
VIPER XTREM

Résine chimique vinylester avec tige XTREM, pour béton fissuré & non fissuré et performance sismique de catégorie C1 et C2

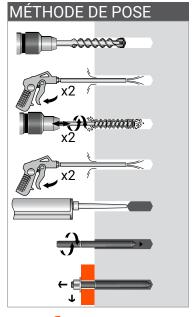
CARACTÉRISTIQUES

- Fixation de charpentes métalliques
- Fixation de machines (résiste aux vibrations)
- Fixation de silos de stockage, supports de tuyauteries
- Fixation de panneaux indicateurs
- Fixation de barrières de sécurité

DOMAINE D'EMPLOI

Durée de stockage : 18 mois Température d'utilisation : -10°C / +40°C Plage de température en service :

Plage 1 : -40°C / +40°C
Plage 2 : -40°C /+80°C
Conditions d'utilisation :


- Catégorie 1 : Béton sec ou humide

- Catégorie 2 : Trous immergés

CARAC	CTÉ	RISTI	QUES ⁻	TECHI	VIQUE	S						
GAMME			eur mini. cement	Épaisseur maxi. de la pièce à fixer		Épaisseur mini. du support	Diamètre de filetage	Diamètre de perçage	Diamètre de passage	Longueur totale de la tige	Couple de serrage	Code tiges SPIT XTREM
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Nm)	
		h _{om} min.	h _{nom} max.	t _{fix} min.	t _{fix} max.	h _{min}	d	d ₀	df	L	T _{inst}	
M12X150)	60	108	77	29	h _{nom}	12	14	14	150	30	060191
M12X205	5	60	144	132	48	+ 30 mm	12	14	14	205	30	060192
M16X200)	95	144	89	40		16	18	18	200	50	060193
M16X250)	95	192	139	42	h _{nom}	16	18	18	248	50	060194
M20X270)	100	180	151	71	+ 2d ₀	20	22	22	270	150	060195
M20X330)	100	240	211	71		20	22	22	330	150	060196
VIPER XTREM cartouche 280 ml								060	187			
VIPER XTREM cartouche 410 ml									060189	/060188		
VIPER XTREM TR cartouche (version tropicale) 410 ml									060	201		
VIPER XT	REM	l cartouc	he 825 m	l							060	190

PRO	PROPRIÉTÉS MÉCANIQUES DES CHEVILLES								
DIMEN	SIONS		M12	M16	M20				
f_{uk}	[N/mm ²]	Résistance à la traction min.	800	800	800				
f_{yk}	[N/mm ²]	Limite d'élasticité	640	640	640				
$M^0_{Rk,s}$	[Nm]	Moment de flexion caractéristique	105	266	519				
М	[Nm]	Moment de flexion admissible	42	106	207				

TEMPS DE MANIPULATION ET DE POLYMÉRISATION									
TEMPÉRATURE	TEMPS MAXI. DE	MANIPULATION	TEMPS D'ATTENTE AVANT POLYMÉRISATION						
	Version standard	Version tropicale	Version standard	Version tropicale					
-10°C ► -5°C	90 min.	-	24 h	-					
-4°C ► 0°C	50 min.	-	240 min.	-					
1°C ► 5°C	25 min.	60 min.	120 min.	240 min.					
6°C ► 10°C	15 min.	40 min.	90 min.	180 min.					
11°C ► 20°C	7 min.	15 min.	60 min.	120 min.					
21°C ► 30°C	4 min.	8 min.	45 min.	60 min.					
31°C ► 40°C	2 min.	4 min.	30 min.	60 min.					

RESISTANCE AUX A	GENTS CHI	MIQUE:	S DE LA RESINE SPI	ΓVIPER	
SUBSTANCES CHIMIQUES	CONCENTRATION %	RÉSISTANCE	SUBSTANCES CHIMIQUES	CONCENTRATION %	RÉSISTANCE
Acide acétique	50-75	(o)	Heptane	100	(+)
Acide acétique	0-50	(+)	Hexane	100	(o)
Acétone	10	(+)	Acide chlorhydrique	25	(o)
Hydroxyde d'ammonium ou Ammoniac	20	(0)	Acide chlorhydrique	15	(+)
Hydroxyde d'ammonium ou Ammoniac	5	(+)	Acide lactique	0-100	(+)
Eau bromée	5	(+)	Acide nitrique	5-15	(o)
Eau chlorée	0-100	(+)	Acide phosphorique	80	(+)
Acide citrique	0-100	(+)	Acide phosphorique, vapeur et condensé		(+)
Acide phosphorique concentré	100	(+)	Eau de mer	0-100	(+)
Eau déionisée	0-100	(+)	Carbonate de sodium	10	(+)
Eau déminéralisée		(+)	Chlorure de sodium	0-100	(+)
Carburant diesel	0-100	(+)	Hydroxyde de sodium ou soude caustique	25	(o)
Alcool éthylique (Ethanol)	10	(0)	Acide sulfurique	71-75	(o)
Ethylène-glycol	0-100	(+)	Acide sulfurique	0-70	(+)
Acide formique	10	(+)	Acide sulfurique	Fumes	(+)
Carburant	100	(+)	Acide sulfurique/Acide phosphorique	10:20	(+)
Huile lourde moteur	100	(+)	Térébenthine (huile)		(o)
Résistance (+): Les échantillons en contact avec les	substances n'ont pas préser	té d'endommagem	ents visibles tels que des fissures, surfaces attaquée	s, angles éclatés ou gonflem	ents importants.

Resistance (+). Les echantillons en contact avec les substances nont pas présente d'endominagéments visibles (els que des rissures, surraces attaquées, angies éclates ou gomenénis importants. Sensible (o) : à utiliser avec précautions en fonction de l'exposition du terrain d'utilisation. Prendre des précautions. Les échantillons en contact avec la substance ont légèrement attaqué le matériau.

ÉPAISSEUR MINIMUM DU	SUPP	ORT,	DISTANCES CARACTÉF	RISTIQUES & DISTANCE	ES MINIMUM
DIMENSIONS			M12	M16	M20
Profondeur d'enfoncement	$h_{\text{nom std}}$	[mm]	110	125	170
Profondeur d'ancrage	h _{ef}	[mm]	60	96	100
Épaisseur minimum du support	h _{min}	[mm]	140	160	215
Distances caractéristiques d'entraxes et de bords garantissant la capacité	C _{cr} ≥	[mm]	90	144	150
maximum de la fixation	S _{cr} ≥	[mm]	180	288	300
Distances minimum dans	C _{min}	[mm]	55	60	120
béton fissuré et non fissuré	S≥	[mm]	55	60	120

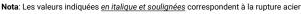
RÉSISTANCES CARACTÉRISTIQUES [kN]

Les résistances caractéristiques sont indiquées à titre indicatif et doivent être utilisées en appliquant les coefficients de sécurité. Pour les charges de traction, le tableau ci-dessous indique la résistance à l'adhérence en N/mm². Toutes les dimensions peuvent être installées avec une longueur d'ancrage de 7d à 20d. La charge de traction caractéristique est déterminée par la formule : $N^0_{Rk,p} = \Pi.d h_{ef}$. τ_{Rk}

TRACTION								
BÉTON NON FISSURÉ - C20/25								
DIMENSIONS	M12	M16	M20					
h _{nom min} [mm]	60	96	100					
h _{nom max} [mm]	144	192	240					
τ _{Rk,uncr} [N/mm ²]	17	17	17					
BÉTON FISSURÉ - C20/25								
DIMENSIONS	M12	M16	M20					
h _{nom min} [mm]	60	96	100					
h _{nom max} [mm]	144	192	240					
τ _{Rk,cr} [N/mm ²]	17	16	14					

CISAIL	LEMEN	Т					
BÉTON FISSURÉ ET NON FISSURÉ - C20/25 à C50/60							
DIMENS	IONS	M12	M16	M20			
h _{nom min}	[mm]	60	96	100			
h _{nom max}	[mm]	144	192	240			
V_{Rks}	[kN]	<u>34,0</u>	<u>63,0</u>	<u>98,0</u>			

CHARGES RECOMMANDÉES POUR UNE CHEVILLE EN PLEINE MASSE [kN]


Les charges recommandées sont déterminées à partir des performances de l'ETE, pour une distance d'entraxe ≥ S_{cr} et aux bords libres ≥ C_{cr}.

TRACT	ΓΙΟΝ							
BÉTON NON FISSURÉ - C20/25								
DIMENSIONS		M12	M16	M20				
$h_{\text{nom std}}$	[mm]	110	125	170				
N_{Rec}	[kN]	18,3	32,7	50,9				
BÉTON FISSURÉ - C20/25								
DIMENS	SIONS	M12	M16	M20				
$h_{\text{nom std}}$	[mm]	110	125	170				
N_{Rec}	[kN]	18,3	22,9	36,3				

 $N_{Rec} = min [N_{Rd,p}; N_{Rd,c}; N_{Rd,s}] / \gamma_F; \gamma_F = 1,4$

CISAIL	LEMEN I						
BÉTON FISSURÉ ET NON FISSURÉ - C20/25 à C50/60							
DIMENS	IONS	M12	M16	M20			
h _{nom std}	[mm]	110	125	170			
V_{Rec}	[kN]	<u>19,4</u>	<u>36,0</u>	<u>56,0</u>			

 $V_{Rec} = V_{Rd,s} / \gamma_F$; $\gamma_F = 1,4$

VIPER XTREM

Logiciel SPIT i-Expert

Les résistances à l'état limite ultime (ÉLU) pour charges statiques et sismiques sont déterminées à partir des performances de l'ETE, pour une distance d'entraxe $\geq S_{cr}$ et aux bords libres $\geq C_{cr}$. Pour les applications avec des distances d'entraxes et de bords réduites, nous recommandons d'utiliser le logiciel SPIT i-Expert pour le dimensionnement selon la norme EN 1992-4.

RÉSISTANCE À L'ÉLU POUR CHARGES STATIQUES DANS LE BÉTON NON FISSURÉ [kN]

TRACTION								
DIMENSIONS			M12	M16	M20			
$h_{\text{nom std}}$	[mm]		110	125	170			
N _{Rd,uncr}	[kN]	C20/25	25,6	45,8	71,2			
		C40/50	29,5	59,3	93,3			

Les distances S_{cr} et C_{cr} doivent être respectées

 $N_{Rd,uncr}$ = min[$N_{Rk,p,uncr}$ / γ_{Mc} ; $N_{Rk,s}$ / $\gamma_{Ms,N}$]

 γ_{Mc} = 1,5 ; $\gamma_{Ms,N}$ = = 1,5

DIMENSIONS M12 M16 M	CISAILLEMENT								
	20								
h _{nom std} [mm] 110 125 1	70								
V _{Rd,s} [kN] ≥C20/25 <u>27,2</u> <u>50,4</u> <u>78</u>	<u>3,4</u>								

 $\begin{aligned} V_{Rd,s} &= V_{Rk,s} \, / \gamma_{Ms,V} \\ \gamma_{Ms,V} &= 1,25 \end{aligned}$

RÉSISTANCE À L'ÉLU POUR CHARGES STATIQUES DANS LE BÉTON FISSURÉ [kN]

TRACT	ION				
DIMENSI	ONS		M12	M16	M20
$h_{\text{nom std}}$	[mm]		110	125	170
N _{Rd,cr}	[kN]	C20/25	25,6	32,1	50,9
		C40/50	29,5	45,4	72,0

Les distances S_{cr} et C_{cr} doivent être respectées

 $N_{Rd,cr} = min[N_{Rk,p,cr} / \gamma_{Mc}; N_{Rk,s} / \gamma_{Ms,N}]$

 $\gamma_{Mc} = 1.5$; $\gamma_{Ms,N} = 1.5$

CISAILLEMENT						
DIMENSIONS			M12	M16	M20	
$h_{\text{nom std}}$	[mm]		110	125	170	
$V_{\text{Rd,s}}$	[kN]	≥C20/25	<u>27,2</u>	<u>50,4</u>	<u>78,4</u>	

 $V_{Rd,s} = V_{Rk,s} / \gamma_{Ms,V}$ $\gamma_{Ms,V} = 1,25$

RÉSISTANCE À L'ÉLU POUR CHARGES SISMIQUES SELON CATÉGORIE C1 [kN

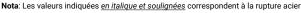
TRACT	ION				
DIMENSIONS			M12	M16	M20
h _{nom std}	[mm]		110	125	170
NI=	[kN]	C20/25	22,5	27,3	43,3
$N_{Rd,C1}$	[KIN]	C40/50	25,6	38,6	170

Les distances S_{cr} et C_{cr} doivent être respectées $N_{Rd,C1}$ = min[$N_{Rk,p,eq,C1}$ / γ_{Mc} ; $N_{Rk,s,eq,C1}$ / $\gamma_{Ms,N}$]

 $\gamma_{Mc} = 1.5$; $\gamma_{Ms,N} = 1.5$

CISAILLEMENT						
DIMENSIONS			M12	M16	M20	
h _{nom std}	[mm]		110	125	170	
$V_{Rd,s,C1}$	[kN]	≥C20/25	<u>18,9</u>	<u>35,2</u>	<u>54,9</u>	

 $V_{Rd,s,C1} = V_{Rk,s,eq,C1} / \gamma_{Ms,V}$ $\gamma_{Ms,V} = 1,25$


RÉSISTANCE À L'ÉLU POUR CHARGES SISMIOUES SELON CATÉGORIE C2 [kN]

TRACTION						
DIMENSIONS			M12	M16	M20	
h _{nom std}	[mm]		110	125	170	
N _{Rd,C2}	[kN]	C20/25	10,7	27,3	28,5	
		C40/50	10,7	30,9	28,5	

Les distances S_{cr} et C_{cr} doivent être respectées $N_{Rd,C2}$ = min[$N_{Rk,p,eq,C2}$ / γ_{Mc} ; $N_{Rk,s,eq,C2}$ / $\gamma_{Ms,N}$] γ_{Mc} = 1,5; $\gamma_{Ms,N}$ = 1,5

CISAILLEMENT						
DIMENSIONS			M12	M16	M20	
h _{nom std}	[mm]		110	125	170	
$V_{Rd,s,C2}$	[kN]	≥C20/25	<u>18,9</u>	<u>35,2</u>	<u>54,9</u>	

 $V_{Rd,s,C2} = V_{Rk,s,eq,C2} / \gamma_{Ms,V}$ $\gamma_{Ms,V} = 1,25$

