
EcoStruxure Machine Expert

Code Analysis
User Guide
Original instructions

EIO0000002710.05
12/2022

www.se.com

Legal Information
The Schneider Electric brand and any trademarks of Schneider Electric SE and its
subsidiaries referred to in this guide are the property of Schneider Electric SE or its
subsidiaries. All other brands may be trademarks of their respective owners.

This guide and its content are protected under applicable copyright laws and
furnished for informational use only. No part of this guide may be reproduced or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), for any purpose, without the prior written permission of
Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the guide
or its content, except for a non-exclusive and personal license to consult it on an "as
is" basis. Schneider Electric products and equipment should be installed, operated,
serviced, and maintained only by qualified personnel.

As standards, specifications, and designs change from time to time, information
contained in this guide may be subject to change without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by
Schneider Electric and its subsidiaries for any errors or omissions in the informational
content of this material or consequences arising out of or resulting from the use of the
information contained herein.
©2022 Schneider Electric. All rights reserved.

Code Analysis

Table of Contents
Safety Information ..7
About the Book...8
Introduction.. 11

General Information on the Code Analysis Component 11
Concept of Code Analysis..13

Code Analysis Editors ...18
Conventions Table ..18

Conventions Table...18
Metrics Table ..19

Metrics Table ..19
Dependency View...21

Dependency View (Overview) ..21
Dependency View (Filters) ...21
Dependency View (Dependency Graph) ...22
Dependency View (Contextual Menu Commands of the
Dependency Graph) ..24
Dependency View (Groups) ...25

Block List ...27
Block List..27

Code Analysis Manager ..28
Dashboard ...28
Configuration..29
Cloud Connection ...30

Code Analysis Query Manager ..32
Rule Sets ..32
Queries Repositories...33
Query Editor ...35
Query Chain Settings Editor...37
Parameters Editor...37
Cloud Connection ...38

Contextual Menu Commands ..39
Contextual Menu Commands of Navigators ..39

Pragma Instructions for Code Analysis ...40
Pragma Instructions for Code Analysis ...40

Python Script Interface..42
Scripting Interface...42
Scripting Object Extensions ...42
Scripting Objects (Code Analysis API) ..43

How to Add Code Analysis Editors ...48
How to Get a Quick Application Overview Via Dashboard48
How to Get Detailed Metric Results of Your Application..........................49
How to Get Detailed Convention Results of Your Application50
How to Display Dependencies of Your Application with Help of
Predefined Queries on Dependency View...51
How to Explore Stepwise the Dependencies of Your Application on
Dependency View ..52

Appendices ..53
Dependency (Filter) Queries..54

EIO0000002710.05 3

Code Analysis

Dependency (Filter) Queries ..54
Dependency (Select) Queries..56

Dependency (Select) Queries ..56
Metrics...60

Metric: Application Size (Code) ..60
Metric: Application Size (Code+Data) ...61
Metric: Application Size (Data) ...61
Metric: Call In ...62
Metric: Call Out...62
Metric: Commented Variables (All) Ratio...62
Metric: Commented Variables (In+Out+Global) Ratio.............................63
Metric: Cyclomatic Complexity ...63
Metric: Extended By ..65
Metric: Extends...65
Metric: Fan In ...66
Metric: Fan Out...66
Metric: Halstead Complexity ..67
Metric: Implemented By...70
Metric: Implements..71
Metric: Lines Of Code (LOC)..72
Metric: Memory Size (Data) ...72
Metric: Number Of Actions...73
Metric: Number Of GVL Usages ...74
Metric: Number Of Header Comment Lines...74
Metric: Number Of Instances ...75
Metric: Number Of Library References..76
Metric: Number Of Messages...76
Metric: Number Of Methods ...76
Metric: Number Of Multiline Comments...77
Metric: Number Of Properties...77
Metric: Number Of Reads ..78
Metric: Number Of Tasks ...78
Metric: Number Of Transitions..79
Metric: Number Of Variables ..79
Metric: Number Of Writes ..80
Metric: Number Of FBD Networks ..80
Metric: Source Code Comment Ratio ...81
Metric: Stack Size ...82

Conventions...83
Convention Queries ..83
Convention: Access to Global Variable in FB_Init + FB_Exit86
Convention: Compile Messages...87
Convention: Complex POU With Low Comment Ratio87
Convention: Complex Type Name Checks ..87
Convention: Empty Implementation ..88
Convention: Global Variable Accessed Only in One POU.......................88
Convention: Inheritance Depth Limit ...88
Convention: Input Variable Read Check..89
Convention: Input Variable Type Check ..90
Convention: Input Variable Write Check..90
Convention: Multiline Comment Usage ...91

4 EIO0000002710.05

Code Analysis

Convention: No Header Comment..92
Convention: Number of Methods Limit ..92
Convention: Number Of Pins Limit (Input/Output)92
Convention: Number Of Pins Limit (Input) ...93
Convention: Number Of Pins Limit (Output)...93
Convention: Number of Properties Limit..93
Convention: Output Variable Read Check ...94
Convention: Output Variable Type Check..94
Convention: Persistent Usage Check ...95
Convention: Retain Usage Check...95
Convention: Uncommented Variable (All)..96
Convention: Uncommented Variable (In+Out+Global)............................96
Convention: Unused Enum Constants Check..96
Convention: Unused Variables Check...97
Convention: Useless DUT ...97
Convention: Variable Name Checks ...98
Convention: Variable Name Length Check ..99

Index ... 101

EIO0000002710.05 5

Safety Information Code Analysis

Safety Information
Important Information

Read these instructions carefully, and look at the equipment to become familiar
with the device before trying to install, operate, service, or maintain it. The
following special messages may appear throughout this documentation or on the
equipment to warn of potential hazards or to call attention to information that
clarifies or simplifies a procedure.

Please Note
Electrical equipment should be installed, operated, serviced, and maintained only
by qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction
and operation of electrical equipment and its installation, and has received safety
training to recognize and avoid the hazards involved.

The addition of this symbol to a “Danger” or “Warning” safety label indicates that an
electrical hazard exists which will result in personal injury if the instructions are not
followed.

This is the safety alert symbol. It is used to alert you to potential personal injury
hazards. Obey all safety messages that follow this symbol to avoid possible injury or
death.

DANGER indicates a hazardous situation which, if not avoided, will result in death or serious
injury.

! DANGER

WARNING indicates a hazardous situation which, if not avoided, could result in death or
serious injury.

WARNING!

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or
moderate injury.

CAUTION!

NOTICE is used to address practices not related to physical injury.

NOTICE

EIO0000002710.05 7

Code Analysis About the Book

About the Book
Document Scope

This document describes the graphical user interface of the Code Analysis and
the functions it provides.

Validity Note
This document has been updated for the release of EcoStruxureTM Machine
Expert V2.1.

The characteristics that are described in the present document, as well as those
described in the documents included in the Related Documents section below,
can be found online. To access the information online, go to the Schneider Electric
home page www.se.com/ww/en/download/.

The characteristics that are described in the present document should be the
same as those characteristics that appear online. In line with our policy of constant
improvement, we may revise content over time to improve clarity and accuracy. If
you see a difference between the document and online information, use the online
information as your reference.

Related Documents
Title of documenation Reference number

Cybersecurity Guidelines for EcoStruxure
Machine Expert, Modicon and PacDrive
Controllers and Associated Equipment

EIO0000004242

EcoStruxure Machine Advisor Code Analysis
User Guide

EIO0000003915 (ENG);

EIO0000003917 (FRE);

EIO0000003916 (GER);

EIO0000003918 (SPA);

EIO0000003919 (ITA);

EcoStruxure Machine Expert Programming
Guide

EIO0000002854 (ENG);

EIO0000002855 (FRE);

EIO0000002856 (GER);

EIO0000002858 (SPA);

EIO0000002857 (ITA);

EIO0000002859 (CHS)

8 EIO0000002710.05

https://www.se.com/ww/en/download/
https://www.se.com/en/download/document/EIO0000004242
https://www.se.com/en/download/document/EIO0000003915
https://www.se.com/en/download/document/EIO0000003917
https://www.se.com/en/download/document/EIO0000003916
https://www.se.com/en/download/document/EIO0000003918
https://www.se.com/en/download/document/EIO0000003919
https://www.se.com/en/download/document/EIO0000002854
https://www.se.com/en/download/document/EIO0000002855
https://www.se.com/en/download/document/EIO0000002856
https://www.se.com/en/download/document/EIO0000002858
https://www.se.com/en/download/document/EIO0000002857
https://www.se.com/en/download/document/EIO0000002859

About the Book Code Analysis

Product Related Information

WARNING
LOSS OF CONTROL
• The designer of any control scheme must consider the potential failure

modes of control paths and, for certain critical control functions, provide a
means to achieve a safe state during and after a path failure. Examples of
critical control functions are emergency stop and overtravel stop, power
outage and restart.

• Separate or redundant control paths must be provided for critical control
functions.

• System control paths may include communication links. Consideration must
be given to the implications of unanticipated transmission delays or failures
of the link.

• Observe all accident prevention regulations and local safety guidelines.1

• Each implementation of this equipment must be individually and thoroughly
tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or
equipment damage.

1 For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety
Guidelines for the Application, Installation, and Maintenance of Solid State
Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction
and Guide for Selection, Installation and Operation of Adjustable-Speed Drive
Systems" or their equivalent governing your particular location.

WARNING
UNINTENDED EQUIPMENT OPERATION
• Only use software approved by Schneider Electric for use with this

equipment.
• Update your application program every time you change the physical

hardware configuration.
Failure to follow these instructions can result in death, serious injury, or
equipment damage.

Terminology Derived from Standards
The technical terms, terminology, symbols and the corresponding descriptions in
this manual, or that appear in or on the products themselves, are generally
derived from the terms or definitions of international standards.

In the area of functional safety systems, drives and general automation, this may
include, but is not limited to, terms such as safety, safety function, safe state, fault,
fault reset, malfunction, failure, error, error message, dangerous, etc.

Among others, these standards include:

Standard Description

IEC 61131-2:2007 Programmable controllers, part 2: Equipment requirements and tests.

ISO 13849-1:2015 Safety of machinery: Safety related parts of control systems.

General principles for design.

EN 61496-1:2013 Safety of machinery: Electro-sensitive protective equipment.

Part 1: General requirements and tests.

ISO 12100:2010 Safety of machinery - General principles for design - Risk assessment
and risk reduction

EIO0000002710.05 9

Code Analysis About the Book

Standard Description

EN 60204-1:2006 Safety of machinery - Electrical equipment of machines - Part 1: General
requirements

ISO 14119:2013 Safety of machinery - Interlocking devices associated with guards -
Principles for design and selection

ISO 13850:2015 Safety of machinery - Emergency stop - Principles for design

IEC 62061:2015 Safety of machinery - Functional safety of safety-related electrical,
electronic, and electronic programmable control systems

IEC 61508-1:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: General requirements.

IEC 61508-2:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: Requirements for electrical/electronic/programmable
electronic safety-related systems.

IEC 61508-3:2010 Functional safety of electrical/electronic/programmable electronic safety-
related systems: Software requirements.

IEC 61784-3:2016 Industrial communication networks - Profiles - Part 3: Functional safety
fieldbuses - General rules and profile definitions.

2006/42/EC Machinery Directive

2014/30/EU Electromagnetic Compatibility Directive

2014/35/EU Low Voltage Directive

In addition, terms used in the present document may tangentially be used as they
are derived from other standards such as:

Standard Description

IEC 60034 series Rotating electrical machines

IEC 61800 series Adjustable speed electrical power drive systems

IEC 61158 series Digital data communications for measurement and control – Fieldbus for
use in industrial control systems

Finally, the term zone of operation may be used in conjunction with the description
of specific hazards, and is defined as it is for a hazard zone or danger zone in the
Machinery Directive (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific
products cited in the present documentation. For more information concerning
the individual standards applicable to the products described herein, see the
characteristics tables for those product references.

10 EIO0000002710.05

Introduction Code Analysis

Introduction

General Information on the Code Analysis Component

Overview
Code Analysis is integrated into EcoStruxure Machine Expert to analyze
applications.

Code Analysis focuses on the following key elements:
• Understanding the structure of the source code. Software developers can

visualize, for example, code dependencies and explore it step by step.
• Identification of code deficiencies to harmonize and improve the source code

by defined programming guidelines.
• Measurement of source code quality and identifying the KPIs (Key

Performance Indicators).
• Reporting the KPIs to the software developers for personal purpose.

System Requirements
Besides the system requirements for EcoStruxure Machine Expert, Code Analysis
has additional requirements regarding the hardware and the operating system.

The minimum requirements are:
• 4-core processor for parallel query execution
• 4 GB RAM

To analyze projects, the following specifications are suggested:
• Windows 64 bit
• ≥ 4-core processor for parallel query execution
• ≥ 8 GB RAM

Installation
To use Code Analysis in EcoStruxure Machine Expert, the component has to be
installed with the Schneider Electric Software Installer.

Code Analysis is under license protection:

Function Without license With license

Dependency View Limited to two diagrams. Not limited.

Metrics Table Limited to two objects and
three active queries.

Not limited.

Conventions Table Limited to two objects and
three active queries.

Not limited.

Query Editor Not available. Available.

Python CodeAnalysis API Not available. Available.

NOTE: For more information about product licensing, contact your local
Schneider Electric representative.

EIO0000002710.05 11

Code Analysis Introduction

Code Analysis Editors
With the three code analysis editors in EcoStruxure Machine Expert Logic Builder
you can analyze and interpret the results of a code analysis:

• Conventions Table editor, page 18
Parts of the application that violate the defined coding conventions (based on
coding rules).

• Dependency View editor, page 21
Dependencies between namespaces, libraries, objects (function blocks,
POUs, and so on).

• Metrics Table editor, page 19
Results of code quality figures, like LOC (Lines of Code), complexity, and so
on.

Multiple instances of code analysis objects can be added beneath Application,
folders, or Code Analysis Manager.

Several code analysis objects can be added to an application.

If a Conventions Table or Metrics Table object is added beneath Application or
Code Analysis Manager, the whole application is in the scope of the analysis.

If they are added beneath a folder, only this folder is in the scope of the analysis.

So it is possible to store analysis results for example, for each module/folder of an
application in dedicated objects.

Adding a Conventions Table, Dependency View, or a Metrics Table to an
application automatically adds a Code Analysis Manager to the Application
object.

Block List
A BlockList object can be added beneath a Code Analysis Manager object. The
BlockList object contains elements that will not appear in Conventions Table,
Metrics Table, or Dashboard results. This, although, is taken into account when
you upload a project snapshot, page 30 into Machine Advisor Code Analysis.

Code Analysis Manager
The Code Analysis Manager provides a quick overview via a dashboard and you
can configure analysis depth and the cloud connection.

The Code Analysis Manager provides the tabs:
• Dashboard tab, page 28

Overview of the analyzed application.
• Configuration tab, page 29

Analysis depth of code analysis configuration.
• Cloud Connection tab, page 30

Configuration of the connection to the Machine Advisor Code Analysis.

Code Analysis Query Manager
The Code Analysis Query Manager allows you to create and modify customized
rule sets, and to manage your metrics and conventions queries. To open the Code
Analysis Query Manager click Tools in the menu bar and select Code Analysis
Query Manager from the contextual menu.

12 EIO0000002710.05

Introduction Code Analysis

The Code Analysis Query Manager provides the tabs:
• Rule Sets

Rule sets can be created and modified.
• Metric Queries tab, page 60

Queries and query chains available in the Metrics Table editor can be
created and modified.

• Convention Queries tab, page 83
Queries and query chains available in the Conventions Table editor can be
created and modified.

• Dependency (Filter) Queries tab, page 54
Queries and query chains available in the Filters of the Dependency View
editor can be created and modified.

• Dependency (Select) Queries tab, page 56
Queries and query chains available in the Select and Add dialog box of the
Dependency View editor can be created and modified.

• Cloud Connection tab, page 38
The connection to Machine Advisor Code Analysis can be configured.

Concept of Code Analysis

Overview
This chapter gives an overview on the concepts of Code Analysis as integrated
into EcoStruxure Machine Expert.

Software Components of Code Analysis
The diagram gives an overview of the high-level software components of Code
Analysis:

The components can be categorized into three different types:
• UI components displaying data:
◦ Editors to write the source code.
◦ Editors to visualize the results like metrics or conventions, or a graphical

representation of the source code structure.

EIO0000002710.05 13

Code Analysis Introduction

• Data models as input or output of other components:
◦ Language model
◦ Dependency model
◦ Resource Description Framework (RDF) model
◦ Query results

• Components transforming data:
◦ The source code compiler (with language model as output) processes the

source code to check the syntax and build the language model to generate
the executable code running on controllers.

◦ The source code analyzer (with dependency model as output) analyzes
the language model and transforms it into a dependency model (and
keeps it up-to-date).

◦ The RDF model generator (with RDF model as output) transforms the
dependency model into an RDF model to build the bridge to the semantic
Web technologies.

◦ The Query execution engine (with query results as output) executes
SPARQL queries on the RDF model to get the query results.

Analysis Data (Dependency Model) Concept
The application is analyzed and a dependency model is built.

The dependency model is a list of nodes connected via edges.

Examples of node types:

Node type Description

Function block Function block (FB) inside the dependency model. Created for every
function block added to the EcoStruxure Machine Expert project.

Program Progam (PRG) inside the dependency model. Created for every
program added to the EcoStruxure Machine Expert project.

Function Function (FC) inside the dependency model. Created for every function
added to the EcoStruxure Machine Expert project.

... ...

Examples of edge types:

Edge type Description

Read Read operation from code as source to a variable node as target.

Write Write operation from code as source to a variable node as target.

Call Call of a function block, method, action, program, and so on, from the
code as source to a target node.

Extend Extension of a basis type. For example, FB extension by another
function block.

... ...

14 EIO0000002710.05

Introduction Code Analysis

Analysis Stages Concept
An important component of code analysis is the source code analyzer which
transforms the language model into a dependency model (the analysis data).

This source code analyzer is based on a concept called analysis stages. This is
used to optimize usability and performance (from memory and processor point of
view).

Example:
• To get the extend and implement dependencies is a fast code analysis

operation and needs less time compared to call, read or write dependencies.
• To get the list of the function blocks and the extend and implement

dependencies, you can stop analysis at a specific analysis depth.
• If more details are required, the analysis depth must be increased for specific

elements (for example, to visualize some function blocks in the dependency
view), or maybe for the objects in the project (for example to get metrics
results).

User-relevant analysis stages:

Three approaches are relevant:
• Minimum analysis depth (stage 1+2): The content visible in the project and

the EcoStruxure Machine Expert navigators.
◦ FBs, PRGs, FCs, DUTs, and so on
◦ Properties and their get / set methods
◦ Methods
◦ Actions
◦ Structural information (folder, and so on)
◦ Library references
This analysis depth needs the least time.

• Intermediate analysis depth (stage 3+4): Next level of information from
source code.
For example:
◦ Variables
◦ Read of variable dependencies
◦ Write of variable dependencies
◦ Call of methods, functions, function blocks, programs, and so on
This analysis depth requires more time.

• Maximum analysis depth (stage 5): Metric information based on
implementation (the source code).
For example:
◦ Halstead Complexity
◦ Lines Of Code (LOC)
◦ ...

This analysis depth needs the most time. (Only for metrics or conventions).

Semantic Web Technologies
The open and flexible code analysis feature is based on semantic Web
technologies. Some of these technologies are:

• Resource Description Framework (RDF) - RDF Model
Refer to https://en.wikipedia.org/wiki/Resource_Description_Framework.

EIO0000002710.05 15

https://en.wikipedia.org/wiki/Resource_Description_Framework

Code Analysis Introduction

• RDF Database (Semantic Web Database) - an RDF Triple Storage
Refer to https://en.wikipedia.org/wiki/Triplestore

• SPARQL Protocol and RDF Query Language - SPARQL.
Refer to https://en.wikipedia.org/wiki/SPARQL.

Dependency Model to RDF Model Synchronization
The dependency model is the result of a code analysis run.

To link up to an open, flexible code analysis feature with query language support,
the dependency model is synchronized with an RDF model.

RDF Triple Storage
To support the analysis of large projects, the RDF model is kept in a separate
process called RDF Triple Storage.

By default, the RDF Triple Storage is used. If required, the behavior can be
configured in the Code Analysis Manager.

SPARQL and RDF
Resource Description Framework (RDF) is a data model for describing resources
and the relations between these resources.

Example:

:(Subject) :(Predicate) :(Object)

:Car :Weights :1000 kg

:Car :ConsistsOf :Wheels

:Car :ConsistsOf :Engine

SPARQL is an acronym for Sparql Protocol and RDF Query Language. The
SPARQL specification (https://www.w3.org/TR/sparql11-overview/) provides
languages and protocols to query and manipulate RDF graphs - similar to SQL
queries.

16 EIO0000002710.05

https://en.wikipedia.org/wiki/Triplestore
https://en.wikipedia.org/wiki/SPARQL
https://www.w3.org/TR/sparql11-overview

Introduction Code Analysis

Example of s simple SPARQL query to get the node Ids and their names of the
function blocks of an RDF model:
SELECT ?NodeId ?Name
WHERE {

Select all FunctionBlocks and their names
?NodeId a :FunctionBlock ;

:Name ?Name .
}

EIO0000002710.05 17

Code Analysis Code Analysis Editors

Code Analysis Editors

Conventions Table

Conventions Table

Overview
With the Conventions Table, you can select conventions that have to be met by
your application.

The Conventions Table provides two parts:
• Conventions (left-hand side)

List of the available conventions.
Refer to chapter Convention Queries Tab, page 83.

• Results window (right-hand side)
List of elements that do not meet the conventions selected on the left side.

Conventions
The Conventions tree lists and groups convention rules that are available by
default (by EcoStruxure Machine Expert installation) and the user-defined rules
created with the Query editor. Use the check boxes to activate/deactivate
convention rules.

After clicking the Enable and start querying button of the Results window
toolbar, additional information is displayed in the Conventions tree:

Element Description

Filter by convention names Enter text to filter the conventions by name.

Rule Set Select a rule set for filtering the conventions to display.

(<Number>) behind a
convention name

Indicates how many hits this convention created. If no number
is displayed, this query was not executed.

(Querying...) behind a
convention name

This query is being executed.

Toolbar
Element Description

Analyze Code Click this button to start the analysis process of the application
this Conventions Table belongs to. If analysis has already
been started and state of analysis is up-to-date, this button is
disabled.

Stage x/y (Required: z) Stage information assigned to the Analyze Code button:
• Number of stages available (y)
• Currently reached stage (x)
• Required stage (z) to use this editor

Querying • Enable and start querying button:
Click this button to start querying.

• Disable and pause querying button:
Click this button to pause querying. Click the button again
to restart querying from the point you stopped querying.

18 EIO0000002710.05

Code Analysis Editors Code Analysis

Element Description

Export Click this button to export the displayed list as a CSV, HTML, or
XML file.

Scope Displays the folder of which the Conventions Table is a part.
Only this folder is taken into account for analysis. For a table
that is a subnode of the Code Analysis Manger the whole
application is taken into account for analysis. Only visible if a
Conventions Table is placed in a folder.

Result List
Element Description

Filter by ... Enter text to filter the results. The filter applies to all columns.

Sort a column To sort a column, click the column header:
• Convention
• Severity
• FullName
• Message

Double-click a table entry Opens the associated element in its corresponding editor.

Contextual Menu Commands
on a table entry

Right-click a table entry and select one of the contextual menu
commands:

• Go to definition
Opens the associated element in its corresponding editor.

• Start Rename Refactoring
Opens the Rename dialog box to enter the new name of
the object. After confirming with OK, the Refactoring
dialog box opens, highlighting the objects of your
application that are affected by the renaming. Click OK to
start the renaming.
This contextual menu command is available for name
verification conventions, for example, Complex Type
Name Checks.

• Add to dependency graph
Adds the element to an existing or new dependency
graph.

• Add to block list
Adds the element to a block list and removes that element
form all Conventions Tables until it is deleted from block
list again.

Metrics Table

Metrics Table

Overview
With the Metrics Table, you can select metrics to be executed on an application
and filter and list results.

The Metrics Table provides two parts:
• Metrics (left-hand side)

List of the available metrics., page 60
• Results window (right-hand side)

List of metric results.

EIO0000002710.05 19

Code Analysis Code Analysis Editors

Metrics
The Metrics tree lists metrics that are available by default (by EcoStruxure
Machine Expert installation) and the user-defined metrics created with the Query
editor. Use the check boxes to activate/deactivate metrics.

After clicking the Enable and start querying button of the Results window
toolbar, additional information is displayed in the Metrics tree:

Element Description

Filter by metric names Enter text to filter the metrics by name.

Rule Set Select a rule set for filtering the metrics to display.

(<Number>) behind a metric
name

Indicates how many hits this metric created. If no number is
displayed, this query was not executed.

(Querying...) behind a metric
name

This query is being executed.

Toolbar
Element Description

Analyze Code Click this button to start the analysis process of the application
this Metrics Table belongs to. If analysis has already been
started and state of analysis is up-to-date, this button is
disabled.

Querying • Enable and start querying button:
Click this button to start querying.

• Disable and pause querying button:
Click this button to pause querying. Click the button again
to restart querying from the point you stopped querying.

Export Click this button to export the displayed list as a CSV, HTML, or
XML file.

Scope Displays the folder of which the Metrics Table is a part. Only
this folder is taken into account for analysis. For a table that is a
subnode of the Code Analysis Manger the whole application
is taken into account for analysis. Only visible if a Metrics
Table is placed in a folder.

Result List
Element Description

Filter by ... Enter text to filter the results. The filter applies to all columns.

Sort a column To sort a column, click the column header:
• Type
• Name
• FullName
• <Metric Name>

Double-click a table entry Opens the associated element in its corresponding editor.

Contextual Menu Commands
on a table entry

Right-click a table entry and select one of the contextual menu
commands:

• Go to definition
Opens the associated element in its corresponding editor.

• Add to dependency graph
Adds the element to an existing or new dependency
graph.

• Add to block list
Adds the element to a block list and removes that element
form all Metrics Tables until it is deleted from block list
again.

20 EIO0000002710.05

Code Analysis Editors Code Analysis

Dependency View

Dependency View (Overview)

Overview
With the Dependency View, you can visualize the dependencies of your analyzed
application as a dependency graph. You can select the content and the layout of
the dependency graph.

The Dependency View provides three parts:
• Filters (left-hand side), page 21

You can filter and configure the dependency graph.
• Dependency Graph (main window), page 22

The displayed graph represents dependencies between elements of the
analyzed application.

• Groups (right-hand side), page 25
You can structure the application using the Groups tree.

Dependency View (Filters)

Overview
Element Description

Select filter for displayed
graph

Select a filter from the list. The filters are defined in the
Dependency (Filter) Queries tab of the Code Analysis Query
Manager.

Refer to chapter Dependency (Filter) Queries Tab, page 54.

Apply Click this button to apply the filter to the displayed graph.

Types Quick Filters This tree lists the Edge Types and Node Types based on the
content in the Dependency Graph.

If you activate / deactivate Edge Types or Node Types in the
list, the displayed graph is updated immediately.

Edge visualization options • Show edge labels
Enables / disables the labels attached to the edges inside
the Dependency Graph.

• Display parallel Edges
Enables / disables to display parallel edges.

EIO0000002710.05 21

Code Analysis Code Analysis Editors

Dependency View (Dependency Graph)

Overview
Also refer to: Contextual Menu Commands of the Dependency Graph, page 24

Toolbar
Element Description

Analyze Code Click this button to start the analysis process of the application
this Dependency View belongs to. If analysis has already been
started and state of analysis is up-to-date, this button is
disabled.

Select Nodes / Find and Select
(binoculars icon)

After code analysis run, click this button to search for objects
that are available in your Dependency View, and on which you
want to set the focus. After confirming with OK, the selected
objects have the focus in your Dependency View, and are
highlighted.

Mouse Pointer Click this button to switch from move mode to select mode.

Select and Add After code analysis run, click this button to define the Select
Scope and the Select Query.

The following Scopes are available:
• Project + Libraries

Expected results are the objects from Application, from
POU space, and from the libraries referenced by the
Application.
If the devices are considered in the analysis, they are also
part of the scope. For this, the option Consider Devices
in the Configuration tab of the Code Analysis Manager
must be activated. Refer to Configuration\Consider
Devices, page 29.

NOTE: This can result in a large number of objects.
• Project

Expected results are the objects from Application and
from POU space.
If the devices are considered in the analysis, they are also
part of the scope. For this, the option Consider Devices
in the Configuration tab of the Code Analysis Manager
must be activated. Refer to Configuration\Consider
Devices, page 29.
Library objects are not reported in the results.

• Application
Expected results are the objects defined in Application
only.

• POU space
Expected results are the objects defined in POU space
only.

Refer to chapter Dependency (Select) Queries Tab, page 56.

22 EIO0000002710.05

Code Analysis Editors Code Analysis

Element Description

Search and Add After code analysis run, click this button to search for objects
that should be added to your Dependency View.

• Filter by …
Click the button in front of Filter by … to define the scope
of the objects that are displayed in the table of objects
below. By default, all objects of your project are displayed.
Enter plain text to search for objects. This search is not
applied to the Type column.

• Table of objects
◦ The Name column provides a check box for each

object.
Activate a check box to add the respective object to
your Dependency View.

◦ Data Type
◦ Type
◦ FullName

• All
Click this button to select all objects.

• None
Click this button to deselect all objects.

• OK
Click this button to confirm your selection. The selected
objects are added to your Dependency View.

• Cancel
Click this button to close the dialog box without adding
objects to your Dependency View.

Clear Click this button to remove all nodes from the displayed graph.

Export Click this button to export the displayed graph as an image (*.
jpg, *.png, *.bmp)

Layout Select a predefined layout for the displayed graph. Several
circular, force-directed, and tree layouts are available.

Apply Click this button to rearrange the objects in the displayed graph
according to the selected layout.

Zoom Control
With the zoom control in the lower right corner of the dependency graph window,
you can modify the size and the position of the displayed graph.

Type Description

Slider Use the slider to zoom in or to zoom out.

Fill Bounds with Content Click this button to enlarge the graph to the size of the
dependency graph.

Center Content Click this button to center the graph in the dependency graph.

Close Click this button to close the zoom control. To reopen, click the
icon in the lower right corner of the dependency graph.

To move the displayed content in the dependency graph window, click into the
window > hold and move the mouse key.

Drag-and Drop Nodes to the Dependency Graph
You can also add nodes and subnodes to the dependency graph by drag-and-
drop. Therefore drag a node from the Application tree and drop it to the
dependency graph window.

EIO0000002710.05 23

Code Analysis Code Analysis Editors

Dependency View (Contextual Menu Commands of the
Dependency Graph)

Contextual Menu Commands of the Graph Nodes

Menu command Description

Select all Selects the nodes on graph.

Can be executed anywhere on graph.

Go to definition Opens the editor where the selected node is defined.

Cannot be executed on the following nodes: Application,
POUspace, Task, Folder.

Remove node(s) Removes the selected node(s) from graph.

Remove all except me Removes the node(s) from graph except the one that is selected.

Remove all except me and
my relations

Removes the node(s) from graph except the one that is selected
and its related nodes. Cannot be executed on groups.

Delete group(s) Deletes the selected groups from dependency view and removes it
completely from project. The assigned nodes are not in a group any
more.

Can be executed only on groups.

Assign to new or existing
group

Assigns the selected nodes to a new or an existing group.

Can be executed on the nodes of active application except:

Action, Method, Property, Transition, Variable, Library.

Add all my variables and
properties

Adds the variables and properties to graph that are defined in the
selected node.

Can be executed on: GlobalVariableList, Program,
FunctionBlock, Function, Method, Transition, Action.

Add all my group children Adds the nodes and groups to graph that are assigned to the
selected group.

Add my parent group Adds the group to graph the selected node is assigned to.

Add all my Actions Adds the actions to graph that are defined in the selected
FunctionBlock or Program.

Add all my Methods Adds the methods to graph that are defined in the selected
FunctionBlock or Program.

Add all my Transitions Adds the transitions to graph that are defined in the selected
FunctionBlock or Program.

Add all my Enum Values Adds the enumeration values that are defined in the selected
Enumeration.

Add all Interfaces I am
implementing

Adds the interfaces to graph that are implemented by the selected
FunctionBlock.

Add all FunctionBlocks
extending me

Adds the function blocks to graph that are extending the selected
FunctionBlock.

Add all Interfaces
extending me

Adds the interfaces to graph that are extending the selected
Interface.

Add all FunctionBlocks I
am extending

Adds the FunctionBlocks to graph that the selected
FunctionBlock is extending.

Add all Interfaces I am
extending

Adds the interfaces to graph that the selected Interface is
extending.

Add all references
(variables/properties)
instantiating me

Adds the variables and properties that refer to the selected
FunctionBlock or Enumeration.

Add all nodes this XX is
calling

Adds the nodes to graph that the selected node is calling.

Can be executed on: Program, FunctionBlock, Function,
Method, Transition, Action.

24 EIO0000002710.05

Code Analysis Editors Code Analysis

Menu command Description

Add all nodes this XX is
called

Adds the nodes to graph that call the selected node.

Can be executed on: Program, FunctionBlock, Function,
Method, Transition, Action.

Add all variables or
properties I am reading or
writing

Adds the variables and properties to graph that the selected node is
reading or writing.

Can be executed on: Program, FunctionBlock, Function,
Method, Transition, Action, Property.

All nodes reading or
writing me

Adds the nodes to graph that are reading or writing the selected
Property or Variable.

Add my datatype Adds the data type node to graph of the selected Property or
Variable if data type is no base data type (BOOL, REAL, STRING,
and so on).

Add my parent Cannot be executed on the nodes Application and Library.

Add my return type Adds the return type node to graph of the selected Function or
Method if data type is no base data type BOOL, REAL, STRING,
and so on).

Add Testmanager
executing me

Adds the Testmanager the selected Testcase is executed by.

Add Testcases I am
executing

Add the Testcases the selected Testmanager is executing.

Add Structs I am utilizing Adds the structures the selected TestCase is using to execute.

Add TestCases I am
utilized

Adds the TestCase using me as structure to be executed.

Add TestCases and
TestResources using me

Adds the TestCases and TestResources using the selected
TestResource or TestCase.

Add TestSets and
TestResources I am using

Adds the TestCases and TestResources used by the selected
TestResource or TestCase.

Dependency View (Groups)

Overview
Objects displayed in a dependency graph can be assigned to groups. These
groups can be real modules of the machine or any other grouping.

The following considerations have to be taken into account:
• Objects to be assigned to a group must be in the same application as the

Dependency View object.
• Assigning a function block or a program to a group also assigns the methods,

actions, properties, and transitions of that object to that group. These
elements are displayed in the Groups tree as subnodes of the function block/
program.

Toolbar
Element Description

Create new Click this button to create a new and empty group.

You can start renaming of a group by selecting a group in the
tree and click the Spacebar.

Delete Click this button to delete the selected group.

Open Wizard Click this button to open the Groups Wizard.

EIO0000002710.05 25

Code Analysis Code Analysis Editors

Assigning Objects to Groups
Assigning objects to groups by:

Element Description

Drag-and-drop The nodes and subnodes of an Application can be assigned to
a group by drag-and-drop. If a folder is dropped, its subnodes
are assigned to the group. (You are asked to confirm).

Contextual menu in the
Application tree

The nodes and subnodes of an Application can be assigned to
a group by the contextual menu command, page 39 Add to
group.

Contextual menu in the
dependency graph of the
Dependency View

One or several elements selected in the dependency graph can
be assigned to an existing or new group by contextual menu
command, page 39 Add to dependency graph

Groups Wizard
Use the Groups Wizard to create groups and assign objects to groups basing on
a name search. The Groups Wizard provides options to filter the objects that
could be assigned to new or existing groups.

Element Description

Object name filter Enter plain text or a regular expression (Regex) to filter your
application for objects to be added to a group. This filter is not
applied to folders.

Regex examples:
• [0-9]: This filters out objects that do not have any digit(s)

in their name.
• [_]: This filters out objects that do not have any

underscore in their name.

Object type filter Use these check boxes to reduce the number of displayed
objects.

Name search can be reduced to object types:
• Function Block
• Program

Display only unassigned
objects

Activate the check box to display only objects not assigned to a
group. Deactivate the check box to also display the already
assigned objects.

The check box is activated by default.

Group name Basing on the object name the suggested module name is
generated. This suggested name can be modified by a regular
expression (Regex) or a meaningful name. In the list, the
already existing group names are listed. If nothing is entered,
the original project name is used.

Display folder structure Activate the check box to display the objects in folder structure.

The check box is activated by default.

Name column Use the check boxes in front of the names to select the objects
to add to the group.

If you activate the check box of an object with subnodes, the
check boxes of the subnodes are activated too. The group
name of the subnodes is changed to the group name of the
main node.

Group Name column To edit a suggested group name, select the name and press the
Spacebar.

Create Click this button to create a group from the selected objects.

26 EIO0000002710.05

Code Analysis Editors Code Analysis

Block List

Block List

Overview
A BlockList object can be added beneath a Code Analysis Manager object. The
BlockList object contains elements that will not appear in Conventions Table,
Metrics Table, or Dashboard results. This, although, is taken into account when
you upload a project snapshot, page 30 into Machine Advisor Code Analysis.

To add an element to a block list, right-click the element in the navigator tree and
select Code Analysis > Add to BlockList > Add to Users-BlockList or Add to
Project-BlockList from the contextual menu. These contextual menu commands
are also available in the result lists of the Conventions Table or Metrics Table.

The BlockList provides two tabs:
• Conventions

List of objects that should not appear in Conventions Table and Dashboard
results.

• Metrics
List of objects that should not appear in Metrics Table and Dashboard
results.

Each tab provides two parts:
• Project-Blocklist (left-hand side)

Contains blocked elements that are available for the users that use the
project.

• Users-Blocklist (right-hand side)
Contains blocked elements that should be available only on your PC for this
project.

Elements of the Block List
Element Description

Element Icon and name of the blocked element.

Comment Comment on the blocked element.

Select the comment cell and press the Spacebar to edit or
enter a comment.

Path Path of the blocked element.

Double-click the path to open the associated object in its
corresponding editor.

Contextual Menu Commands
on a table entry

Right-click a table entry and select one of the contextual menu
commands:

• Go to definition
Opens the associated element in its corresponding editor.

• Delete from BlockList
Removes the element from the block list.

Double-click a table entry Opens the associated element in its corresponding editor.

EIO0000002710.05 27

Code Analysis Code Analysis Manager

Code Analysis Manager

Dashboard

Overview
The Dashboard provides an application overview.

The Dashboard tab provides four parts:
• Toolbar

Time stamp of code analysis.
If the dependency model is out of date, this is indicated in the toolbar, and the
analysis can be restarted with Analyze code. With the Check conventions
button you can additionally analyze the conventions.

• Filter (left-hand side)
You can filter the Dashboard content based on object types.
By default, all object types are selected. If you modify the filter, the content of
the whole dashboard is updated in real time. The (<Number>) behind an
object type indicates the total number of objects per type that are included in
the code analysis. All object types are included.

• Metrics (upper part of the main window)
Based on the applied filter, the most relevant metrics are displayed.

• Conventions (lower part of the main window)
The numbers of code violations are displayed: total number and number by
severity (Warning, Error, Info).

Metrics
Based on the applied filter, the most relevant metrics are displayed.

Element Description

Lines of Code Total Total sum of code lines for the objects.

Lines of Code Average Lines of Code Total divided by the number of objects with lines
of code.

Halstead Difficulty Max The maximum value of Halstead Difficulty.

Halstead Difficulty Average The sum of the Halstead Difficulty values divided by the number
of objects.

Displays n/a if the applied filter contains no objects with a
Halstead Difficulty value.

Below the metrics, two bar charts are displayed:
• Lines of Code Top 5

Displays the 5 objects with the highest Lines of Code value.
• Halstead Difficulty Top 5

Displays the 5 objects with the highest Halstead Difficulty value.
The objects displayed in a bar chart provide additional information via tooltip.

Conventions
When the code analysis process is finished, the following is displayed:

28 EIO0000002710.05

Code Analysis Manager Code Analysis

• A bar chart with the five objects that contain the highest number of code
convention violations.
Each object displayed in the bar chart provides additional information via
tooltip.

• The total number of code violations.
• The total number of code violations with severity Error.
• The total number of code violations with severity Warning.
• The total number of code violations with severity Info.

The content of the top 5 convention violations charts is not the same as on the
Conventions Table. The Dashboard summarizes on POU level, whereas on
Conventions Table the violations are listed in detail.

Dashboard Information Saved with Project
The Dashboard information is saved with your project. The next time you open
the project, this information is displayed. The Analysis as of label provides a time
stamp for this information.

Configuration

Overview
After adding a Code Analysis Manager object, a default configuration is applied
which supports the most use cases. In special cases, you can modify the depth of
code analysis to meet your requirements.

Use the check boxes to define the content to be analyzed.

Element Description

Consider Implicit Methods This option is disabled by default.

After enabling this option, implicit generated methods like FB_INIT, FB_EXIT, FB_REINIT, and
so on, are considered during code analysis.

In most cases, these methods are not relevant to explore the source code or to list them in
metrics and conventions.

Deactivate this option to reduce the amount of analysis data and to improve the performance.

Consider Property Accessor
Functions

This option is disabled by default.

After enabling of this option, the generated property accessor functions like GetTextProperty(),
GetBooleanProperty(), GetNumberProperty(), GetCompany(), GetTextProperty2(), GetTitle(),
GetVersion(), and GetVersionProperty() are considered during code analysis.

In most cases, these functions are not relevant to explore the source code or to list them in
metrics and conventions.

Deactivate this option to reduce the amount of analysis data, to increases the performance,
and to improve the usability of Dependency View content added via a Select query.

Consider Check Functions This option is disabled by default.

After enabling this option, the check functions like CheckBounds(), CheckDiv…(),
CheckPointer(), and so on, are considered during code analysis.

In most cases, these functions are not relevant to explore the source code or to list them in
metrics and conventions.This option reduces the amount of analysis data, increases the
performance, and improves the usability of Dependency View.

EIO0000002710.05 29

Code Analysis Code Analysis Manager

Element Description

Consider Code Analysis of Libraries
in Deep

This option is disabled by default.

The more libraries are referenced and used by a project (direct or indirect library references),
the more compile output must be analyzed.

In general, functions, programs, function blocks, and so on, which are part of the compilation
(called, read, written, ...) are part of the compile output independent of the origin (application,
library, POU space, …).

This requires processor time during code analysis and results in a larger data model.

If you enable this option, a medium size project with a long list of referenced libraries can result
in multiple GB of RAM usage (8...12 GB) and an increased processor time to analyze the read,
write, and call dependencies between the libraries.

Also, the query execution times to get the conventions and metrics results can result in
execution timeouts.

In most cases, the content of a library (not directly used by the application via a call, read, or
write), can be skipped during code analysis run.

Deactivate this option to reduce the amount of required RAM.

Consider Devices This option is disabled by default.

With this option, all devices are considered during code analysis. The analysis of devices is not
relevant to get conventions or metrics. For exploring your own functions, programs, function
blocks, and so on, via Dependency View, devices are also not relevant. If it is necessary to
explore the connection between these functions, programs, and so on, to the devices and their
parameters, it is necessary to consider devices, too.

NOTE: The additional amount of RAM needed depends on the number of devices in the
project.

A typical use case where devices are relevant is for drag-and-drop of a device into the
Dependency View. For example, to navigate to its corresponding function block instance and
identify which programs or functions are accessing devices parameters directly.

Consider Code and Data Size
(Requires Generate Code)

This option is disabled by default. Generating this data requires code generation and increases
the time for creating the data model.

If you activate this option, the metrics Application Size (Code), Application Size (Code+Data),
and Application Size (Data) deliver results.

Cloud Connection

Overview
This option enables you to upload your analysis model (snapshot) into the
Machine Advisor Code Analysis cloud.

Code Analysis Cloud Login

Step Action

1 Open the Cloud Connection tab.

2 Click the Login button.

If you do not have an account, follow the instructions in the EcoStruxure Machine
Advisor Code Analysis User Guide (see EcoStruxure, Machine Advisor Code
Analysis, User Guide).

Code Analysis Cloud Context
If you have successfully logged in:

30 EIO0000002710.05

Code Analysis Manager Code Analysis

Step Action

1 Click in the Company field and select the company where the snapshot is to be
uploaded.

2 Click in the Analysis Project field and select the project where the snapshot is to be
uploaded.

Snapshot Upload
The snapshot is not created by default.

If the snapshot is unavailable or outdated:

Step Action

1 Click the Analyze project button to create a snapshot.

2 Choose to directly Upload Snapshot or Store Snapshot in the file system by clicking
the appropriate button.

The snapshot stored in the file system can be uploaded manually (see
EcoStruxure, Machine Advisor Code Analysis, User Guide).

EIO0000002710.05 31

Code Analysis Code Analysis Query Manager

Code Analysis Query Manager
Overview

The Code Analysis Query Manager provides tabs to create and modify
customized rule sets and to manage your metrics and conventions queries.

To open the Code Analysis Query Manager click Tools in the menu bar and
select Code Analysis Query Manager from the contextual menu.

Rule Sets

Overview
With the Rule Sets, you can provide a subset of queries to use for analyzing the
project. You can use pre-defined rule sets as templates for your own rule sets and
modify them according to your need. Your new rule sets can be synchronized with
Machine Advisor Code Analysis too.

The main window of Rule Sets provides two parts:
• List of rule sets
• Queries that are assigned to the several rule sets.

List of Rule Sets
The rule sets list displays the pre-defined rule sets (installed with EcoStruxure
Machine Expert), and the user-defined rule sets.

Element Description

Name Name of the rule set.

Assignments Number of assignments.

Sync status Synchronization status with EcoStruxure Machine Advisor
Code Analysis.

The synchronization status is only visible if you are connected
to Machine Advisor Code Analysis.

Toolbar

Element Description

New Click this button to create a user-defined rule set and enter a
name for the new rule set.

Duplicate Click this button to duplicate the selected rule set and enter a
name for the new rule set.

Remove Click this button to remove the selected rule set. You are
prompted to confirm. Confirm with Yes or cancel with No.

Restore Click this button to restore the selected rule set. You are
prompted to confirm. Confirm with Yes or cancel with No.

If you confirm, the customized rule set is restored to the original
rule used for customization.

Refresh Click this button to start the comparison for rule sets between
EcoStruxure Machine Expert and Machine Advisor Code
Analysis.

If EcoStruxure Machine Expert is not logged into Machine
Advisor Code Analysis, the Cloud Connection tab is opened
to enter your user credentials.

32 EIO0000002710.05

Code Analysis Query Manager Code Analysis

Element Description

Download missing Click this button to download the rule sets from Machine
Advisor Code Analysis that are not available on EcoStruxure
Machine Expert.

If EcoStruxure Machine Expert is not logged into Machine
Advisor Code Analysis, the Cloud Connection tab is opened
to enter your user credentials.

Download selected Click this button to download the selected rule sets from
Machine Advisor Code Analysis to EcoStruxure Machine
Expert.

If EcoStruxure Machine Expert is not logged into Machine
Advisor Code Analysis, the Cloud Connection tab is opened
to enter your user credentials.

Upload selected Click this button to upload and update the selected rule sets to
Machine Advisor Code Analysis.

If EcoStruxure Machine Expert is not logged into Machine
Advisor Code Analysis, the Cloud Connection tab is opened
to enter your user credentials.

Details of the Selected Rule Set
Element Description

Name Name of the rule set.

Description Detailed description of the rule set.

Assigned Query Chains The Assigned Query Chains tree provides the available
Metrics and Conventions query chains.

You can add or remove query chains to the rule set by
activating/deactivating the check boxes of the respective query
chains.

Click Summary information (in the upper right corner) to open
a text file that provides the assigned query chains of the rule
set. You can save this text file.

Queries Repositories

Overview
This generic description is valid for the following repositories:

• Metrics
• Conventions
• Dependency (Filter) Queries
• Dependency (Select) Queries

For details, refer to the respective chapters.

You can organize and create queries and query chains for all repository
categories. A query chain consists of one or more queries.

Each repository provides a list of pre-defined queries and query chains that can be
used as templates for user-defined queries/query chains. The pre-defined queries
and query chains can also be modified directly.

The main window of a repository provides three parts:
• Query chains (left-hand side)

List of available query chains. For metrics and conventions the
synchronization status with Machine Advisor Code Analysis is provided.

EIO0000002710.05 33

Code Analysis Code Analysis Query Manager

• Queries (right-hand side)
List of available queries.

• Results (bottom)
Results of the selected and executed query chain.

The rightmost repository editor provides the Parameters Editor.

Query Chains
The Query Chains tree contains query chains that are available by default (by
EcoStruxure Machine Expert installation) and the user-defined query chains
created with the Query Chain Settings Editor.

The predefined query chains provided by Schneider Electric can be modified and
also be reset to their initial values.

Toolbar

Element Description

Execute Click this button to execute the selected query chain.

The result is displayed in the Results window at the bottom.

Edit Click this button to edit the selected query chain. You can edit
only the user-defined query chains. Edit opens the Query
Chain Editor, page 37.

Duplicate Click this button to duplicate the selected query chain and enter
a name for the new query chain. Double-click the duplicated
query chain to open the Query Chain Settings Editor.

New Click this button to add a new query chain. New opens the
Query Chain Settings Editor

Remove Click this button to remove the selected query chain.

You can remove only the user-defined query chains.

Restore Click this button to restore the selected rule set. You are
prompted to confirm. Confirm with Yes or cancel with No.

If you confirm, the customized rule set is restored to the original
rule used for customization.

Refresh Click this button to start the comparison for rule sets between
EcoStruxure Machine Expert and Machine Advisor Code
Analysis.

If EcoStruxure Machine Expert is not logged into Machine
Advisor Code Analysis, the Cloud Connection tab is opened
to enter your user credentials.

Download missing Click this button to download the rule sets from Machine
Advisor Code Analysis that are not available on EcoStruxure
Machine Expert.

If EcoStruxure Machine Expert is not logged into Machine
Advisor Code Analysis, the Cloud Connection tab is opened
to enter your user credentials.

Download selected Click this button to download the selected rule sets from
Machine Advisor Code Analysis to EcoStruxure Machine
Expert.

If EcoStruxure Machine Expert is not logged into Machine
Advisor Code Analysis, the Cloud Connection tab is opened
to enter your user credentials.

Upload selected Click this button to upload and update the selected rule sets to
Machine Advisor Code Analysis.

If EcoStruxure Machine Expert is not logged into Machine
Advisor Code Analysis, the Cloud Connection tab is opened
to enter your user credentials.

34 EIO0000002710.05

Code Analysis Query Manager Code Analysis

Assign and Order Queries to Chains

Element Description

Arrow buttons Use the Arrow buttons between the Query Chains and the
Queries to add a query to or to remove a query from a selected
query chain. You can also use these buttons to modify the order
of queries in a selected query chain.

You can edit only the user-defined query chains.

Drag-and-drop You can also use drag-and-drop to add a query to or to remove
a query from a user-defined query chain.

Queries
The queries list shows queries available by default (installed with EcoStruxure
Machine Expert), and the user-defined queries.

You cannot remove or edit the predefined queries. You can only duplicate these
queries.

Toolbar

Element Description

Edit Click this button to edit the selected query. You can edit only the
user-defined queries. Edit opens the Query Editor, page 35.

Duplicate Click this button to duplicate the selected query and enter a
name for the new query. Double-click the duplicated query to
open the Query Editor.

New Click this button to add a new query. New opens the Query
Editor.

Remove Click this button to remove the selected query.

You can remove only the user-defined queries.

Restore Click this button to restore the selected query. You are
prompted to confirm. Confirm with Yes or cancel with No.

If you confirm, the customized query is restored to the original
query.

Parameters Editor
The Parameters Editor displays the parameters for the selected query / query
chain.

Refer to Parameters Editor, page 37.

Query Editor

Overview
With the Query Editor, you can edit or create user-defined queries.

The main window of the Query Editor provides two parts:
• SPARQL Editor
• Query Results

Rightmost the Query Editor provides the Parameters Editor.

EIO0000002710.05 35

Code Analysis Code Analysis Query Manager

SPARQL Editor
Element Description

Name Edit the query name.

SPARQL Editor Edit the SPARQL query.

Syntax validation messages At the bottom of the query editor, detected SPARQL syntax
errors are displayed. Click this message to jump to the detected
syntax error in the query editor.

Query Results

Element Description

Query Chain Queries can only be executed in the environment of a query
chain. If a query is already assigned to query chains, these
query chains are available in this list. There is also a default
query chain without parameters available.

Query Results The results of a query are displayed in this Query Results
table.

Execute check box Deselect this check box to disabled automatic query execution.

Execute button Click this button to start execution.

Parameters Editor
The Parameters Editor displays the parameters for the query.

Refer to Parameters Editor, page 37.

36 EIO0000002710.05

Code Analysis Query Manager Code Analysis

Query Chain Settings Editor

Overview
With the Query Chain Settings Editor, you can configure details for user-defined
query chains.

The availability of query chain settings depends on the repository this query
belongs to.

Element Description Available for

Description Description of the query chain. All query tabs.

Group Defines the group name to
display the queries in a
grouped way.

• Dependency (Select) Queries
This grouping is included in the
Select and Add dialog box of
the Dependency view editor.

• Convention Queries
This grouping is included in the
Conventions tree of the
Conventions Table editor.

Color Coding
Color coding is available for Metric Queries.

For the Metrics Table, you can highlight dedicated metric results with specific
colors.

The color coding rules are based on four parameters:

Parameter Description

Value Enter a value the real metric result value is compared with.

Comparer Select a value for how the metrics result value is compared.
• GT (>)
• LT (<)
• GTE (≥)
• LTE (≤)
• EQ (=)
• NEQ (≠)

Comparison type Enter a fix value or a percentage value. (100% is the highest value
of this metric query).

Color Enter an hexadecimal value for the color the metric result is
displayed if the rule is met.

Parameters Editor

Overview
With the Parameters Editor,

• You can display the parameters for the selected query / query chain.
• You can add and remove parameters.
• You can edit the Name, Value, and Type of parameters that belong to user-

defined queries / query chains.

EIO0000002710.05 37

Code Analysis Code Analysis Query Manager

Element Description

Name Variable name

Value Default value

Type Variable types available:
• Boolean
• Int32
• Double
• String

Add Click this button to add a parameter.

Remove Click this button to remove the selected parameter.

Cloud Connection

Overview
This option enables you to upload your analysis model (snapshot) into the
Machine Advisor Code Analysis Web app.

Code Analysis Cloud Login

Step Action

1 Open the Cloud Connection tab.

2 Click the Login button.

If you do not have an account, follow the instructions in the EcoStruxure Machine
Advisor Code Analysis User Guide (see EcoStruxure, Machine Advisor Code
Analysis, User Guide).

Code Analysis Cloud Context
If you have successfully logged in, click in the Company field and select the
company where the snapshot is to be uploaded.

Query Synchronization
To verify if the queries on your PC and on Machine Advisor Code Analysis are the
same, click the Compare Queries button.

If not, you can click the Upload All Queries button to upload your queries to
Machine Advisor Code Analysis.

38 EIO0000002710.05

Contextual Menu Commands Code Analysis

Contextual Menu Commands

Contextual Menu Commands of Navigators

Overview
On all objects beneath the Application object the following contextual menu
commands are available for code analysis:

• Clean all
• Add to group
• Add to dependency graph

Clean All
Use this contextual menu command to remove analysis data belonging to the
application the selected object is part of.

Add to Group
Use this contextual menu command to add the selected object to an existing or
new group.

Add to Dependency Graph
Use this contextual menu command to add the selected object to an existing or
new dependency graph.

After the code analysis procedure, the new or the already existing Dependency
View is opened and the selected objects are added to the dependency graph in
the upper left corner.

You can also add variables to a dependency graph. In your program code, right-
click a variable and select Code Analysis > Add to dependency graph from the
contextual menu.

EIO0000002710.05 39

Code Analysis Pragma Instructions for Code Analysis

Pragma Instructions for Code Analysis

Pragma Instructions for Code Analysis

Overview
With Pragma instructions, it is possible to decide if the source code should be
taken into account in code analysis.

In contrast to this, block lists are used to filter out elements after analysis run. The
effect is the same.

Using Pragma instructions you can:
• Mark source code (for example, functions, programs, function blocks,

variables, and so on) to be ignored by code analysis (use case 1).
• Mark source code to filter results displayed in Conventions Table results,

Metrics Table results, or Dependency View only (use case 2).
Also refer to chapter Block List, page 27.

Use Case 1
Code that should not be analyzed in general can be marked with the ignore
Pragma instruction. Elements marked this way are not part of the analysis data
model.

Attribute Description

{attribute 'code_analyzer' :=
'ignore'}

• Marks a POU or a variable to be ignored.
• Works in recursive mode (for example, the

variables contained in the POU are also
ignored, or the methods below a function
block are ignored).

• Highest priority (compared to 'public_
only' attribute).

attribute 'code_analyzer' := 'public_
only'}

• Marks a POU to consider only the public
elements (VarIn, VarOut, VarInOut, public
properties, public methods). Other
elements are ignored.

• Works in recursive mode (for example,
methods below a function block are
handled in the same way as the function
block).

Use Case 2
Code that cannot be changed, but appears in convention and/or metric results,
can be marked to be hidden in these result lists.

Attribute Description

{attribute 'code_analysis_ui' :=
'filter_in_results'}

• Marks a POU or variable to be filtered in
results (Conventions Table, Metrics
Table, and Dependency View).

• Works non-recursive.

{attribute 'code_analysis_ui' :=
'filter_in_conventions'}

• Marks a POU or variable to be filtered in
Conventions Table results (via UI or
scripting API).

• Works non-recursive.

40 EIO0000002710.05

Pragma Instructions for Code Analysis Code Analysis

Attribute Description

{attribute 'code_analysis_ui' :=
'filter_in_metrics'}

• Marks a POU or variable to be filtered in
Metrics Table results (via UI or scripting
API).

• Works non-recursive.

{attribute 'code_analysis_ui' :=
'filter_in_dependency_view'}

• Marks a POU or variable to be filtered in
Dependency View (Select and Add
dialog box).

• Works non-recursive.

Examples
Ignore a public variable
METHOD PUBLIC PublicMethod
VAR_INPUT

{attribute 'code_analyzer' := 'ignore'}
i_iPublicButIgnoredVar: INT;

i_iPublicVar2: INT;
END_VAR
VAR

iPrivateVar2: INT;
END_VAR

Consider only public elements
{attribute 'code_analyzer' := 'public_only'}
FUNCTION_BLOCK FB_PublicOnlyTest1
VAR_INPUT

i_iPublicVar: INT;
END_VAR
VAR

iPrivateVar: INT;
END_VAR

Filter (POU) in results
{attribute 'code_analysis_ui' := 'filter_in_results'}
PROGRAM SR_FilterInResultsTest1
VAR
END_VAR

Filter (variable) in results of metrics and/or conventions
PROGRAM SR_FilterVars
VAR

{attribute 'code_analysis_ui' := 'filter_in_metrics'}
iTestVar1: INT;
{attribute 'code_analysis_ui' := 'filter_in_results'}
iTestVar2: INT;
{attribute 'code_analysis_ui' := 'filter_in_

conventions'}
FAILED_iTestVar3: INT;

END_VAR

EIO0000002710.05 41

Code Analysis Python Script Interface

Python Script Interface

Scripting Interface

Overview
A scripting API is available to automate code analysis. This allows you to integrate
the code analysis mechanism into ALM (Application Lifecycle Management) / CI
(Continuous Integration) environments.

Also refer to the following chapters in the online help:
• EcoStruxure Machine Experts Programming Guide\Appendices\Python Script

Language (see EcoStruxure Machine Expert, Programming Guide)
• Script Engine Plugin API Reference
• Script Engine Class Library

Scripting Object Extensions

Application
The Application object is extended by the following property:

Property Returned Object / Value Description

code_analysis ScriptCodeAnalysis with
attached functions / properties

The returned object provides access to
the code analysis features like
perform_full_analysis().

Refer to Python Scripting Objects,
page 43.

Conventions Table
The Conventions Table object is extended by the following function:

Function Returned Object / Value Description

conventions_table
()

ConventionsTableResults
with attached functions /
properties.

By calling this method, the convention
table results are built by analyzing the
code. The returned object provides
access to the convention table results.

The configured convention of this
convention table object is used.

Refer to Python Scripting Objects,
page 43.

Metrics Table
The Metrics Table object is extended by the following function:

42 EIO0000002710.05

Python Script Interface Code Analysis

Function Returned Object / Value Description

metrics_table() MetricsTableResults with
attached functions / properties.

By calling this method, the metrics
table results are built by analyzing the
code. The returned object provides
access to the metrics table results.

The configured metrics of this metrics
table object is used.

Refer to Python Scripting Objects,
page 43.

Scripting Objects (Code Analysis API)

Overview
Using the Scripting Object Extensions, page 42, the returned scripting objects can
be used, for example, to trigger a code analysis or to access the conventions or
metrics results.

Code Analysis API
This object provides general access to code analysis of an Application object.

Property Returned Object / Value Description

metrics MetricsTable with attached
functions / properties

The metrics property provides
access to the metrics-specific scripting
API, page 44.

conventions ConventionsTable with
attached functions / properties

The conventions property provides
access to the conventions-specific
scripting API, page 44.

configuration Configuration with
attached functions / properties

The configuration property
provides access to the conventions-
specific scripting API, page 44.

cloud_connection CloudConnection with
attached functions / properties

The cloud_connection property
provides access to the upload of
snapshots to Triple Storages, and to
configuration of the cloud connection.

Functions Returned Object / Value Description

clear() None Removes the dependency model from
memory. Another code analysis run
can be started.

perform_full_
analysis()

None Starts a full code analysis run. The
dependency model is built and reused
for example by metrics API.

store_dependency_
model(filename)

None Stores the dependency model into an
XML file.

store_ttl
(filename)

None Stores the RDF model in TTL format to
disk.

TTL (Turtle Language) is a standard
format of https://www.w3.org to store
RDF models.

EIO0000002710.05 43

https://www.w3.org

Code Analysis Python Script Interface

Metrics API
Functions Returned Object / Value Description

get_all_metrics() string[] with available
metrics names

Gets the available metrics query
names.

full_metrics_
table()

MetricsTableResult with
attached functions / properties

Builds the full metrics table of the
available metrics queries.Refer to
Metrics Table Result API, page 44.

metrics_table() MetricsTableResult with
attached functions / properties.

Builds the metrics table with specified
metrics queries. Refer to Metrics Table
Result API, page 44.

Metrics Table Result API
Properties Returned Object / Value Description

successful BOOL Gets the result outcome.

message STRING Gets the readable outcome message.

project_path STRING Gets the project path where this
results are based on.

analysis_started_
at

STRING Gets the start time this result table was
built.

analysis_
finished_at

STRING Gets the finished time this results table
was built.

analyser_version STRING Gets the code analyzer version used
to build this result table.

columns STRING Gets the list of columns in this result
table.

rows STRING Gets the table (rows with columns:
[Array] of [Array]) with the result
values.

Functions Returned Object / Value Description

store_as_xml(…) None Stores the metrics table results as an
XML file to disk.

store_as_csv(…) None Stores the metrics table results as a
CSV file to disk.

store_as_html(…) None Stores the metrics table results as an
HTML to disk.

Provides to specify an XSLT file for
XML to HTML transformation, if
required.

Conventions API
Functions Returned Object / Value Description

get_all_
conventions()

STRING[] with available
convention names

Gets the available convention query
names.

full_conventions_
table()

ConventionTableResult
with attached functions /
properties

Builds the full conventions table of the
available convention queries.

Refer to Conventions Table Result
API, page 45.

conventions_table
()

ConventionTableResult
with attached functions /
properties.

Builds the conventions table with
specified convention queries.

Refer to Conventions Table Result
API, page 45.

44 EIO0000002710.05

Python Script Interface Code Analysis

Conventions Table Result API
Properties Returned Object / Value Description

successful BOOL Gets the result outcome.

message STRING Gets the readable outcome message.

project_path STRING Gets the project path where this
results are based on.

analysis_started_
at

STRING Gets the start time this result table was
built.

analysis_
finished_at

STRING Gets the finished time this results table
was built.

analyser_version STRING Gets the code analyzer version used
to build this result table.

columns STRING Gets the list of columns in this result
table.

rows STRING Gets the table (rows with columns:
[Array] of [Array]) with the result
values.

Functions Returned Object / Value Description

store_as_xml(…) None Stores the conventions table results as
an XML file to disk.

store_as_csv(…) None Stores the conventions table results as
a CSV file to disk.

store_as_html(…) None Stores the conventions table results as
an HTML to disk.

Provides to specify an XSLT file for
XML to HTML transformation, if
required.

Configuration API

Property Returned Object / Value Description

triple_storage_
backend_type

Enumeration
TripleStorageBackend-
Types

Configures the RDF Triple Storage
backend type to be used to handle
code analysis data.

thresshold_for_
out_proc_backend_
usage

INT Configures the threshold for auto-
selection of used storage backend
type (In-Memory or Out-Proc).

max_upload_
triple_count_per_
request

INT Configures the number of triples per
upload request.

query_execution_
timeout

Long Configures the query execution
timeout.

update_execution_
timeout

Long Configures the update execution
timeout for a query.

server_uri STRING Configures the server URI for http-
based storage backends.

relative_query_
endpoint

STRING Configures the query endpoint for http-
based storage backends (part of
complete query endpoint url).

relative_update_
endpoint

STRING Configures the update endpoint for
http-based storage backends (part of
complete update endpoint url).

dataset STRING Configures the dataset name for http-
based storage backends (part of the
endpoint url).

EIO0000002710.05 45

Code Analysis Python Script Interface

Property Returned Object / Value Description

relative_data_
endpoint

STRING Configures the data endpoint name for
http based storage backends (part of
the endpoint url).

relative_sparql_
endpoint

STRING Configures the SPARQL endpoint
name for http based storage backends
(part of the endpoint url).

graph_name STRING Configures the graph name for http
based storage backends (part of the
endpoint url).

sparql_endpoint STRING Read-only. Gets access to the
complete SPARQL endpoint url.

data_endpoint STRING Read-only. Gets access to the
complete data endpoint url.

query_endpoint STRING Read-only. Gets access to the
complete query endpoint url.

update_endpoint STRING Read-only. Gets access to the
complete update endpoint url.

Functions Returned Object / Value Description

reset() None Resets the code analysis
configuration.

Cloud Connection API
Property Returned Object / Value Description

configuration CloudConfiguration with
attached functions / properties.

The cloud configuration property
provides access to cloud
configuration-specific scripting API.

Functions Returned Object / Value Description

upload_to_triple_
storage(…)

None Starts a snapshot upload of the RDF
model to the configured RDF Triple
Storage.

Cloud Configuration API

Property Returned Object / Value Description

http_backend_type Enumeration
HttpBackendTypes

Configures the http backend type (for
example, generic, Apache Fuseki,
Stardog, and so on). This configuration
value is only considered if Triple
Storage backend type is set to "Http".

max_upload_
triple_count_per_
request

Integer Configures the number of triples per
upload request.

update_execution_
timeout

Long Configures the update execution
timeout for a query.

server_uri String Configures the server URI for http
based storage backends.

relative_query_
endpoint

String Configures the query endpoint for http
based storage backends (part of
complete query endpoint URI).

relative_update_
endpoint

String Configures the update endpoint for
http based storage backends (part of
complete update endpoint URI).

46 EIO0000002710.05

Python Script Interface Code Analysis

Property Returned Object / Value Description

dataset String Configures the dataset name for http
based storage backends (part of the
endpoint URI).

relative_data_
endpoint

String Configures the data endpoint name for
http based storage backends (part of
the endpoint URI)

relative_sparql_
endpoint

String Configures the SPARQL endpoint
name for http based storage backends
(part of the endpoint URI).

sparql_endpoint String Read-only. Gets access to the
complete SPARQL endpoint URI.

data_endpoint String Read-Only. Gets access to the
complete data endpoint URI.

query_endpoint String Read-Only. Gets access to the
complete query endpoint URI.

update_endpoint String Read-Only. Gets access to the
complete update endpoint URI.

Functions Returned Object / Value Description

reset() None Resets the code analysis cloud
configuration.

EIO0000002710.05 47

Code Analysis How to Add Code Analysis Editors

How to Add Code Analysis Editors

How to Get a Quick Application Overview Via Dashboard

Overview
The Dashboard provides an application overview.

Refer to Dashboard, page 28.

Open or Create a Project
Open your preferred project or create a new project with File > New Project >
From Project Template > Template Full.

Add a Code Analysis Manager
The Dashboard tab is provided by the Code Analysis Manager. So first you
have to add a Code Analysis Manager to your project.

Step Action Result / Comment

1 Right-click the Application node in the
Tools tree (or in another navigator view
like the Devices tree).

-

2 Select Add Object > Code Analysis
Manager from the contextual menu.

The Add Code Analysis Manager editor is
displayed.

3 Click the Add button. • A Code Analysis Manager object is
added beneath the Application
object in the Tools tree.

• The Dashboard tab of the Code
Analysis Manager is displayed.

Analyze Code

Step Action Result / Comment

1 Click the Analyze code button in the
Dashboard tab.

The project is analyzed and the Metrics
are displayed.

If you modify the filter on the left-hand side,
the content of the dashboard is updated in
real time.

Summary

Element Description

Lines of Code Total Total sum of code lines for the objects.

Lines of Code Average Lines of Code Total divided by the number of objects with lines
of code.

48 EIO0000002710.05

How to Add Code Analysis Editors Code Analysis

Element Description

Halstead Difficulty Max The maximum value of Halstead Difficulty.

Halstead Difficulty Average The sum of the Halstead Difficulty values divided by the number
of objects.

Displays n/a if the applied filter contains no objects with a
Halstead Difficulty value.

Below the metrics, two bar charts are displayed:
• Lines of Code Top 5

Displays the 5 objects with the highest Lines of Code value.
• Halstead Difficulty Top 5

Displays the 5 objects with the highest Halstead Difficulty value.
The objects displayed in a bar chart provide additional information via tooltip.

Add Conventions
Step Action Result / Comment

1 To add further results, click the Add
conventions button the Dashboard tab.

The project is analyzed and the
Convention results are displayed.

How to Get Detailed Metric Results of Your Application

Overview
With the Metrics Table, you can select metrics to be executed on an application
and filter and list results.

Refer to Metrics Table, page 19.

Open or Create a Project
Open your preferred project or create a new project with File > New Project >
From Project Template > Template Full.

Add a Metrics Table
Step Action Result / Comment

1 Right-click the Application object in the
Tools tree (or in another navigator view
like the Devices tree).

-

2 Select Add Object > Metrics Table from
the contextual menu.

The Add Code Analysis Metrics Table
editor is displayed.

3 Click the Add button. • A Code Analysis Metrics Table
object is added beneath the
Application object in the Tools tree.

• The Metrics Table is displayed.

EIO0000002710.05 49

Code Analysis How to Add Code Analysis Editors

Analyze Code

Step Action Result / Comment

1 In the Name column, deactivate the
check box All.

If the All check box is activated, analysis
takes more time.

2 Activate the check boxes for Halstead
Difficulty and Lines Of Code.

-

3 Click the Analyze code button. The project is analyzed and the results are
displayed.

How to Use the Results
Now you can, for example, sort the Halstead Difficulty values by clicking the
column header; and then review your project focusing on the highest values for
Halstead Difficulty.

Double-clicking a table entry opens the associated application object in its
corresponding editor. You can also use the Go to definition contextual menu
command of a table entry.

For objects that should not appear in the Metrics Table results you can use the
Add to BlockList contextual menu command of a table entry.

How to Get Detailed Convention Results of Your
Application

Overview
With the Conventions Table, you can select conventions that have to be met by
your application.

Refer to Conventions Table, page 18.

Open or Create a Project
Open your preferred project or create a new project with File > New Project >
From Project Template > Template Full.

Add a Conventions Table
Step Action Result / Comment

1 Right-click the Application object in the
Tools tree (or in another navigator view
like the Devices tree).

-

2 Select Add Object > Conventions
Table from the contextual menu.

The Add Code Analysis Conventions
Table editor is displayed.

3 Click the Add button. • A Code Analysis Conventions
Table object is added beneath the
Application object in the Tools tree.

• The Conventions Table is displayed.

50 EIO0000002710.05

How to Add Code Analysis Editors Code Analysis

Analyze Code

Step Action Result / Comment

1 In the Name column, deactivate the
check box All.

If the All check box is activated, analysis
takes more time.

2 Activate the check box for Variable Name
Checks (Complex Types).

-

3 Click the Analyze code button. The project is analyzed and the results are
displayed.

How to Use the Results
Now you can, for example, activate the check box for Variable Name (Array) to
list only the respective results. Then you can review your project focusing on this
convention results.

Double-clicking a table entry opens the associated application object in its
corresponding editor. You can also use the Go to definition contextual menu
command of a table entry.

For objects that should not appear in the Conventions Table results you can use
the Add to BlockList contextual menu command of a table entry.

How to Display Dependencies of Your Application with
Help of Predefined Queries on Dependency View

Overview
With the Dependency View, you can visualize the dependencies of your analyzed
application as a dependency graph. You can select the content and the layout of
the dependency graph.

Refer to Dependency View, page 21.

Open or Create a Project
Open your preferred project or create a new project with File > New Project >
From Project Template > Template Full.

Add a Dependency View

Step Action Result / Comment

1 Right-click the Application object in the
Tools tree (or in another navigator view
like the Devices tree).

-

2 Select Add Object > Dependency View
from the contextual menu.

The Add Code Analysis Dependency
View editor is displayed.

3 Click the Add button. • A Code Analysis Dependency View
object is added beneath the
Application object in the Tools tree.

• The Dependency View is displayed.

EIO0000002710.05 51

Code Analysis How to Add Code Analysis Editors

Analyze Code

Step Action Result / Comment

1 Click the Analyze code button. The project is analyzed.

Select Scope and Query

Step Action Result / Comment

1 Click the Select and Add button. -

2 Select Scope > Project. This reduces the number elements that are
added to the dependency graph to nodes
that are defined in your project only.

3 Select Query > Call Graph. This adds the calls of your application to
the dependency graph.

4 Click the Apply button. The project is analyzed and the
dependency graph is displayed.

How to Explore Stepwise the Dependencies of Your
Application on Dependency View

Overview
You can also add nodes and subnodes to the dependency graph by drag-and-
drop.

Step Action Result / Comment

1 Add a new dependency view to the
Application node.

See above.

2 In the Application tree, select the SR_
MainMachine (PRG) node.

Application >
TemplateFullProgrammingFramework >
TaskCalls

3 Drag the node to the new dependency
graph and drop it.

-

4 Right-click SR_MainMachine in the
dependency graph and select Add all my
> [Properties and Variables/Methods/
Actions] from the contextual menu.

The SR_MainMachine and the associated
selections are displayed in an unstructured
way.

5 Open the Layout list and select LinLog
and click Apply.

The SR_MainMachine and the associated
selections are displayed in a structured
way.

NOTE: This is an example. You can drag-and-drop all objects used in your
application to the dependency graph.

52 EIO0000002710.05

Code Analysis

Appendices
What’s in This Part

Dependency (Filter) Queries ...54
Dependency (Select) Queries ...56
Metrics ..60
Conventions ..83

EIO0000002710.05 53

Code Analysis Dependency (Filter) Queries

Dependency (Filter) Queries
What’s in This Chapter

Dependency (Filter) Queries ..54

Dependency (Filter) Queries

Dependency (Filter) Queries
The following queries are available by default (by EcoStruxure Machine Expert
installation).

Name Description

Call Graph Description: This query chain is used to get the call edges and the
connected nodes (source or target of the edge). The result is applied to the
current content of a dependency view to show or hide nodes and edges.

Use Case: After generating a dependency view with content of the Call
Graph query, this filter helps to ensure that only the called nodes and call
edges are displayed.

Extend Graph Description: This query chain is used to get the extend edges and the
connected nodes (source or target of the edge). The result is applied to the
content of the dependency view to show or hide nodes and edges.

Use Case: After generating a dependency view with content of query
Extend Graph query, this filter helps to ensure that only the nodes
extended or extending other nodes and extend edges are displayed.

GVL Graph Description: This query chain is used to get the GVL nodes. The result is
applied to the content of the dependency view to show or hide nodes.

Use Case: After generating a dependency view with content of the GVL
Graph query, this filter helps to ensure that only the GVL nodes are
displayed.

GVL+Variable Graph Description: This query chain is used to get the GVLs and variable nodes
and the edges connecting these nodes (source or target of the edge). The
result is applied to the content of the dependency view to show or hide
nodes and edges.

Use Case: After generating a dependency view with content of the GVL
+Variable Graph query, this filter helps to ensure that only the GVL and
variable nodes and edges connecting them are displayed.

Implement Graph Description: This query chain is used to get the implement edges and the
connected nodes (source or target of the edge). The result is applied to the
content of the dependency view to show or hide nodes and edges.

Use Case: After generating a dependency view with content of the
Implement Graph query, this filter helps to ensure that only the nodes
implemented or implementing other nodes and extend edges are
displayed.

Implement+Extend
Graph

Description: This query chain is used to get the extend and implement
edges and the connected nodes (source or target of the edge). The result
is applied to the content of the dependency view to show or hide nodes
and edges.

Use Case: After generating a dependency view with content of the
Implement+Extend Graph query, this filter helps to ensure that only the
nodes extended or extending and implemented or implementing other
nodes and extend and implement edges are displayed.

Library Stack Description: This query chain is used to get the library nodes. The result is
applied to the content of the dependency view to show or hide nodes and
edges.

Use Case: After generating a dependency view with content of the Library
Stack query, this filter helps to ensure that only the library nodes are
displayed and the uses edges connecting them together.

54 EIO0000002710.05

Dependency (Filter) Queries Code Analysis

Name Description

Node Graph Description: This query chain is used to get the nodes (all types). The
result is applied to the content of the dependency view to show or hide
nodes and edges.

Use Case: After generating a dependency view with content of the Node
Graph query, this filter helps to ensure that all node types are displayed
and the edges connecting them together.

POU Graph Description: This query chain is used to get the POU nodes. The result is
applied to the content of the dependency view to show or hide nodes and
edges.

Use Case: After generating a dependency view with content of the POU
Graph query, this filter helps to ensure that only the POU nodes are
displayed and the edges connecting them together.

POU+Variable Graph Description: This query chain is used to get the POUs and variable nodes
and the edges connecting these nodes (source or target of the edge). The
result is applied to the content of the dependency view to show or hide
nodes and edges.

Use Case: After generating a dependency view with content of the POU
+Variable Graph query, this filter helps to ensure that only the POU and
Variable nodes and edges connecting them are displayed.

Read Graph Description: This query chain is used to get the POUs and variable nodes
and the edges connecting these nodes via a read edge (source or target of
the edge). The result is applied to the content of the dependency view to
show or hide nodes and edges.

Use Case: After generating a dependency view with content of the Read
Graph query, this filter helps to ensure that only the POU and variable
nodes are displayed connected via read edges.

Read+Write Graph Description: This query chain is used to get the POUs and variable nodes
and the edges connecting these nodes via a read or write edge (source or
target of the edge). The result is applied to the content of the dependency
view to show or hide nodes and edges.

Use Case: After generating a dependency view with content of the Read
+Write Graph query, this filter helps to ensure that only the POU and
variable nodes are displayed connected via read or write edges.

Write Graph Description: This query chain is used to get the POUs and variable nodes
and the edges connecting these nodes via a write edge (source or target of
the edge). The result is applied to the content of the dependency view to
show or hide nodes and edges.

Use Case: After generating a dependency view with content of the Write
Graph query, this filter helps to ensure that only the POU and variable
nodes are displayed connected via write edges.

Device Graph Description: This query chain is used to get the devices and the edges
connecting these nodes.

Use Case: After generating a dependency view content of Select and Add
query, page 56 Device Graph, this filter helps to ensure that only the
devices are displayed.

Test Element Graph Description: This query chain is used to get the test elements (TestCase,
TestResource, TestSet, and so on) and the edges connecting these
nodes.

Use Case: After generating a dependency view content of Select and Add
query, page 56 Test Element Graph, this filter helps to ensure that only
the test elements are displayed.

EIO0000002710.05 55

Code Analysis Dependency (Select) Queries

Dependency (Select) Queries
What’s in This Chapter

Dependency (Select) Queries ..56

Dependency (Select) Queries

Dependency (Select) Queries
The following queries are available by default (by EcoStruxure Machine Expert
installation).

Group: Misc

Name Description

Call Graph Description: This query chain generates a dependency view with the POUs acting as callers or
are called by another POU of the selected scope (for example, defined below the Application).

Results: If only one task is defined and only one program (PRG) is executed, the resulting graph
is a tree of POUs connected via call edges.

If multiple tasks are defined or multiple programs (PRGs) are executed, it depends on the
implementation whether a common POU is called by both or not. Then the result shows multiple
call trees in one dependency view (as a graph).

Use Case: The dependency view can be used to analyze the call tree in a graphical way and
identify which POUs are used by which POU and which POUs are used more than once.

If a POU is called more than once, a modification in this POU is automatically established in both
call trees.

Source code example:
fbMyFunctionBlock.TestMethod();

Extend (FunctionBlock) Description: This query chain generates a dependency view with the function blocks (FBs) of the
selected scope (for example, defined below the Application) that extend another FB.

As an example, a basic function block is called FB_DriveBase. This FB_DriveBase can be
extended by FB_LXM52 and FB_LXM62.

Results: The result is a graph of function blocks connected via extend edges.

From a subnode function block (FB not extended by another FB like FB_LMX62), you get the
chain of FBs to its basic FBs.

For the FBs in a project, you see the FB siblings using the same basic FB.

Use Case: The dependency view can be used to visualize the extend chain for FBs. You can see
if there are siblings extending the same basic FB with a similar functionality and could be
replaced by another. For example, you can use FB_LXM62 and FB_LXM52 as a method input
argument based on FB_DriveBase. This method can handle both type of drives.

Source code example:
FUNCTION_BLOCK FB_MyTest EXTENDS FB_MyTestBase

56 EIO0000002710.05

Dependency (Select) Queries Code Analysis

Name Description

Extend (Interface) Description: This query chain generates a dependency view with the interfaces of the selected
scope (for example, defined below the Application) that extend another interface.

As an example, a basic interface is called IF_DriveBase. This IF_DriveBase can be extended by
IF_LXM52 and IF_LXM62.

Results: The result is a graph of interfaces connected via extend edges.

From a subnode interface (interface not extended by another interface like IF_LMX62), you get
the chain of interfaces to its basic Interface.

For the interfaces in a project, you see the interface siblings using the same basic interface.

Use Case: The dependency view can be used to visualize the extend chain for interfaces. You
can see if there are siblings extending the same basic interface with a similar functionality and
could be replaced by another. For example, you can use FB instances implementing IF_LXM62
or IF_LXM52 as a method input argument based on IF_DriveBase. This method can handle both
type of drives.

Source code example:
INTERFACE IF_MyTest EXTENDS IF_MyTestBase

Extend Graph Description: This query chain generates a dependency view with the interfaces and function
blocks (FBs) of the selected scope (for example, defined below the Application) that extend
another Interface.

As an example, a basic interface is called IF_DriveBase. This IF_DriveBase can be extended by
IF_LXM52 and IF_LXM62 (same for FBs).

Results: The result is a graph of Interfaces and FBs connected via extend edges.

From a subnode interface / FB (interface / FB not extended by another interface / FB like IF_
LMX62), you get the chain of interfaces / FBs to its basic interface / FB.

For the interfaces / FBs in a project, you see the interface / FB siblings using the same basic
interface / FB.

Use Case: The dependency view can be used to visualize the extend chain for interfaces and
FBs together. You can see if there are siblings extending the same basic interface / FB with a
similar functionality and could be replaced by another. For example, you can use FB instances
implementing IF_LXM62 or IF_LXM52 as a method input argument based on IF_DriveBase.
This method can handle both type of drives.

Source code example:
FUNCTION_BLOCK FB_MyTest EXTENDS FB_MyTestBase

or
INTERFACE IF_MyTest EXTENDS IF_MyTestBase

GVL Graph Description: This query chain generates a dependency view with the defined Global Variable
Lists (GVLs) of the selected scope (for example, defined below the Application).

Results: The result is a graph of nodes (GVLs) without edges between each other.

Use Case: This dependency view can be used to explore the GVLs. You can add for example,
the variables connected to the GVL you are interested in.

Source code example:
VAR_GLOBAL

G_iGVLTestVar: INT;
END_VAR

GVL+Variable Graph Description: This query chain generates a dependency view with the defined Global Variable
Lists (GVLs) of the selected scope (for example, defined below the Application) and the
variables defined in these GVLs.

Results: The result is a graph of nodes (GVLs + variables) and its dependencies. If multiple
GVLs are defined in an application, you see groups of nodes (a GVL and its variables). The
groups are in most cases not connected to each other.

Use Case: This dependency view can be used to explore the GVLs + variable of the project. You
can add, for example, reading and writing nodes to visualize if a variable is used by multiple
code snippets or used by one node only, to be declared more locally in, for example, a PRG.

Source code example:
VAR_GLOBAL

G_iGVLTestVar: INT;
END_VAR

EIO0000002710.05 57

Code Analysis Dependency (Select) Queries

Name Description

Implement Graph Description: This query chain generates a dependency view with the function blocks (FBs)
implementing interfaces of the selected scope (for example, defined below the Application).

Results: The result is a graph of FBs and interfaces connected via implement edges.

For the FBs in a project, you see which other FB is also an implementation of the linked
interfaces.

Use Case: The dependency view can be used to visualize the implement dependencies of FBs.
You can use it to visualize for example, missing interface implementations if, for example,
multiple FB types must meet the same specification to be used by a method.

Source code example:
FUNCTION_BLOCK FB_MyTest IMPLEMENTS IF_MyTest, IF_MyTest2

Implement+Extend Graph Description: This query chain generates a dependency view with the function blocks (FBs) and
interfaces of the selected scope (for example, defined below the Application) and how they are
linked together.

Results: The result is a graph of FBs and interfaces connected via implements edges or extends
edges.

Use Case: This dependency view can be used to visualize the implements and extends
dependencies at once.

Source code example:
FUNCTION_BLOCK FB_MyTest EXTENDS FB_MyTestBase IMPLEMENTS IF_MyTest,
IF_MyTest2

Library Stack Description: This query chain generates a dependency view with the used libraries in the project.

Results: From application point of view, you generate the library stack your application is based
on. You see the directly referenced libraries and the indirectly referenced libraries.

Use Case: This dependency view can be used to visualize the library stack at once in a
graphical way. You can see the library layers.

For example, Application > Technology Libraries > PacDrive Library > System Libraries
(Firmware API).

Node Graph Description: This query chain generates a complete dependency view of the nodes of the
selected scope (for example, defined below the Application) and how they are linked together.

Results: The result graph contains the nodes of any type (FBs, PRGs, FCs, variables, libraries,
DUTs, and so on) with the different kind of edges between these nodes.

Use Case: This dependency view can be used to visualize the complete project. Keep in mind
that this dependency view contains many different node and edge types at the same time and
you are not able to see your code from a specific view (for example, compared to the call tree).

POU Graph Description: This query chain generates a dependency view with the defined function blocks /
functions (POUs) of the selected scope (for example, defined below the Application).

Results: The result is a graph of nodes (POUs). If the POUs are linked, for example, via a call
edge, this edge is also part of the result.

Use Case: This dependency view can be used to explore the POUs. You can add for example,
the variables connected to the POU you are interested in.

POU+Variable Graph Description: This query chain generates a dependency view with the defined programs / function
blocks / functions (POUs) of the selected scope (for example, defined below the Application)
and the variables defined in these POUs.

Results: The result is a graph of nodes (PRGs + variables) and its dependencies.

Use Case: This dependency view can be used to explore the POUs and variables of the project.
You can add for example, reading and writing nodes to visualize if a variable is used by multiple
code snippets or used by one node only, to be declared more locally in, for example, a POU.

Source code example:
PROGRAM SR_MyTest
VAR

iSRTestVar: INT;
END_VAR

58 EIO0000002710.05

Dependency (Select) Queries Code Analysis

Name Description

Read Graph Description: This query chain generates a dependency view with the read operations of the
selected scope (for example, defined below the Application) to a variable.

Results: The result is a graph of POUs (programs / functions / function blocks, and so on) and
the variables which are linked via a read edge.

Use Case: This dependency view can be used to explore the read operations to variables and to
see if it is read multiple times or only once in the project.

Source code example:
dummy0 := iSRTestVar;

Read+Write Graph Description: This query chain generates a dependency view with the read and write operations
of the selected scope (for example, defined below the Application) to a variable.

Results: The result is a graph of POUs (programs / functions / function blocks, and so on) and
the variables which are linked via a read or write edge.

Use Case: This dependency view can be used for example, to explore the read and write
operations to variables and to see if it is read multiple times or only once in the project but not
written.

Source code example:
dummy0 := iSRTestVar;
iSRTestVar := dummy0;

Write Graph Description: This query chain generates a dependency view with the write operations of the
selected scope (for example, defined below the Application) to a variable.

Results: The result is a graph of POUs (programs / functions / function blocks, and so on) and
the variables which are linked via a write edge.

Use Case: This dependency view can be used to explore the write operations to variables and to
see if it is written multiple times or only once in the project.

Source code example:
iSRTestVar := dummy0;

Device Graph Description: This query chain generates a dependency view of the Devices tree.

Results: The Devices tree with the device instances and their subnode dependencies.

Use Case: This dependency view can be used to visualize the device tree and explore the
linkage to variables representing the devices inside the application

Test Element Graph Description: This query chain generates a dependency view of the test elements (TestCases,
TestResources, TestSets, and so on).

Results: The test elements and how they are linked.

Use Case: This dependency view can be used to get an overview of which TestCase reuses
TestResources or TestSets, and to navigate to the tested elements (functions, methods,
function blocks, and so on).

EIO0000002710.05 59

Code Analysis Metrics

Metrics
What’s in This Chapter

Metric: Application Size (Code)...60
Metric: Application Size (Code+Data)..61
Metric: Application Size (Data) ...61
Metric: Call In..62
Metric: Call Out ...62
Metric: Commented Variables (All) Ratio ...62
Metric: Commented Variables (In+Out+Global) Ratio63
Metric: Cyclomatic Complexity..63
Metric: Extended By ..65
Metric: Extends ...65
Metric: Fan In..66
Metric: Fan Out ...66
Metric: Halstead Complexity...67
Metric: Implemented By ...70
Metric: Implements ..71
Metric: Lines Of Code (LOC) ..72
Metric: Memory Size (Data)..72
Metric: Number Of Actions ...73
Metric: Number Of GVL Usages ...74
Metric: Number Of Header Comment Lines ...74
Metric: Number Of Instances..75
Metric: Number Of Library References ..76
Metric: Number Of Messages ...76
Metric: Number Of Methods ...76
Metric: Number Of Multiline Comments ...77
Metric: Number Of Properties ...77
Metric: Number Of Reads...78
Metric: Number Of Tasks..78
Metric: Number Of Transitions ..79
Metric: Number Of Variables ..79
Metric: Number Of Writes...80
Metric: Number Of FBD Networks...80
Metric: Source Code Comment Ratio ..81
Metric: Stack Size..82

Metric: Application Size (Code)

User Description
When logged into a controller, the source code is compiled and an executable is
sent to the controller.

The executable consists of code and data sections when loaded into controller
memory.

The application code size is the amount of memory needed on the controller to
manage the application code.

NOTE: This metric can only be calculated when you activate the Consider
Code and Data Size option in the code analyzer Configuration tab (see
EcoStruxure Machine Expert, Code Analysis, User Guide).

Metric Calculation
The application code size is calculated based on the size of generated machine
code for each POU (program, function block, function).

60 EIO0000002710.05

Metrics Code Analysis

Metric: Application Size (Code+Data)

User Description
When logged into a controller, the source code is compiled (incl. Generate Code)
and an executable is sent to the controller.

The executable consists of code and data sections when loaded into controller
memory.

The application code and data size is the minimum amount of memory needed on
the controller to run the application.

NOTE: This metric can only be calculated when you activate the Consider
Code and Data Size option in the code analyzer Configuration tab (see
EcoStruxure Machine Expert, Code Analysis, User Guide).

Metric Calculation
The application code size is calculated based on the size of generated machine
code for each POU (program, function block, function).

The application data size is calculated based on the size of the variables in the
application.

NOTE: The sum of application code size and application data size (see
dedicated metric) is not exactly the application code size + data size (this
metric) due to alignment or code page size of the underlaying controller
hardware.

Metric: Application Size (Data)

User Description
When logged into a controller, the source code is compiled (incl. Generate Code)
and an executable is sent to the controller.

The executable consists of code and data sections when loaded into controller
memory.

The application data size is the amount of memory needed on the controller to
manage the data needed to execute the application code.

NOTE: This metric can only be calculated when you activate the Consider
Code and Data Size option in the code analyzer Configuration tab (see
EcoStruxure Machine Expert, Code Analysis, User Guide).

Metric Calculation
The application data size is calculated based on the size of the variables in the
application.

EIO0000002710.05 61

Code Analysis Metrics

Metric: Call In

User Description
The Call In metric is used to get information about who is calling a method,
function, function block, and so on.

Metric Calculation
Each call to an implementation is considered, but if the same object (method,
function, etc.) is called twice in the same implementation, it is only counted once.

Example

Call In calculation example:
METH();

// Some other implementation

METH();

Call In Result (for methodMETH)
Call In = 1

Metric: Call Out

User Description
The Call Out metric is used to get information about which other objects (method,
function, function block, etc.) are called by the implementation.

Metric Calculation
Each call to an implementation is considered, but if the same object (method,
function, etc.) is called twice in the same implementation, it is only counted once.

Example

Call Out calculation example:
METH();

// Some other implementation

METH();

Call Out Result (for method METH)
Call Out = 1

Metric: Commented Variables (All) Ratio

User Description
This metric calculates the ratio (Unit: %) between commented and not commented
variables in an object.

62 EIO0000002710.05

Metrics Code Analysis

Metric Calculation
Each variable declaration in objects (function (FUN), function block (FB), Data
Unit Type (DUT), Global Variable List (GVL), and so on) is verified whether it is
commented or not.

The ratio between these two values is provided with this metric.

Example

Commented variables ratio calculation example:
Declaration:
1: PROGRAM SR_Main
2: VAR
3: xCheck1: BOOL;//flag to identify
4: uiMyVariable2: UINT;
5: xFlag: BOOL;
6: END_VAR

Commented variables ratio result: 33.33 %

Metric: Commented Variables (In+Out+Global) Ratio

User Description
This metric calculates the ratio (Unit: %) between commented and not commented
variables that are defined in VAR_GLOBAL, VAR_INPUT, VAR_OUTPUT, or
VAR_IN_OUT.

Metric Calculation
Each variable declaration in objects (function (FUN), function block (FB), Data
Unit Type (DUT), Global Variable List (GVL), and so on) are verified whether they
are commented or not.

The ratio between these two values is provided with this metric.

Example

Commented variables (in+out+global) ratio calculation example:
Declaration:
1: PROGRAM SR_Main
2: VAR_IN
3: i_xCheck1: BOOL;//flag to identify
3: i_uiMyVariable2: UINT;
4: END_VAR
2: VAR
3: xFlag: BOOL;
4: END_VAR

Commented variables (in+out+global) ratio result: 50 %

Metric: Cyclomatic Complexity

User Description
The Cyclomatic Complexity metric is used to measure the complexity of a program
by counting the number of linearly independent paths in the source code.

EIO0000002710.05 63

Code Analysis Metrics

Metric Calculation
Cyclomatic Complexity is computed using the control flow graph of the program.
The complexity depends on the condition and decision points of the control flow
graph.

For example:
• No condition or decision point: Complexity = 1 (one path through the code).
• One IF statement: Complexity = 2 (two paths through the code).
• One IF statement with two conditions: Complexity = 3 (three paths through

the code).
There are different interpretations/implementation of Cyclomatic Complexity,
depending on the analysis tool. Some tools do not consider expressions with
AND/OR/etc. in IF, REPEAT, WHILE, etc. statements. The McCabe Cyclomatic
Complexity is always increased by +1. Other tools also consider the expressions
in the code flow (outside an IF, REPEAT, etc. statement) but later used in an IF or
REPEAT statement which results in a higher Cyclomatic Complexity result. The
Cyclomatic Complexity implementation in EcoStruxure Machine Expert considers
expressions with AND/OR/etc. but does not consider pre-calculated expressions
in the code flow or specified in a method call.

Example

Cyclomatic Complexity calculation example:
// MCC +1 (Initial Value)

// MCC +0 (Pre calculation of condition not considered)
a := b OR c;

// MCC +0 (Method call with condition not considered in
calling implementation)
METH4(a);

IF a AND b OR c XOR d AND NOT e THEN

// MCC +5 (IF with 5 conditions)

CASE i OF
1..4:

// MCC +1 (CASE range is considered as one
condition)

FOR i := 1 TO 10 DO // MCC +1

METH1();
END_FOR

10, 11, 12, 13:
// MCC +1 (multiple CASE labels considered as one

condition)

REPEAT
// MCC +1 (one condition in REPEAT)

WHILE (a = TRUE AND b = FALSE) DO
// MCC +2 (two conditions in WHILE)

METH2();

END_WHILE

UNTIL (TRUE) END_REPEAT

ELSE
// MCC +0 (Default path through CASE statement)

64 EIO0000002710.05

Metrics Code Analysis

METH3();
END_CASE

END_IF

Cyclomatic Complexity Result
Cyclomatic Complexity (MCC) = 12

Metric: Extended By

User Description
The Extended By metric is used to get information about how often a function
block or an interface is extended by another function block or interface.

Metric Calculation
A function block can extend exactly one function block and implement multiple
interfaces. An interface can extend multiple interfaces, but cannot implement other
interfaces.

A function block or an interface can be extended by none or several interfaces.
The number of direct extended interfaces is counted.

Example

Extended By calculation example:
FB_Test extends FB_Base implements IF_Test1, IF_Test2

FB_Base implements IF_Test4

IF_Test2 extends IF_Test3, IF_Test5

Implemented By Results
Extended By (FB_Base) = 1
Extended By (IF_Test3) = 1
Extended By (IF_Test5) = 1

Metric: Extends

User Description
The Extends metric is used to get information about how many interfaces are
extended by a function block or an interface.

Metric Calculation
A function block can extend exactly one function block and implement multiple
interfaces. An interface can extend multiple interfaces, but cannot implement other
interfaces.

A function block or an interface can extend none or several interfaces. The
number of direct extended interfaces is counted.

Example

Extends calculation example:
FB_Test extends FB_Base implements IF_Test1, IF_Test2

EIO0000002710.05 65

Code Analysis Metrics

FB_Base implements IF_Test4

IF_Test2 extends IF_Test3, IF_Test5

Implemented By Results
Extends (FB_Test) = 1
Extends (IF_Test2) = 2

Metric: Fan In

User Description
The Fan In metric is used to get information about how many incoming
dependencies (reads, writes, calls, and so on) to a node in the analysis data
model (Dependency Model) are available. Incoming dependency means, that for
example, a node is called and another node depends on this node.

Metric Calculation
Each incoming dependency is considered for a node. A node can be a function
block, program, function, variable, library, property, method, task, and so on.

Example

Dependency example (list of dependencies):
FunctionBlockA defines MethodA
FunctionBlockA defines MethodB
FunctionBlockA defines VariableC
FunctionBlockA calls MethodA
MethodA calls MethodB
MethodB reads VariableC

Fan In Results
Fan In (FunctionBlockA) = 0
Fan In (MethodA) = 2
Fan In (MethodB) = 2
Fan In (VariableC) = 2

Metric: Fan Out

User Description
The Fan Out metric is used to get information about how many outgoing
dependencies (reads, writes, calls, and so on) a node in the analysis data model
(Dependency Model) has. Outgoing dependency means, that for example, a node
is called and another node depends on this node.

Metric Calculation
Each outgoing dependency is considered for a node. A node can be a function
block, program, function, variable, library, property, method, task, and so on.

Example

Dependency example (list of dependencies):
FunctionBlockA defines MethodA
FunctionBlockA defines MethodB

66 EIO0000002710.05

Metrics Code Analysis

FunctionBlockA defines VariableC
FunctionBlockA calls MethodA
MethodA calls MethodB
MethodB reads VariableC

Fan Out Results
Fan Out (FunctionBlockA) = 4
Fan Out (MethodA) = 1
Fan Out (MethodB) = 1
Fan Out (VariableC) = 0

Metric: Halstead Complexity

User Description
The Halstead complexity metric is used to measure the complexity of a software
program without running the program itself.

This metric is a static testing method where measurable software properties are
identified and evaluated. The source code is analyzed and broken down to a
sequence of tokens. The tokens are then classified and counted as operators or
operands.

The operators and operands are classified and counted as follows:

Parameter Description

n1 Number of distinct operators

n2 Number of distinct operands

N1 Total number of operators

N2 Total number of operands

There are a number of metric values that can be calculated to represent different
aspects of complexity:

• Halstead Difficulty (D)
• Halstead Length (N)
• Halstead CalculatedLength (Nx)
• Halstead Volume (V)
• Halstead Effort (E)
• Halstead Vocabulary (n)

Halstead Complexity for POUs Implemented in Structured Text
(ST)

The Halstead complexity was originally developed for textual languages (like C, C
++, Pascal, etc.) and is applicable to POUs implemented in structured text (ST).

NOTE: By default, the Halstead Difficulty is displayed.

Halstead Complexity for POUs Implemented in Function Block
Diagram (FBD)

The function block diagram (FBD) belongs to the group of graphical
implementation languages and is not text-based. A POU consists of multiple FBD
networks. Then the Halstead complexity metric must be adapted to be applicable

EIO0000002710.05 67

Code Analysis Metrics

to graphical languages. Operands and operators and their frequency (per FBD
network) are considered as presented to the user (see Example for function block
diagram (FBD)).

The Halstead complexity results calculated per FBD network are aggregated
across the FBD networks and attached on POU (program, function block, function,
method, or property) level.

NOTE: The calculated Halstead values (per FBD network) are FBD Network
Halstead Difficulty and FBD Network Halstead Length.

The following aggregation types are applied per FBD network Halstead metric
values (Halstead Difficulty and Halstead Length):

• Average
• Minimum
• Maximum
• Sum
• Consistency

NOTE: The most relevant aggregated values are FBD Halstead Difficulty
Network Max, FBD Halstead Difficulty Network Consistency, FBD Halstead
Length Network Max, and FBD Halstead Length Network Consistency. All
other combinations (Min, Sum, and Average) are calculated and attached to
the model but not displayed by default.

Metric Calculation
Value Formula

Halstead Difficulty (D) D = (n1 / 2) * (N2 / n2)

Halstead Length (N) N = N1 + N2

Halstead CalculatedLength (Nx) Nx = n1 * log2(n1) + n2 * log2(n2)

Halstead Volume (V) V = N * log2(n)

Halstead Effort (E) E = V * D

Halstead Vocabulary (n) n = n1 + n2

NOTE: An expression in an IF <expression> THEN statement must not have
parenthesis. They are considered as always available.

Metric Aggregation
Metric results like FBD Network Halstead Difficulty and FBD Network Halstead
Length are aggregated across the FBD networks of a POU.

The values are the list of values of the same metric (for example, FBD Network
Halstead Length) of the FBD networks of a POU.

The consistency value is a result of the Gini coefficient. The Gini coefficient is a
measure of statistical dispersion. It measures the inequality among values of a
frequent distribution. A Gini coefficient of 0 expresses equality, where all values
are the same. A Gini coefficient of 1 expresses maximum inequality among
values.

Example for structured text (ST)

Halstead calculation example (only the implementation part is considered for
calculation):
IF (xInit = FALSE) THEN

PerformInitialization();
xInit := TRUE;

68 EIO0000002710.05

Metrics Code Analysis

ELSE

FOR i := 1 TO 5 DO

iAxisId := i + 7;
sAxisName := Standard.CONCAT('MyAxis ', INT_TO_

STRING(iAxisId));

// Do some math calculations for each axis here
udiResult := CalculateStuff(sName := sAxisName, iID

:= iAxisId);
END_FOR

END_IF

List of Operators and its Frequencies:
Operator Frequency
======== =========
(operators)
If 1
Then 1
LeftParenthesis 6
RightParenthesis 6
Equal 1
Semicolon 5
Assign 7
Else 1
For 1
EndFor 1
Do 1
Plus 1
Period 1
INT_TO_STRING 1
Colon 2
EndIf 1
(n1) 16 (N1) 37

List of Operands and its Frequencies:
Operand Frequency
======= =========
(variables/methods/functions)
xInit 2
PerformInitialization 1
i 2
iAxisId 3
sAxisName 2
Standard 1
CONCAT 1
udiResult 1
CalculateStuff 1
sName 1
iID 1

(constants)
FALSE 1
TRUE 1
INT#1 1
INT#5 1
INT#7 1
'MyAxis ' 1
(n2) 17 (N2) 22

Halstead Difficulty Result
Halstead Difficulty (D = (16/2) * (22/17) = 10.3529411764706

Example for function block diagram (FBD)

EIO0000002710.05 69

Code Analysis Metrics

Halstead calculation example implemented in FBD (only the implementation part
is considered for calculation):

List of Operators and its Frequencies:
Operator Frequency
======== =========
(operators)
Assign 4
Set2 1
And 1
Negation2 2
Or 1
Eq 1
(n1) 6 (N1) 10

List of Operands and its Frequencies:
Operand Frequency
======= =========
(variables/methods/functions/constants)
xResult 1
TON 1
fbTON 1
xEnable 1
T#1s 1
IN 1
PT 1
Q 1
ET 1
xTray1Empty 1
xTray2Empty 1
xInHomePosition 1
xBeltFull 1
xGroupReady 1
uiMasterStart 1
5 1
(n2) 16 (N2) 16

FBD Network Halstead Difficulty Result
FBD Network Halstead Difficulty (D) = (6/2) * (16/16) = 3

FBD Network Halstead Length
FBD Network Halstead Length (D) = 10 + 16 = 26

Metric: Implemented By

User Description
The Implemented By metric is used to get information about how often an
interface is implemented by a function block.

70 EIO0000002710.05

Metrics Code Analysis

Metric Calculation
A function block can extend exactly one function block and implement multiple
interfaces. An interface can extend multiple interfaces, but cannot implement other
interfaces.

An interface can be implemented by several function blocks. The number of direct
implemented interfaces is counted.

NOTE: If the function block extends another function block or an interface
extends other interface, the derived implemented interfaces are not
considered. If an interface is implemented in base function block and derived
function block, it is counted twice.

Example

Implemented By calculation example:
FB_Test extends FB_Base implements IF_Test1, IF_Test2

FB_Base implements IF_Test4, IF_Test1

IF_Test2 extends IF_Test3, IF_Test5

Implemented By Results
Implemented By (IF_Test1) = 2
Implemented By (IF_Test2) = 1
Implemented By (IF_Test3) = 1
Implemented By (IF_Test4) = 1
Implemented By (IF_Test5) = 1

Metric: Implements

User Description
The Implements metric is used to get information about how many interfaces are
implemented by a function block.

Metric Calculation
A function block can extend exactly one function block and implement multiple
interfaces. An interface can extend multiple interfaces, but cannot implement other
interfaces.

A function block can implement none or several interfaces. The number of direct
implemented interfaces is counted.

NOTE: If the function block extends another function block or an interface
extends other interface, the derived implemented interfaces are not
considered.

Example

Implements calculation example:
FB_Test extends FB_Base implements IF_Test1, IF_Test2

FB_Base implements IF_Test4

IF_Test2 extends IF_Test3, IF_Test5

Implements Results
Implements (FB_Test) = 2
Implements (FB_Base) = 1

EIO0000002710.05 71

Code Analysis Metrics

Metric: Lines Of Code (LOC)

User Description
The software metric Lines Of Code (LOC) counts the number of source code lines
of a program. This metric can be used to estimate the workload for program
development, the programming productivity, and the maintainability of the
application.

Metric Calculation
Each line in a textual implemented object (Function (FUN), function block (FB),
data unit type (DUT), global variable list (GVL), and so on) is considered in the
Lines Of Code metric.

Example

Lines Of Code calculation example:
Declaration:
1: PROGRAM SR_Main
2: VAR
3: x: BOOL;
4: END_VAR

Implementation:
1:
2: IF (x = TRUE) THEN
3: DoSomething();
4: END_IF
5:
6: // A nice comment
7: SpecialMethod();

Lines Of Code Result
Lines Of Code (LOC) = 11

Metric: Memory Size (Data)

User Description
An application or library is organized by complex types such as programs, function
blocks, global variable lists, methods, actions, functions, structures, and so on.
Inside each of these types, variables can be defined.

The complex types function blocks and structures can be instantiated multiple
times and placed as a block inside the memory.

Each complex type definition (type information and variables), when instantiated,
needs a specific amount of memory. Information about how much memory must
be allocated and processed, for example in online modification situations or when
used as input argument to methods. That information can then be used to identify
large complex types which can cause issues when repeatedly instantiated.

Metric Calculation
For a function block or structure, the sizes of the variables are summed up. In
addition, the function block type needs memory (list of methods, implemented
interfaces, and so on). Based on the underlying controller architecture, memory
alignment must be considered too. It is based on the variable type and order.

72 EIO0000002710.05

Metrics Code Analysis

Example

Memory Size (Data) calculation example:
FUNCTION_BLOCK FB_XXX
VAR

xVar1: BOOL; // 1 bit
xVar2: BOOL; // 1 bit
xVar3: BOOL; // 1 bit
// 5 additional bits for alignment

iVar4: INT; // 4 byte (on 32-bit architectures)
xVar5: BOOL; // 1 bit
// 7 additional bits for alignment

fbComplex: FB_Test; // 20 byte
END_VAR

FUNCTION_BLOCK FB_YYY
VAREND_VAR

FUNCTION_BLOCK FB_ZZZ
VAR

iVar1: INT;
END_VAR

Memory Size (Data) Results
Memory Size (Data) (FB_XXX) = 32
Memory Size (Data) (FB_YYY) = 4
Memory Size (Data) (FB_ZZZ) = 8

Metric: Number Of Actions

User Description
The Number of Actions metric is used to get information about how many actions
are attached to a program or a function block.

Metric Calculation
Each Action attached to a program or function block is considered. Unused
Actions are considered too.

Example

Number Of Action calculation example:
FB_MyAlphaModule

- ACT_InitAxis1 (Action)
- ACT_InitAxis2 (Action)
- UpdateStatus (Method)
- Calculate (Method)
- Enabled (Property)

- Get (Property Get)
- Set (Property Set)

- Status (Property)
- Get (Property Get)
- Set (Property Set)

- SwitchNextState (Transition)

Number Of Actions Result (for variable FB_MyAlphaModule)
Number Of Actions = 2

EIO0000002710.05 73

Code Analysis Metrics

Metric: Number Of GVL Usages

User Description
The Number Of GVL Usages metric is used to get information about how many
global variables a programming object (programs, function blocks, functions,
methods, and so on) uses (reading or writing).

Metric Calculation
Each programming object (program, function block, function, method, property
get, property set, action,and so on) is handled individually.

Example

Number Of GVL Usages calculation example:
FB_MyAlphaModule
VAR

iMyState : INT;
END_VAR

iMyState := GVL_IOs.G_iState;
if (iMyState = 10) THEN

;
END_IF

Number Of GVL Usages Result (for variable FB_MyAlphaModule)
Number Of GVL Usages = 1

Metric: Number Of Header Comment Lines

User Description
This metric counts the number of comments in the header of the declaration part.

These comments can help developers to understand what this object is doing, for
what it is and how it is working.

Metric Calculation
Each comment line in the header of a declaration part in IEC objects (function
(FUN), function block (FB), Data Unit Type (DUT), Global Variable List (GVL), and
so on) is counted.

Example

Header comments calculation example:
Declaration:
1: //This PRG is the start point
2: //Methodes:
3: // -
4: // -
5: PROGRAM SR_Main
6: VAR
7: x: BOOL;
8: END_VAR

Header comments metric result: 4

74 EIO0000002710.05

Metrics Code Analysis

Metric: Number Of Instances

User Description
The Number Of Instances metric is used to get information about how often a
complex type (function block, enumeration, structure, and so on) is used as
variable type on programming objects (programs, function blocks, and so on).

Metric Calculation
Inside the declaration part, you can define variables. Each variable has an
associated data type (complex type or elementary type). When used, the instance
count of this data type is increased by +1.

NOTE: If the variable data type is an array data type, the underlaying base
data type is used and the instance count is handled as +1. The array length is
not considered.
NOTE: Instantiation paths through different complex types are not considered.
For example, if a function block is instantiated multiple times, the complex
types inside are only counted once.

Example

Number Of Instances calculation example:
SR_Main
VAR

fbMyAlphaModule: FB_MyAlphaModule;
END_VAR

FB_MyAlphaModule
VAR

astAxisStructures: ARRAY [1..10] OF ST_MyAxisStructure;
fbSubModule: FB_MySubModule;

END_VAR

FB_MySubModule
VAR

fbAxis: FB_MyAxis;
END_VAR

ST_MyAxisStructure
VAR

iID: INT;
fbAxis: FB_MyAxis;

END_VAR

FB_MyAxis
VAR
END_VAR

Number Of Instances Results
Number Of Instances (FB_MyAlphaModule) = 1
Number Of Instances (FB_MySubModule) = 1
Number Of Instances (ST_MyAxisStructure) = 1
Number Of Instances (FB_MyAxis) = 2

EIO0000002710.05 75

Code Analysis Metrics

Metric: Number Of Library References

User Description
The Number Of Library References metric is used to get information about how
many libraries are directly referenced by an application or POU space.

Metric Calculation
Each reference from an application to a library or from a library to another library is
considered.

Example

Number Of Library References calculation example:
Application

--> Library A
--> Library B

--> Library B
--> Library C

Number Of Library References Result (for the application)
Number Of Library References = 3

Metric: Number Of Messages

User Description
The Number Of Messages (information, advisory, detected error, unrecoverable
error) metric is used to get information about how many messages are emitted to
the Message View during compilation.

Metric Calculation
The majority of messages are associated to a programming object such as
function blocks, functions, and so on. Each message that is not associated to a
programming object is attached to the application (or to the POU space for
analysis of POU space only).

NOTE: The code analysis is based on a compilable application without
compile errors. Messages of category error and unrecoverable error emitted
during compilation cannot occur in analysis data.

Metric: Number Of Methods

User Description
The Number of Methods metric is used to get information about how many
methods are attached to a program or a function block.

76 EIO0000002710.05

Metrics Code Analysis

Metric Calculation
Each Method attached to a program or function block is considered. Unused
Methods are considered too.

Example

Number Of Methods calculation example:
FB_MyAlphaModule

- ACT_InitAxis1 (Action)
- ACT_InitAxis2 (Action)
- UpdateStatus (Method)
- Calculate (Method)
- Enabled (Property)

- Get (Property Get)
- Set (Property Set)

- Status (Property)
- Get (Property Get)
- Set (Property Set)

- SwitchNextState (Transition)

Number Of Methods Result (for variable FB_MyAlphaModule)
Number Of Methods = 2

Metric: Number Of Multiline Comments

User Description
This metric counts the multiline comments in an object.

Do not use multiline comments because the start and end of such a comment
could get lost while merging.

For example, a commented out source code may unintentionally become part of
the program again.

Metric Calculation
Example

Multiline comments calculation example:
Declaration:
1: (*This is a multiline
2: comment in header*)
3: PROGRAM SR_Main
4: VAR
5: xCheck1: BOOL;(*not needed
6: uiMyVariable2: UINT;*)
7: xFlag: BOOL;
8: END_VAR

Multiline comments result: 2

Metric: Number Of Properties

User Description
The Number Of Properties metric is used to get information about how many
properties are attached to a program or a function block.

EIO0000002710.05 77

Code Analysis Metrics

Metric Calculation
Each Property attached to a program or function block is considered. Unused
Properties are considered too.

Example

Number Of Properties calculation example:
FB_MyAlphaModule

- ACT_InitAxis1 (Action)
- ACT_InitAxis2 (Action)
- UpdateStatus (Method)
- Calculate (Method)
- Enabled (Property)

- Get (Property Get)
- Set (Property Set)

- Status (Property)
- Get (Property Get)
- Set (Property Set)

- SwitchNextState (Transition)

Number Of Properties Result (for variable FB_MyAlphaModule)
Number Of Properties = 2

Metric: Number Of Reads

User Description
The Number of Reads metric is used to get information about which variables are
read.

Metric Calculation
Each read of a variable in an implementation is considered, but if the same
variable is read twice in an implementation, it is only counted once.

Example

Number Of Read calculation example:
METH(iMyVariable);

// Some other implementation

METH(iMyVariable);

Number Of Reads Result (for variable iMyVariable)
Number Of Reads = 1

Metric: Number Of Tasks

User Description
The Number Of Tasks metric is used to get information about how many tasks an
application has.

78 EIO0000002710.05

Metrics Code Analysis

Metric Calculation
Tasks can only be defined in applications. The number of defined tasks of an
application is returned.

Example

Number Of Tasks calculation example:
Application

- SR_Main (Program)
- FB_Test1 (FunctionBlock)
- FB_Test2 (FunctionBlock)
- TaskConfiguration

- TASK_SR_Main (Task)
- TASK_Visu (Task

Number Of Tasks Result (for the application)
Number Of Tasks = 2

Metric: Number Of Transitions

User Description
The Number Of Transitions metric is used to get information about how many
transitions are attached to a program or a function block.

Metric Calculation
Each transition attached to a program or function block is considered. Unused
transitions are considered too.

Example

Number Of Transitions calculation example:
FB_MyAlphaModule

- ACT_InitAxis1 (Action)
- ACT_InitAxis2 (Action)
- UpdateStatus (Method)
- Calculate (Method)
- Enabled (Property)

- Get (Property Get)
- Set (Property Set)

- Status (Property)
- Get (Property Get)
- Set (Property Set)

- SwitchNextState (Transition)

Number Of Transitions Result (for variable FB_MyAlphaModule)
Number Of Properties = 2

Metric: Number Of Variables

User Description
The Number Of Variables metric is used to get information about how many
variables are defined in the declaration part of programs, function blocks,
functions, methods, property Get or Set, transitions, global variable lists, and so
on.

EIO0000002710.05 79

Code Analysis Metrics

Metric Calculation
Each Variable defined in a declaration part is considered. Unused Variables are
considered too.

Example

Number Of Variables calculation example:
FB_MyAlphaModule
VAR

i: INT;
END_VAR
VAR_INPUT

i_iCommand: INT;
i_lrPosition: LREAL;

END_VAR
VAR_OUTPUT

q_iStatus: INT;
END_VAR

Number Of Variables Result (for variable FB_MyAlphaModule)
Number Of Variables = 4

Metric: Number Of Writes

User Description
The Number of Writes metric is used to get information about which variables are
written.

Metric Calculation
Each writing of a variable in an implementation is considered, but if the same
variable is written twice in an implementation, it is only counted once.

Example

Number Of Write calculation example:
iMyVariable := 1;

// Some other implementation

iMyVariable := 2;

Number Of Writes Result (for variable iMyVariable)
Number Of Writes = 1

Metric: Number Of FBD Networks

User Description
The Number of Function Block Diagram (FBD) Networks metric is used to get
information about how many networks are available in an FBD implemented
program, function block, function, method, or property.

80 EIO0000002710.05

Metrics Code Analysis

Metric Calculation
Each FBD network available in a program, function block, function, method, or
property is considered.

Example

Number Of FBD Networks calculation example:
FB_MyAlphaModule (FB) - implemented in FBD
- FBD Network 1
- FBD Network 2
- FBD Network 3

Number Of FBD Network Result (for variable FB_MyAlphaModule)
Number Of FBD Networks = 3

Metric: Source Code Comment Ratio

User Description
Comments can help developers to understand what the code is doing, for what it
is and how it is working.

This metric calculates the ratio (Unit: %) between CLOC (Comment Lines Of
Code) and SLOC (Source Lines Of Code) of the implementation part of an object.

CLOC: Number of comment lines, including lines that have source code and
comment.

SLOC: Number of lines without comments and blank lines, including lines that
have source code and comment.

Metric Calculation
Each line in a textual implemented object (function (FUN), function block (FB),
Data Unit Type (DUT), program (PRG), and so on) is verified whether it contains a
comment or source code.

The ratio between these two values is provided with this metric.

Example

Source code comment ratio calculation example:
1:
2: IF (x = TRUE) THEN
3: DoSomething();//This is very important and hard to
understand
4: END_IF
5:
6: // A nice comment
7: SpecialMethod();

Source code comment ratio result: 50 %

EIO0000002710.05 81

Code Analysis Metrics

Metric: Stack Size

User Description
An application or library is organized by complex types such as programs, function
blocks, global variable lists, methods, actions, functions, structures, and so on.
Inside each of these types, variables can be defined.

When a complex type like a function, method, action, property Get, property Set,
or a transition is called, memory on the stack is needed to execute the method.
The stack size information can be used to identify the complex type which is using
too much memory of the stack.

NOTE: Stack memory that is available per task is limited and defined by the
controller used. Large consumption of stack size can result in exceptions.
NOTE: If a function block type is used as method input variable type (call by
value), the memory size of the complex type is needed (refer to Memory Size
Data, page 72). Do not use call by value for complex types like method or
function inputs.

Metric Calculation
For a complex type like function or method, the sizes of the variables are summed
up. When the complex type is called, the size is allocated on top of the stack and
the input values are copied the allocated memory. During the code execution of
the function or method, these memory values are used.

NOTE: Each method or function call has its own memory and does not conflict
if a method is called in parallel by another task.

Example

Stack Size calculation example:
FUNCTION_BLOCK FB_XXX
VAR

fbComplex: FB_Test; // 20 byte
END_VAR

// method call of FB_XXX
Meth1(TRUE);

METHOD Meth1
VAR_INPUT

xTest1: BOOL;
END_VARVAR

iTest2: INT;
END_VAR

METHOD METH2
VAR_INPUT

fbComp: FB_XXX;
END_VAR

Stack Size Results
Stack Size (METH1) = 8
Stack Size (METH2) = 32

82 EIO0000002710.05

Conventions Code Analysis

Conventions
What’s in This Chapter

Convention Queries...83
Convention: Access to Global Variable in FB_Init + FB_Exit..............................86
Convention: Compile Messages ...87
Convention: Complex POU With Low Comment Ratio......................................87
Convention: Complex Type Name Checks...87
Convention: Empty Implementation ..88
Convention: Global Variable Accessed Only in One POU88
Convention: Inheritance Depth Limit ...88
Convention: Input Variable Read Check ..89
Convention: Input Variable Type Check...90
Convention: Input Variable Write Check ..90
Convention: Multiline Comment Usage ...91
Convention: No Header Comment ..92
Convention: Number of Methods Limit ..92
Convention: Number Of Pins Limit (Input/Output)...92
Convention: Number Of Pins Limit (Input)..93
Convention: Number Of Pins Limit (Output) ...93
Convention: Number of Properties Limit ..93
Convention: Output Variable Read Check ...94
Convention: Output Variable Type Check ..94
Convention: Persistent Usage Check..95
Convention: Retain Usage Check ...95
Convention: Uncommented Variable (All) ..96
Convention: Uncommented Variable (In+Out+Global)96
Convention: Unused Enum Constants Check ..96
Convention: Unused Variables Check ...97
Convention: Useless DUT..97
Convention: Variable Name Checks..98
Convention: Variable Name Length Check ..99

Convention Queries

Convention Queries
The following queries are available by default for EcoStruxure Machine Expert
installation.

Group: Comment Checks

Name

Complex POU With Low Comment Ratio

Multiline Comments Usage

No Header Comment

Uncommented Variable (All)

Uncommented Variable (In+Out+Global)

Group: Complex Type Name Checks
• Verify the user-defined objects to follow configured rules.
• Example: Enumerations must start with ET_. For example, ET_
MyTestEnumeration.

EIO0000002710.05 83

Code Analysis Conventions

Name Prefix

Complex Type Name (Enumeration) ET_

Complex Type Name (Function) FC_

Complex Type Name (Function block) FB_

Complex Type Name (Interface) IF_

Complex Type Name (Program) SR_

Complex Type Name (Struct) ST_

Complex Type Name (TestCase) TC_

Complex Type Name (TestResource) TR_

Complex Type Name (TestSeries) TS_

Complex Type Name (TestSet) TS_

Complex Type Name (Union) UT_

Group: Messages

Name

Compile Messages

Group: Variable Name Checks (Complex Types) and Variable
Name Checks (Elementary Types)

Variable names should be prefixed by the scope (local, input, output, input/output,
and so on) in combination with a prefix for the variable data type. For example, q_
for input variables and ar for variables of type array -> q_arMyVariable.

Coding style guides suggest prefixing of variables.

Name Prefix

Variable Name (Array) ar

Variable Name (Enumeration) et

Variable Name (FunctionBlock) fb

Variable Name (Interface) if

Variable Name (Pointer) p

Variable Name (Reference) r

Variable Name (Struct) st

Variable Name (TestCase) tc

Variable Name (Union) ut

Name Prefix

Variable Name (BIT) x

Variable Name (BOOL) x

Variable Name (BYTE) b

Variable Name (DATE) dat

Variable Name (DINT) di

Variable Name (DT) dt

84 EIO0000002710.05

Conventions Code Analysis

Name Prefix

Variable Name (DWORD) dw

Variable Name (INT) i

Variable Name (LINT) li

Variable Name (LREAL) lr

Variable Name (LTIME) ltim

Variable Name (LWORD) lw

Variable Name (REAL) r

Variable Name (SINT) si

Variable Name (STRING) s

Variable Name (TOD) tod

Variable Name (UDINT) udi

Variable Name (UINT) ui

Variable Name (ULINT) uli

Variable Name (USINT) usi

Variable Name (WORD) w

Variable Name (WSTRING) ws

Group: Threshold Checks

Name Description

Inheritance Depth Limit Description: Verify for each interface or function block that the inheritance depth (Extend edge
chain) does not raise the limit.

Use case: Verify inheritance depth limit to avoid too complex and too deep structures with non-
operational maintainability.

Example: FB1 extends FB2 extends FB3 extends FB4.

Variable Length Check Description: Verify the length for each variable not to raise the suggested length limit.

Use case: Verify variable name length to increase the readability of source code to improve
maintainability.

Example of a correct variable: iCounterVariable1.

Example of an incorrect variable: iAnotherToLengthCounter1Variable.

Number Of Method Limit Description: Verify the number of methods defined, for example for a function block not to raise
the suggested length limit.

Use case: Too many methods below a function block are an indicator to refactor the function
block to implement only one feature.

Number Of Properties Limit Description: Verify the number of properties defined, for example for a function block not to raise
the suggested length limit.

Use case: Too many properties below a function block are an indicator to refactor the function
block to implement only one feature.

Group: Usage Checks

Name Description

Input Variable Read Check Description: Verify each input variable if it is read from outside the POU.

Use case: Do not read an input variable of a POU.

Input Variable Type Check Description: Verify each input variable if it is of type function block.

EIO0000002710.05 85

Code Analysis Conventions

Name Description

Use case: Do not use input variables of type function block.

Input Variable Writes Check Description: Verify each input variable if it is written from within the POU where it is defined in.

Use case: Do not write an input variable from within a POU.

Output Variable Read Check Description: Verify each output variable if it is read from inside the POU.

Use case: Do not read an output variable from inside of a POU.

Output Variable Type Check Description: Verify each output variable if it is of type function block.

Use case: Do not use output variables of type function block.

Persistant Usage Check Description: Verify each variable if it is PERSISTANT and if it is declared in a function bock.

Use case: Do not use PERSISTANT variables in function blocks.

Retain Usage Check Description: Verify each variable if it is RETAIN and if it is declared in a function bock.

Use case: Do not use RETAIN variables in function blocks.

Unused Variables Check Description: Verify the variables if not read and not written in the complete project (-> unused
variable).

Use case: Detect unused variables and report them, cleanup the project, and improve the code
quality.

Convention: Access to Global Variable in FB_Init + FB_
Exit

User Description
This convention detects a read or write access to a global variable from the FB_
INIT, FB_EXIT or FB_REINITmethod of a function block.

NOTE: Do not access global variables while executing these methods.
NOTE: Activate the option Consider Implicit Methods in the Configuration
tab of the Code Analysis Manager to consider implicit methods during
analysis. Refer to Configuration\Consider Implicit Methods, page 29.

Example
FUNCTION_BLOCK FB_TEST
VAR
END_VAR

METHOD FB_INIT: BOOL
VAR_INPUT

bInitRetains: BOOL;
bInCopyCode: BOOL;

END_VAR

GVL.g_iInitState := 3; // Global varible is accessed from
FB_INIT

86 EIO0000002710.05

Conventions Code Analysis

Convention: Compile Messages

User Description
When compiling an application, the compiler reports detected unrecoverable
errors, errors, advisories (often referred to as warnings), and information to the
developer.

Detected unrecoverable errors and errors must be handled by the developer to get
the application to run on a controller.

In addition, advisories are reported to the developer. Advisories should be handled
by the developer. The number of advisories should be as close to zero as possible
when an application is planned to be released.

Information messages are reported, for example, to inform the developer about
the progress or needed memory sizes of the compiled application.

NOTE: A code analysis run can only be made on an application for which no
irreconcilable errors are detected. Only compile messages are considered
during code analysis. Therefore, error messages are not supported.

Convention Verification Rule
For convention verification, the available compile messages (of the complete
analysis data) are considered and reported. The compile message severity is
used as severity of the convention violation.

Convention: Complex POU With Low Comment Ratio

User Description
This convention lists all complex objects with low comment ratio.

In contrast to other metrics where only a focus is set to the ratio between CLOC
(Comment Lines Of Code) and SLOC (Source Lines Of Code), this convention
allows you to filter to objects with high complexity and low comment ratio.

This convention has a focus on the implementation part of an object.

Convention: Complex Type Name Checks

User Description
Coding style is a set of rules or guidelines applied when writing source code.
Following a specified coding style helps:

• To read and understand the source code
• To avoid and find programming issues
• To maintain the source code

Based on the Programming Guidelines (Naming Conventions (see EcoStruxure
Machine Expert, Programming Guide), Prefixes (see EcoStruxure Machine
Expert, Programming Guide)) for source code, complex type name convention
queries are available to verify the suggested complex type names per type.

EIO0000002710.05 87

Code Analysis Conventions

Convention Verification Rule
For convention verification, the complex type is combined with the object name.

Complex type name prefixes based on complex types:
• Function block: FB_ as prefix
• Program: SR_ as prefix
• Enumeration: ET_ as prefix
• Structure: ST_ as prefix
• etc.

Example
FB_MyAxisWrapper
ST_MyDataStruct
ET_MyEnumeration
SR_Main
etc.

Convention: Empty Implementation

User Description
This convention detects POUs that are implemented in structured text language
and have no source code in the implementation part.

Convention: Global Variable Accessed Only in One POU

User Description
This convention detects the access of a global variable only in one POU.

Locally used variables should only be declared locally.

Convention: Inheritance Depth Limit

User Description
IEC-61131-3 provides language features to extend function blocks or implement
interfaces. This is called inheritance and can result in a chain of inheritances. In
theory, there is no limit for the inheritance depth, but nesting can become too
complex to understand the inheritance tree of interfaces and function blocks.

For the application maintainability reasons, the inheritance depth limit can be
verified and reported via convention violation rules.

Convention Verification Rule
The keyword extends between function blocks and function blocks, or interfaces
and other interfaces is used to verify the chain length.

88 EIO0000002710.05

Conventions Code Analysis

Example
The inheritance depth of the example is 6.
FB_Test1 extends FB_Test2
FB_Test2 extends FB_Test3
FB_Test3 extends FB_Test4
FB_Test4 extends FB_Test5
FB_Test5 extends FB_Test6
FB_Test6 extends FB_Test7

Convention: Input Variable Read Check

User Description
In the declaration part of a program, function block, method, or function, input
variables can be defined. When objects of this type are called, input values must
be specified. When a method or a function is called, the input values are copied to
the stack. These values (memory area) are only used by the method or function
call.

Compared to programs where exactly one instance exists in memory (or function
blocks which are instantiated multiple times in memory), the programs or function
blocks can be called multiple times, by multiple tasks, and the same memory
location for the input variable is used (in parallel).

For application execution stability, the input variable should not be read from
outside the program or function block.

NOTE: Keep in mind that access to an input variable from a method defined
below a function block is also considered as access from outside the function
block. The convention violation of the input Variable Read Check could be a
false positive, if the developer verifies, for example, by code review, that the
input variable is initialized before using it in a method.

Convention Verification Rule
Each read access to an input variable from outside the function block (body) or
program (body) implementation itself is reported as convention violation.

Example
SR_Main
VAR

fbTest: FB_Test;
END_VAR

// call of FB method without calling FB (Body) before
fbTest.Meth();

FB_Test
VAR_INPUT

i_lrCurrentAxisPosition: LREAL;
END_VAR

METHOD Meth()
VAR

i_lrVar1: LREAL;
END_VAR

EIO0000002710.05 89

Code Analysis Conventions

// potential access to not properly initialized variable
i_lrVar1 := i_lrCurrentAxisPosition;

Convention: Input Variable Type Check

User Description
In the declaration part of a POU, input variables can be defined. When this POU is
called, input values must be specified.

These input values are copied by value (memory copy).

For application execution stability, the input variable should not be of type function
block.

Convention Verification Rule
Each input variable of type function block is reported as convention violation.

Example
SR_Main
VAR

fbTest: FB_Test;
fbArg: FB_MyArg;

END_VAR

// call of FB method without calling FB (Body) before
fbTest(i_fbMyArg := fbArg);

FB_MyArg
VAR_INPUT
END_VAR

FB_Test
VAR_INPUT

i_fbMyArg: FB_MyArg;
END_VAR

Convention: Input Variable Write Check

User Description
In the declaration part of a program, function block, method, or function, input
variables can be defined. When objects of this type are called, input values must
be specified. When a method or a function is called, the input values are copied to
the stack. These values (memory area) are only used by the method or function
call.

Compared to programs where exactly one instance exists in memory (or function
blocks which are instantiated multiple times in memory), the programs or function
blocks can be called multiple times, by multiple tasks, and the same memory
location for the input variable is used (in parallel).

For application execution stability, the input variable should only be written by the
caller (from outside) the program or function block.

90 EIO0000002710.05

Conventions Code Analysis

NOTE: Variables of category input means that data is transferred to that
construct, be it a program, function block, method, or function. Results of the
call are of category output. Input variables should be restricted to those
passed to the construct, and input variables of the construct should not be
read from outside the construct nor written to from inside the construct.

Convention Verification Rule
Each write access to an input variable from inside the function block is reported as
convention violation.

Example
SR_Main
VAR

fbTest: FB_Test;
xTest: BOOL;

END_VAR

// call of FB method without calling FB (Body) before
fbTest(TRUE);

//potential violation reading outside the construct
xTest := fbTest.i_xEnable ;

FB_Test
VAR_INPUT

i_xEnable: BOOL;
END_VAR

// potential violation. Now the input value has changed its
value.
i_xEnable := FALSE;

Convention: Multiline Comment Usage

User Description
This convention verifies if multiline comments are used in objects.

Do not use multiline comments because the start and end of such a comment
could get lost while merging.

For example, a commented out code may unintentionally become part of the
program again.

Example
Multiline comments calculation example.

Declaration:
1: (*This is a multiline
2: comment in header*)
3: PROGRAM SR_Main
4: VAR
5: xCheck1: BOOL;(*not needed
6: uiMyVariable2: UINT;*)
7: xFlag: BOOL;

EIO0000002710.05 91

Code Analysis Conventions

8: END_VAR

Convention: No Header Comment

User Description
Many coding style guides suggest that a general description about what a POU is
doing and how it is working be present in the header of the declaration part.

Example
All variants of comments are counted for this verification:
- //my comment
- ///my doc comment
- (*my multi line comment*)

Convention: Number of Methods Limit

User Description
For maintainability reasons of applications, there are design principles available
how to organize your code. For example, only one job per function block or per
method.

Applying code design rules can help to detect that, for example, too many
methods are attached to one function block and is an indicator to split the function
block itself into code pieces.

Convention Verification Rule
The number of methods attached to a function block or program is used to verify
whether the limit is exceeded.

Convention: Number Of Pins Limit (Input/Output)

User Description
The number of input/output variables (VAR_IN_OUT) should be within a limited
range set by your organization. Refer to your coding style guides.

Using a function block with too many pins affects readability (a limit could be
around 10 for graphical programming languages).

If more input, output, or input/output variables are required, consider reducing the
number of pins (input, output, input/output variables) of POUs by introducing a
structure to group some input, output, or input/output variables.

92 EIO0000002710.05

Conventions Code Analysis

Convention: Number Of Pins Limit (Input)

User Description
The number of input variables (VAR_INPUT) should be within a limited range set
by your organization. Refer to your coding style guides.

Using a function block with too many pins affects readability (a limit could be
around 10 for graphical programming languages).

If more input, output, or input/output variables are required, consider reducing the
number of pins (input, output, input/output variables) of POUs by introducing a
structure to group some input, output, or input/output variables.

Convention: Number Of Pins Limit (Output)

User Description
The number of output variables (VAR_OUTPUT) should be within a limited range
set by your organization. Refer to your coding style guides.

Using a function block with too many pins affects readability (a limit could be
around 10 for graphical programming languages).

If more input, output, or input/output variables are required, consider reducing the
number of pins (input, output, input/output variables) of POUs by introducing a
structure to group some input, output, or input/output variables.

Convention: Number of Properties Limit

User Description
IEC-61131-3 provides language features to organize an application in programs,
function blocks, and Global Variable Lists (GVL). To reduce complexity and
support object orientation, properties can be attached. Each property provides
functional access to the information behind.

Too many attached properties:
• Are not easy to handle or not easy to understand by the developer.
• Can result in naming conflicts.
• Can be an indicator that a program or function block realizes multiple jobs.

The convention result can be used as an indicator to split a program/function block
into several programs/function blocks, each with one job only.

Thus the maintainability of applications can be improved.

Convention Verification Rule
The number of properties attached to a function block, program, or Global Variable
List (GVL) is used to verify whether the limit is exceeded.

EIO0000002710.05 93

Code Analysis Conventions

Convention: Output Variable Read Check

User Description
In the declaration part of a program, function block, method, or function, output
variables can be defined. When objects of this type are called, output value
targets can be specified. When a method or a function is called, the output values
are copied to the stack. These values (memory area) are only assigned by the
method or function call and reused by its caller.

Compared to programs where exactly one instance exists in memory (or function
blocks which are instantiated multiple times in memory), the programs or function
blocks can be called multiple times, by multiple tasks, and the same memory
location for the input variable is used (in parallel).

For application execution stability, the output variable should only be read by the
caller (from outside) the program or function block.

NOTE: Reading an output variable from within an implementation could be
false positive, if the developer verifies, for example, by code review, that the
output variable is written before using it later in the code.

Convention Verification Rule
Each read access of an output variable from inside the function block is reported
as convention violation because it cannot be verified that a proper value was
assigned before.

Example
SR_Main
VAR

xResult: BOOL;
fbTest: FB_Test;

END_VAR

// call of FB method without calling FB (Body) before
fbTest(q_xEnable => xResult);

FB_Test
VAR_OUTPUT

q_xEnable: BOOL;
END_VAR

// potential violation. Now the input value has changed its
value.
IF (q_xEnable) THEN

; // Violation. Unclear value of output variable.
END_IF

Convention: Output Variable Type Check

User Description
In the declaration part of a POU, output variables can be defined. When this POU
is called, output values can be assigned.

94 EIO0000002710.05

Conventions Code Analysis

These output values are copied by value (memory copy).

For application execution stability, the output variable should not be of type
function block.

Convention Verification Rule
Each output variable of type function block is reported as convention violation.

Example
SR_Main
VAR

fbTest: FB_Test;
fbArg: FB_MyArg;

END_VAR

// call of FB method without calling FB (Body) before
fbTest(q_fbMyArg => fbArg);

FB_MyArg
VAR_INPUT
END_VAR

FB_Test
VAR_OUTPUT

q_fbMyArg: FB_MyArg;
END_VAR

Convention: Persistent Usage Check

User Description
If you declare a variable as PERSISTENT in a function block, then the entire
instance of this function block is saved in the persistent range (all data of the
block), but only the declared PERSISTENT variable is restored.

This increased memory consumption and additional handling of persistent
variables can cause performance issues.

NOTE: The compiler treats a VAR PERSISTENT declaration just like a VAR
PERSISTENT RETAIN or VAR RETAIN PERSISTENT declaration.

Convention: Retain Usage Check

User Description
If you declare a variable as RETAIN in a function block, then the entire instance of
this function block is saved in the retain range (all data of the block), but only the
declared RETAIN variable is restored.

This increased memory consumption and additional handling of retain variables
can cause performance issues.

EIO0000002710.05 95

Code Analysis Conventions

Convention: Uncommented Variable (All)

User Description
This convention verifies whether uncommented variables exist in an object.

Example
Declaration:
1: PROGRAM SR_Main
2: VAR
3: xCheck1: BOOL;//flag to identify
4: uiMyVariable2: UINT;
5: xFlag: BOOL;
6: END_VAR

uiMyVariable2 and xFlag are not commented. Therefore a convention violation is
created.

Convention: Uncommented Variable (In+Out+Global)

User Description
This convention verifies whether uncommented variables defined in VAR_
GLOBAL, VAR_INPUT, VAR_OUTPUT, or VAR_IN_OUT exist in source code.

Example
Declaration:
1: PROGRAM SR_Main
2: VAR_IN
3: i_xCheck1: BOOL;//flag to identify
3: i_uiMyVariable2: UINT;
4: END_VAR
2: VAR
3: xFlag: BOOL;
4: END_VAR

i_uiMyVariable2 is not commented. Therefore a convention violation is created.

Convention: Unused Enum Constants Check

User Description
This convention detects enumeration constants that are not used in your
application.

Not used enumeration constants, for example, in state machines, may indicate
that they are not used properly or are incomplete, or that outdated source code is
present.

96 EIO0000002710.05

Conventions Code Analysis

Convention: Unused Variables Check

User Description
In the declaration of a program, function block, method, or function variables can
be defined. Normally, these variables are used inside the code. If a variable is
defined but not used (read or written) in the code, it consumes memory.

Convention Verification Rule
Each variable without a read or write access is reported as convention violation.

Example
SR_Main
VAR

xMyUnusedVariableResult: BOOL;
fbTest: FB_Test;

END_VAR

// call of FB method but output is not assigned to intended
result variable.
fbTest(q_xEnable =>);

Convention: Useless DUT

User Description
This convention detects DUTs (Data Unit Types) that consist only of one element.

This convention violation can indicate an incomplete refactoring activity or a
feature that has not been completed.

Example
TYPE UT_MyUnion :
UNION

xInit : BOOL; //only one element in union
END_UNION
END_TYPE

TYPE ST_MyStruct :
STRUCT

xInit : BOOL; //only one element in struct
END_STRUCT
END_TYPE

TYPE ET_MyEnum :
(

State := 1 //only one element in enum
);
END_TYPE

EIO0000002710.05 97

Code Analysis Conventions

Convention: Variable Name Checks

User Description
Coding style is a set of rules or guidelines applied when writing source code.
Following a specified coding style helps:

• To read and understand the source code
• To avoid and find programming issues
• To maintain the source code

Based on the Programming Guidelines (Naming Conventions (see EcoStruxure
Machine Expert, Programming Guide), Prefixes (see EcoStruxure Machine
Expert, Programming Guide)) for source code, variable name convention queries
are available to verify the suggested variable name per data type and variable
scope.

Convention Verification Rule
For convention verification, the variable name is combined with its linked data type
and the scope where the variable is defined in.

Scopes:
• Local variable scope: No special scope prefix (VAR ... END_VAR)
• Input variable scope: i_ as prefix (VAR_INPUT ... END_VAR)
• Output variable scope: q_ as prefix (VAR_OUTPUT ... END_VAR)
• In-/Output variable scope: iq_ as prefix (VAR_IN_OUT_ ... END_VAR)
• Global variable scope: G_ as prefix
• Global constants scope: Gc_ as prefix
• etc.

Variable name prefixes based on data type:
• INT: i as prefix
• DINT: di as prefix
• UDINT: udi as prefix
• REAL: r as prefix
• LREAL: lr as prefix
• Function block: fb as prefix
• POINTER TO: p as prefix
• etc.

Example
VAR

iMyVariable1: INT;
uiMyVariable1: UINT;
rMyVariable1: REAL;
piMyVariable7: POINTER TO INT;

END_VAR
VAR_INPUT

i_iMyVariable2: INT;
i_uiMyVariable2: UINT;
i_rMyVariable2: REAL;

END_VAR
VAR_IN_OUT

iq_iMyVariable3: INT;

98 EIO0000002710.05

Conventions Code Analysis

iq_uiMyVariable3: UINT;
iq_rMyVariable3: REAL;

END_VAR
VAR_OUTPUT

iq_iMyVariable2: INT;
iq_uiMyVariable2: UINT;
iq_rMyVariable2: REAL;

END_VAR

Convention: Variable Name Length Check

User Description
Coding style is a set of rules or guidelines applied when writing source code.
Following a specified coding style helps:

• To read and understand the source code
• To avoid and find programming issues
• To maintain the source code

For readability reasons, there are suggestions for variable names and length. The
length of variables can be verified against a user-defined limit.

Convention Verification Rule
The length of a variable name is compared with a length threshold.

Example
iMyVariable // length 11 -->
OK
iSpecialAndVeryLongAndHardToReadVariable // length 20 -->
Not OK

EIO0000002710.05 99

Code Analysis

Index
A
access to global variable in FB_Init and FB_Exit

conventions ...86
application size (code)

metrics ..60
application size (code+data)

metrics ..61
application size (data)

metrics ..61

B
block list

code analysis editors..27

C
call in

metrics ..62
call out

metrics ..62
cloud connection

code analysis manager.......................................30
code analysis query manager38

code analysis
concept ...13
contextual menu commands (navigators).............39
general information .. 11
pragma instructions..40
scripting interface...42
scripting object extensions..................................42
scripting objects ...43

code analysis editors ...18
block list ..27
conventions table...18
dependency view (contextual menu commands) ..24
dependency view (dependency graph)22
dependency view (filters)21
dependency view (groups)..................................25
how to add...48
metrics table ..19
overview (dependency view)...............................21

code analysis manager ..28
cloud connection..30
configuration..29
dashboard ...28

code analysis query manager.................................32
cloud connection..38
convention queries...83
dependency (filter) queries54
dependency (select) queries56
parameters editor...37
queries repositories..33
query chain settings editor37
query editor ...35
rule sets ..32

commented variables (all) ratio
metrics ..62

commented variables (in+out+global) ratio
metrics ..63

compile messages
conventions ...87

complex POU with low comment ratio
conventions ...87

complex type name checks
conventions ...87

concept
code analysis...13

configuration
code analysis manager.......................................29

contextual menu commands (navigators)
code analysis...39

convention queries
code analysis query manager83

conventions
access to global variable in FB_Init and FB_Exit...86
compile messages ...87
complex POU with low comment ratio..................87
complex type name checks.................................87
empty implementation ..88
global variable accessed only in one POU............88
inheritance depth limit ..88
input variable read check89
input variable type check90
input variable write check....................................90
Machine Advisor Code Analysis83
multiline comment usage91
no header comment ...92
number of methods limit92
number of pins limit (input)..................................93
number of pins limit (input/output)........................92
number of pins limit (output)................................93
number of properties limit93
output variable read check94
output variable type check94
persistent usage check.......................................95
retain usage check ...95
uncommented variable (all).................................96
uncommented variable (in+out+global)96
unused enum constants check96
unused variables check97
useless DUT..97
variable name checks...98
variable name length check99

conventions table
code analysis editors..18
how to get detailed convention results50

cyclomatic complexity
metrics ..63

D
dashboard

code analysis manager.......................................28
how to get a quick overview48

dependency (filter) queries
code analysis query manager54

dependency (select) queries
code analysis query manager56

dependency graph
add variable...39

dependency view
how to display dependencies via dependency
view ..51

how to explore stepwise the dependencies of your
application ...52

dependency view (contextual menu commands)
code analysis editors..24

dependency view (dependency graph)
code analysis editors..22

dependency view (filters)
code analysis editors..21

dependency view (groups)

EIO0000002710.05 101

Code Analysis

code analysis editors..25

E
empty implementation

conventions ...88
extended by

metrics ..65
extends

metrics ..65

F
fan in

metrics ..66
fan out

metrics ..66

G
general information

code analysis... 11
global variable accessed only in one POU

conventions ...88

H
Halstead complexity

metrics ..67
how to add

code analysis editors..48
how to display dependencies via dependency view

dependency view ...51
how to explore stepwise the dependencies of your
application
dependency view ...52

how to get a quick overview
dashboard ...48

how to get detailed convention results
conventions table...50

how to get detailed metric results
metrics table ..49

I
implemented by

metrics ..70
implements

metrics ..71
inheritance depth limit

conventions ...88
input variable read check

conventions ...89
input variable type check

conventions ...90
input variable write check

conventions ...90

L
lines of code

metrics ..72

M
Machine Advisor Code Analysis

conventions ...83
metrics ..60

memory size
metrics ..72

metrics
application size (code)..60
application size (code+data)61
application size (data) ..61
call in ..62
call out ..62
commented variables (all) ratio62
commented variables (in+out+global) ratio...........63
cyclomatic complexity...63
extended by...65
extends ...65
fan in...66
fan out...66
Halstead complexity ...67
implemented by ...70
implements..71
lines of code ..72
Machine Advisor Code Analysis60
memory size ..72
number of actions ..73
number of FBD networks80
number of GVL usages.......................................74
number of header comment lines74
number of instances...75
number of library references76
number of messages..76
number of methods ..76
number of multiline comments.............................77
number of properties ..77
number of reads...78
number of tasks ...78
number of transitions..79
number of variables..79
number of writes ..80
source code comment ratio.................................81
stack size ..82

metrics table
code analysis editors..19
how to get detailed metric results49

multiline comment usage
conventions ...91

N
no header comment

conventions ...92
number of actions

metrics ..73
number of FBD networks

metrics ..80
number of GVL usages

metrics ..74
number of header comment lines

metrics ..74
number of instances

metrics ..75
number of library references

metrics ..76
number of messages

metrics ..76
number of methods

metrics ..76

102 EIO0000002710.05

Code Analysis

number of methods limit
conventions ...92

number of multiline comments
metrics ..77

number of pins limit (input)
conventions ...93

number of pins limit (input/output)
conventions ...92

number of pins limit (output)
conventions ...93

number of properties
metrics ..77

number of properties limit
conventions ...93

number of reads
metrics ..78

number of tasks
metrics ..78

number of transitions
metrics ..79

number of variables
metrics ..79

number of writes
metrics ..80

O
output variable read check

conventions ...94
output variable type check

conventions ...94
overview (dependency view)

code analysis editors..21

P
parameters editor

code analysis query manager37
persistent usage check

conventions ...95
pragma instructions

code analysis...40

Q
queries repositories

code analysis query manager33
query chain settings editor

code analysis query manager37
query editor

code analysis query manager35

R
retain usage check

conventions ...95
rule sets

code analysis query manager32

S
scripting interface

code analysis...42
scripting object extensions

code analysis...42
scripting objects

code analysis...43
source code comment ratio

metrics ..81
stack size

metrics ..82

U
uncommented variable (all)

conventions ...96
uncommented variable (in+out+global)

conventions ...96
unused enum constants check

conventions ...96
unused variables check

conventions ...97
useless DUT

conventions ...97

V
variable name checks

conventions ...98
variable name length check

conventions ...99
variable to dependency graph39

EIO0000002710.05 103

Schneider Electric
35 rue Joseph Monier
92500 Rueil Malmaison
France

+ 33 (0) 1 41 29 70 00

www.se.com

As standards, specifications, and design change from time to time,
please ask for confirmation of the information given in this publication.

© 2022 Schneider Electric. All rights reserved.

EIO0000002710.05

	EcoStruxure Machine Expert
	Safety Information
	About the Book
	Introduction
	General Information on the Code Analysis Component
	Concept of Code Analysis

	Code Analysis Editors
	Conventions Table
	Conventions Table

	Metrics Table
	Metrics Table

	Dependency View
	Dependency View (Overview)
	Dependency View (Filters)
	Dependency View (Dependency Graph)
	Dependency View (Contextual Menu Commands of the Dependency Graph)
	Dependency View (Groups)

	Block List
	Block List

	Code Analysis Manager
	Dashboard
	Configuration
	Cloud Connection

	Code Analysis Query Manager
	Rule Sets
	Queries Repositories
	Query Editor
	Query Chain Settings Editor
	Parameters Editor
	Cloud Connection

	Contextual Menu Commands
	Contextual Menu Commands of Navigators

	Pragma Instructions for Code Analysis
	Pragma Instructions for Code Analysis

	Python Script Interface
	Scripting Interface
	Scripting Object Extensions
	Scripting Objects (Code Analysis API)

	How to Add Code Analysis Editors
	How to Get a Quick Application Overview Via Dashboard
	How to Get Detailed Metric Results of Your Application
	How to Get Detailed Convention Results of Your Application
	How to Display Dependencies of Your Application with Help of Predefined Queries on Dependency View
	How to Explore Stepwise the Dependencies of Your Application on Dependency View

	Appendices
	Dependency (Filter) Queries
	Dependency (Filter) Queries

	Dependency (Select) Queries
	Dependency (Select) Queries

	Metrics
	Metric: Application Size (Code)
	Metric: Application Size (Code+Data)
	Metric: Application Size (Data)
	Metric: Call In
	Metric: Call Out
	Metric: Commented Variables (All) Ratio
	Metric: Commented Variables (In+Out+Global) Ratio
	Metric: Cyclomatic Complexity
	Metric: Extended By
	Metric: Extends
	Metric: Fan In
	Metric: Fan Out
	Metric: Halstead Complexity
	Metric: Implemented By
	Metric: Implements
	Metric: Lines Of Code (LOC)
	Metric: Memory Size (Data)
	Metric: Number Of Actions
	Metric: Number Of GVL Usages
	Metric: Number Of Header Comment Lines
	Metric: Number Of Instances
	Metric: Number Of Library References
	Metric: Number Of Messages
	Metric: Number Of Methods
	Metric: Number Of Multiline Comments
	Metric: Number Of Properties
	Metric: Number Of Reads
	Metric: Number Of Tasks
	Metric: Number Of Transitions
	Metric: Number Of Variables
	Metric: Number Of Writes
	Metric: Number Of FBD Networks
	Metric: Source Code Comment Ratio
	Metric: Stack Size

	Conventions
	Convention Queries
	Convention: Access to Global Variable in FB_Init + FB_Exit
	Convention: Compile Messages
	Convention: Complex POU With Low Comment Ratio
	Convention: Complex Type Name Checks
	Convention: Empty Implementation
	Convention: Global Variable Accessed Only in One POU
	Convention: Inheritance Depth Limit
	Convention: Input Variable Read Check
	Convention: Input Variable Type Check
	Convention: Input Variable Write Check
	Convention: Multiline Comment Usage
	Convention: No Header Comment
	Convention: Number of Methods Limit
	Convention: Number Of Pins Limit (Input/Output)
	Convention: Number Of Pins Limit (Input)
	Convention: Number Of Pins Limit (Output)
	Convention: Number of Properties Limit
	Convention: Output Variable Read Check
	Convention: Output Variable Type Check
	Convention: Persistent Usage Check
	Convention: Retain Usage Check
	Convention: Uncommented Variable (All)
	Convention: Uncommented Variable (In+Out+Global)
	Convention: Unused Enum Constants Check
	Convention: Unused Variables Check
	Convention: Useless DUT
	Convention: Variable Name Checks
	Convention: Variable Name Length Check

	Index

