under which the product is implemented and used. This dissipated power is between 1,35 W and 5,715 W for the special contactors LC1 D•K product range. This dissipated power is 5,7 W for the referenced LC1DWK12M7. This thermal dissipation represents less than 0,1% of the power which passes through the product.

End of life

At end of life, the products in the special contactors LC1 D●K have been optimized to decrease the amount of waste and allow recovery of the product components and materials.

This product range doesn't need any special end-of-life treatment. According to countries' practices this product can enter the usual end-of-life treatment process.

The recyclability potential of the products has been evaluated using the "ECO-DEEE recyclability and recoverability calculation method" (version V1, 20 Sep. 2008 presented to the French Agency for Environment and Energy Management: ADEME).

According to this method, the potential recyclability ratio is: 56%.

As described in the recyclability calculation method this ratio includes only metals and plastics which have proven industrial recycling processes.

Environmental impacts

Life cycle assessment has been performed on the following life cycle phases: Materials and Manufacturing (M), Distribution (D), Installation (I) Use (U), and End of life (E).

Modeling hypothesis and method:

- the calculation was performed on the LC1DWK12M7
- product packaging: is included
- installation components: no special components included.
- scenario for the Use phase: this product range is included in the category Energy passing product: (assumed service life is 20 years and use scenario is: product dissipation is 60 W, loading rate is 30% and service uptime 30%).

The electrical power model used for calculation is European model.

End of life impacts are based on a worst case transport distance to the recycling plant (1000km)

Presentation of the product environmental impacts

Environmental indicators	Unit	For LC1DWK12M7						
		S = M + D + I + U + E	М	D	I	U	E	
Raw Material Depletion	Y-1	1,29E-12	1,29E-12	2,83E-18	0,00E+00	3,90E-15	3,49E-18	
Energy Depletion	MJ	3,62E+03	1,77E+02	2,07E+00	0,00E+00	3,44E+03	2,56E+00	
Water depletion	dm ³	6,34E+02	1,37E+02	1,97E-01	0,00E+00	4,97E+02	2,43E-01	
Global Warming	g≈CO ₂	1,86E+05	1,20E+04	1,64E+02	0,00E+00	1,74E+05	2,03E+02	

Ozone Depletion g≈CFC-11

Product Environmental Profile - PEP

Glossary

Raw Material Depletion (RMD)

This indicator quantifies the consumption of raw materials during the life cycle of

the product. It is expressed as the fraction of natural resources that disappear each

year, with respect to all the annual reserves of the material.

Energy Depletion (ED)

This indicator gives the quantity of energy consumed, whether it be from fossil,

hydroelectric, nuclear or other sources.

This indicator takes into account the energy from the material produced during

combustion. It is expressed in MJ.

Water Depletion (WD) This indicator calculates the volume of water consumed, including drinking water

and water from industrial sources. It is expressed in dm³.

Global Warming (GW)

The global warming of the planet is the result of the increase in

the greenhouse effect due to the sunlight reflected by the earth's surface being absorbed by certain gases known as "greenhouse-effect" gases. The effect is

quantified in gram equivalent of CO₂.

Ozone Depletion (OD)

This indicator defines the contribution to the phenomenon of

the disappearance of the stratospheric ozone layer due to the emission of certain specific gases. The effect is expressed in gram equivalent

of CFC-11.

Air Toxicity (AT)

This indicator represents the air toxicity in a human environment. It takes into

account the usually accepted concentrations for several gases in the air and the quantity of gas released over the life cycle. The indication given corresponds to the air volume needed to dilute these gases down to acceptable concentrations.

Photochemical Ozone Creation (POC)

This indicator quantifies the contribution to the "smog" phenomenon

(the photochemical oxidation of certain gases which generates ozone) and is

expressed in gram equivalent of ethylene (C₂H₄).

Air Acidification (AA) The acid substances present in the atmosphere are carried by rain.

A high level of acidity in the rain can cause damage to forests.

The contribution of acidification is calculated using the acidification potentials of the

substances concerned and is expressed in mode equivalent of H⁺.

Water Toxicity (WT) This indicator represents the water toxicity. It takes into account the usually

accepted concentrations for several substances in water and the quantity of substances released over the life cycle. The indication given corresponds to the

water volume needed to dilute these substances down to acceptable

concentrations.

Hazardous Waste Production (HWP)

This indicator calculates the quantity of specially treated waste created during all

the life cycle phases (manufacturing, distribution and utilization). For example, special industrial waste in the manufacturing phase, waste associated with the

production of electrical power, etc.

It is expressed in kg.

Registration No.: SCHN-2011-624-V0				Writing rules: PCR PEPecopassport 2010 :1.0			
Accreditation No. of verifier:: VH05				Programme information: www.pep-ecopassport.org			
Date of issue: 11-2013				Period of validity: 4 years			
Independent verification of the declaration and data, in compliance with ISO 14025:2006							
Internal	Χ	External					
In compliance with the ISO 14025:2006 type III environmental declaration standard. The critical review of the PCR was conducted by a panel of experts chaired by. J. Chevalier (CSTB).							
The critical review of the PCR was conducted by a panel of experts chaired by. J. Chevalier (CSTB).							

The information in the present PEP cannot be compared with information from another programme.

Schneider Electric Industries SAS