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FSSP Non-permutation Results

Today we’ll see...

How to solve very-difficult combinatorial-optimization problems
by using computers to model problems and produce solutions.

Case Study: Flow Shop Scheduling Problem (FSSP)

Methods: constructive heuristics, local search, meta-heuristics, ...

Thinking out of the box!!! ...

Benavides A.J., & Ritt M., (2016), Two simple and effective heuristics for minimizing the
makespan in non-permutation flowshop scheduling problems. Comput. Oper. Res. 60,
160–169.

Benavides A.J., & Ritt M., (2018), Fast heuristics for minimizing the makespan in
non-permutation flow shops. Comput. Oper. Res. 100, 230–243.
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Flow Shop Scheduling Problem (FSSP)
6× 6 instance of the FSSP

Jobs Operations
M1 M2 M3 M4 M5 M6

J1 3 6 3 3 4 3
J2 4 3 5 3 5 2
J3 6 5 2 2 2 4
J4 4 5 2 2 5 5
J5 2 2 5 6 3 5
J6 2 3 5 5 3 3

A set of jobs J1, . . . , Jn must be processed
on a set of machines M1, . . . ,Mm

with given processing times pij for each job Jj on
machine Mi

Objective function:
min. Cmax = maxCj (makespan)

There are n! possible solutions
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FSSP Non-permutation Results

Flow Shop Scheduling Problem (FSSP)

Taillard (1993): 120 instances
n ∈ 20, 50, 100, 200, 500 jobs by
m ∈ 5, 10, 20 machines.

Vallada, Ruiz, Framinan (2015)
240 small instances
n ∈ 10, 20, 30, 40, 50, 60 jobs by
m ∈ 5, 10, 15, 20 machines.

240 large instances
n ∈ 100, 200, 300, 400, 500, 600, 700, 800 jobs by
m ∈ 20, 40, 60 machines.

6! 720
10! 3628800
20! 2.43e+18
50! 3.04e+64
100! 9.33e+157
200! 7.88e+374
500! 1.22e+1134
800! 7.71e+1976
Grains of sand on Earth 7.5e+18
Stars in the observable universe 2e+20
4 GHz = 4e+9 op/s = 4 op/s
60 s * 60 m * 24 h * 365 d = 31536000
operations per year: 1.26144e+17
so 2.4e+18/1.2e+17 20 years.
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Nawaz, Enscore & Ham (1983) NEH constructive heuristic
6× 6 instance of the FSSP

Jobs Operations
M1 M2 M3 M4 M5 M6 Total

J1 3 6 3 3 4 3 22
J2 4 3 5 3 5 2 22
J3 6 5 2 2 2 4 21
J4 4 5 2 2 5 5 23
J5 2 2 5 6 3 5 23
J6 2 3 5 5 3 3 21

First, determine insertion order:
πo = (J4, J5, J1, J2, J3, J6)

The, insert one by one
at the best position
starting with π = (J4)

1: function NEH Constructive Heuristic( )
2: πo := (πo(1), . . . , πo(n)) from large to small
3: π := (πo(1))
4: for πo(j), j ∈ [2, n] do
5: evaluate all the insertion positions of job πo(j) into π
6: insert job πo(j) into π at the position which minimizes Cmax

7: end for
8: return π
9: end function
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Nawaz, Enscore & Ham (1983) NEH constructive heuristic
πo = (J4, J5, J1, J2, J3, J6) π = (J4) Next job: J5
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Nawaz, Enscore & Ham (1983) NEH constructive heuristic

πo = (J4, J5, J1, J2, J3, J6) π = (J5, J4) Next job: J1
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FSSP Non-permutation Results

Nawaz, Enscore & Ham (1983) NEH constructive heuristic

And so on ... until all jobs are inserted: π = (J5, J4, J6, J2, J1, J3)
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M6
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Original NEH has a time complexity of O(n3m)

NEH inserts n jobs, evaluates O(n) insertion positions, (exactly n(n+ 1)/2− 1 evaluations)
and each evaluation has a time complexity of O(nm)
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Nawaz, Enscore & Ham (1983) NEHT heuristic
with Taillard (1990) acceleration technique for Cmax

Earliest completion times ei,j before insertion position remain unchanged
Also qi,j times after insertion position remain unchanged

ei,j

l
l

l
l

. . .
. . .
. . .
. . .

. . .
. . .
. . .
. . .

qi,j

Taillard defines:
ei,j = max{ei,j−1, ei−1,j}+ pi,π(j), for i ∈ [m], j ∈ [|π|], with e0,j = 0 and ei,0 = 0
qi,j = max{qi,j+1, qi+1,j}+ pi,π(j), for i ∈ [m], j ∈ [|π|], with qm+1,j = 0 and qi,k+1 = 0
fi,j = max{fi−1,j , ei,j−1}+ pi,l, for i ∈ [m], j ∈ [|π|+ 1], with f0,j = 0

Mj = maxi∈[m]{fi,j + qi,j}, for j ∈ [|π|+ 1]

These calculations evaluate n insertion positions in time O(nm)

This reduces the time complexity of NEHT from O(n3m) to O(n2m)
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Neighborhoods for local search
for permutation schedules

Swapping adjacent jobs (n− 1 neighbors)

π = ( )J1, J2, J3, J4, J5, J6 part of:

Swapping arbitrary pairs of jobs (
(
n
2

)
neighbors)

π = ( )J1, J2, J3, J4, J5, J6

Reinserting a job into another position ( (n− 1)2 neighbors)

π = ( )J1, J2, J3, J4, J5, J6 Taillard acc. O(n2m)
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Iterated Greedy by Ruiz & Stützle (2007)by Ruiz & Stützle (2007)
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Permutation FSSP vs. Non-permutation FSSP

Practically are the same problem!

All machines have the
same processing order

Simplified problem:

• Possible solutions: n!
disregarding the
number of machines

• 99% of the literature

Excludes better (optimal)
non-permutation schedules

Some machines may have
different processing orders

Harder problem

• Possible solutions:
n!(m−2) for min. Cmax

n!(m−1) for min. Csum

• 1% of the literature

How to solve this harder problem
with the same effort?
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Permutation FSSP vs. Non-permutation FSSP

Permutation

(J1, J2) Cmax = 11

M1

M2

M3

M4

118 t

(J2, J1) Cmax = 11

M1

M2

M3

M4

118 t
FSSP 2× 4 instance.

Jobs Operations
M1 M2 M3 M4

J1 1 3 3 1
J2 3 1 1 3
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Permutation FSSP vs. Non-permutation FSSP
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(J1, J2) Cmax = 11

M1

M2

M3

M4

118 t

(J2, J1) Cmax = 11

M1

M2

M3

M4

118 t

Non-permutation

(J1, J2)

(J2, J1)
Cmax = 10

M1

M2

M3

M4

9 10 t



FSSP Non-permutation Results

Permutation FSSP vs. Non-permutation FSSP

Permutation

(J1, J2) Csum = 19
M1

M2

M3

9 10 t

(J2, J1) Csum = 19
M1

M2

M3

6 13 t

Non-permutation

(J1, J2)

(J2, J1)
Csum = 18

M1

M2

M3

7 11 t
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Job insertion for non-permutation FSSP

Optimal schedules have small differences in
the processing order of subsequent machines.

(J1, J2)

(J2, J1)
Cmax = 10

M1

M2

M3

M4

9 10 t
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Job insertion for non-permutation FSSP
with anticipation and delay after an intermediate machine

Original NEH inserts jobs only into straight positions
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with anticipation and delay after an intermediate machine
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FSSP Non-permutation Results

Job insertion for non-permutation FSSP
NEH-like heuristics for non-permutation FSSP

1: function NEH like Constructive Heuristic( )
2: πo := (πo(1), . . . , πo(n)) from large to small
3: π := (πo(1))
4: for πo(j), j ∈ [2, n] do
5: for all insertion positions k ∈ [j] do
6: evaluate insertion of πo(j) at k with anticipation after Mi with i ∈ [2,m− 2]
7: evaluate insertion of πo(j) at k with delay after Mi with i ∈ [2,m− 2]
8: evaluate insertion of Jj at k straight
9: end for
10: Apply the best insertion of job ρo(j) into π which minimizes Cmax

11: end for
12: return π
13: end function

The number of insertion possibilities goes from O(n) to O(nm)

Inserts n jobs in time O(n3m2) for Csum (cannot use Taillard acceleration)
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FSSP Non-permutation Results

Job insertion for non-permutation FSSP
Non-permutation insertions with Taillard acceleration

Taillard acceleration technique needs adjustments because...

Non-permutation insertions produces invalid ei,j and qi,j
when used with m-permutation representation, e.g.:
π1= (4, 3)
π2= (4, 3)
π3= (4, 3)
π4= (3, 4)
π5= (3, 4)

⇒
π1= (4, 3, 1)
π2= (4, 3, 1)
π3= (4, 1, 3)
π4= (3, 1, 4)
π5= (3, 1, 4)

⇒
π1= (4, 3, 2, 1)
π2= (4, 3, 2, 1)
π3= (4, 1, 3, 2)
π4= (3, 1, 4, 2)
π5= (3, 1, 4, 2)

Two possible alternative solutions:

Update invalid ei,j and qi,j efficiently
NFS constructive heuristic O(n2m2W ) (Benavides & Ritt, 2016)

Propose a new representation that supports Taillard acceleration
NEHBR constructive heuristic O(n2m) (same as NEHT , Benavides & Ritt, 2018)
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FSSP Non-permutation Results

New representation for non-permutation schedules:
Permutation of pseudo-jobs

Pseudo-job Jj [i, i
′]: operations of job Jj from Mi to Mi′ , others are missing

M1
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π = ( J5, J4, J6, J2, J1, J3 )

π′ = ( J5, J6[1, 3], J4, J6[4, 6], J2, J1[1, 4], J3, J1[5, 6] )

Times ei,j and qi,j are valid, but some operations are missing



FSSP Non-permutation Results

Taillard acceleration redefinition: straight insertion

ei,j =

{
max{ei,j−1, ei−1,j}+ pi,π(j), if ∃ pi,π(j)
ei,j−1, if @ pi,π(j)

for i ∈ [m], j ∈ [|π|],

with e0,j = 0 and ei,0 = 0

qi,j =

{
max{qi,j+1, qi+1,j}+ pi,π(j), if ∃ pi,π(j)
qi,j+1, if @ pi,π(j)

for i ∈ [m], j ∈ [|π|],

with qm+1,j = 0 and qi,k+1 = 0

fi,j = max{fi−1,j , ei,j−1}+ pi,πo(l), for i ∈ [m], j ∈ [|π|+ 1] with f0,j = 0

MCj = maxi∈[m]{fi,j + qi,j}, for j ∈ [|π|+ 1]



FSSP Non-permutation Results

Taillard acceleration extension: insertion with anticipation
gi,j = max{gi+1,j , qi,j}+ pi,πo(l), for i ∈ [m], j ∈ [|π|+ 1] with gm+1,j = 0

MC′i,j =



max{fi,j+1 + gi+1,j ,

max
i′∈[i]
{gi′,j+1 + ei′,j},

max
i′′∈[i+1,m]

{fi′′,j + qi′′,j}}, if ∃pi,π(j) ∧ ∃pi+1,π(j)

∞, if @pi,π(j) ∨ @pi+1,π(j)

for i ∈ [2,m− 2], j ∈ [|π|]

ei,j

l
l
l

l

. . .
. . .
. . .
. . .

. . .
. . .
. . .
. . .

e+ g

f + q

f
+ g

gi,j qi,jfi,j
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FSSP Non-permutation Results

Taillard acceleration extension: insertion with delay
e′i,j =

{
max{e′i−1,j , fi,j}+ pi,π(j), if ∃ pi,π(j)
fi,j , if @ pi,π(j)

for i ∈ [m], j ∈ [|π|] with e′0,j = 0

q′i,j =

{
max{q′i+1,j , gi,j+1}+ pi,π(j), if ∃ pi,π(j)
gi,j+1, if @ pi,π(j)

for i ∈ [m], j ∈ [|π|] with q′m+1,j = 0

MC′′i,j =
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FSSP Non-permutation Results

Constructive heuristic NEHBR

has time complexity of O(n2m)

Besides calculating

MC: makespan for O(n) straight insertions (like NEH)

Calculations are triplicated to obtain:

MC ′: makespan for O(nm) insertions with anticipation

MC ′′: makespan for O(nm) insertions with delay

Calculations have time complexity of O(|π|m), n ≤ |π| ≤ 2n

NEHBR evaluates O(nm) insertion possibilities in time O(nm)

NEHBR has time complexity of O(n2m)
Same time complexity but three times more expensive

than NEHT for permutation FSSP



FSSP Non-permutation Results

Constructive heuristic NEHBR

π = (J5, J4, J2, J1) Next job: J3
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FSSP Non-permutation Results

Constructive heuristic NEHBR

π = (J5, J4, J2, J1[1, 4], J3, J1[5, 6]) with anticipation
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Constructive heuristic NEHBR

π = (J5, J4, J2, J1[1, 4], J3, J1[5, 6]) Next job: J6
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FSSP Non-permutation Results

Constructive heuristic NEHBR

π = (J5, J6[1, 3], J4, J6[4, 6], J2, J1[1, 4], J3, J1[5, 6]) with delay
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Constructive heuristic NEHBR
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FSSP Non-permutation Results

Constructive heuristic NEHBR

π = (J5, J6[1, 3], J4, J6[4, 6], J2, J1[1, 4], J3, J1[5, 6])
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FSSP Non-permutation Results

Local search heuristics for non-permutation FSSP

M1

M2

M3

M4

0 5 10 15 17 t

Extended Neighbourhood of Nowicki & Smutnicki (1996)
Used in (Benavides & Ritt, 2016)

Interchange the first two (or the last two) operations in a critical block
Evaluate the interchange only on critical machine Mi

Evaluate the interchange on machines M1, . . . ,M
′
i for all i′ ≥ i

Evaluate the interchange on machines M ′′i , . . . ,Mm for all i′′ ≤ i
Evaluates O(nm) neighbours in time O(n2m2)

proposed before pseudo-jobs permutation representation
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FSSP Non-permutation Results

Local search heuristics for non-permutation FSSP
with pseudo-jobs and acceleration

π = (. . . , Ja[1, 2], Jb, Ja[3, 4], . . . )
. . .
. . .
. . .
. . .

. . .
. . .
. . .
. . .

e+ g
f
+ g

f + q

Non-permutation insertion local search π = ( )J1, J2, J3, J4, J5, J6

evaluates (n− 1)2(2m− 5) non-permutation neighbours in time O(n2m) same as the

insertion local search for (n− 1)2 permutation neighbours

New BRN local search π = ( )J1, J2, J3, J4, J5, J6

based on swapping adjacent jobs completely or partially
evaluates (n− 1)(2m− 5) non-permutation neighbours in time O(nm)
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e+ g
f
+ g

f + q

Non-permutation insertion local search π = ( )J1, J2, J3, J4, J5, J6

evaluates (n− 1)2(2m− 5) non-permutation neighbours in time O(n2m) same as the

insertion local search for (n− 1)2 permutation neighbours

New BRN local search π = ( )J1, J2, J3, J4, J5, J6

based on swapping adjacent jobs completely or partially
evaluates (n− 1)(2m− 5) non-permutation neighbours in time O(nm)
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BRN local search

First calculates ei,j and qi,j in a time of complexity O(nm)

Best-improvement

chooses the best in the adjacent job swap neighbourhood

Reduced-neighbourhood

(π(j), π(j + 1)) ∈ R ⇐⇒ ei,j + qi+1,j = Cmax(π) ∨ ei,j+1 + qi+1,j+1 = Cmax(π)

Either π(j) or π(j + 1) has critical operations on consecutive machines

Like Nowicki & Smutnicki but considering all the critical paths

Non-permutation

Calculates the makespan of swapping two consecutive jobs π(j), π(j + 1)
MC: swap completely
MC ′: swap on the first machines (like insertion with anticipation)
MC ′′: swap on the last machines (like insertion with delay)

with a time complexity of O(m) for each (π(j), π(j + 1)) ∈ R, with |R|<|π|
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Non-permutation FSSP with Cmax (2016)

Benavides, A. J.; Ritt, M. (2016). (first attempt)

Two simple and effective heuristics for minimizing the makespan in non-permutation
flow shops.
Computers & Operations Research, Elsevier, v. 66, p. 160–169.
CAPES WebQualis A1; Impact Factor 1.861; 5-Year Impact Factor 2.454

Iterated greedy algorithm for non-permutation FSSP with Cmax

Greedy Reconstruction Perturbation scheme:
Based on NFS, O(nm2W ) per insertion

Local search scheme:
Extended Neighbourhood of Nowicki & Smutnicki
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Non-permutation FSSP with Cmax (2016)

Demirkol Lin & Rossi & Our IGA

instances Ying Lanzetta min avg max

Averages 0.00 7.99 -1.98 -1.57 -1.13

Our IGA is better in the same adjusted time

Our IGA finds new BKV for the 40 instances

28 Taillard Yagmahan & Rossi & Lanzetta Our IGA

instances Yenisey min avg min avg max

Averages 6.86 5.02 5.98 -0.69 -0.51 -0.25

Our IGA is better in the less than their adjusted time

Our IGA finds new BKV for 13 of those 28 instances and 32 of all 120

Better results for 30nm2 ms in both cases
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Non-permutation FSSP with Cmax (2016)
compared to permutation FSSP

Taillard Permutation Our IGA 30nm ms Our IGA 30nm2 ms

instances RS FF min avg max min avg max

Averages 0.44 0.38 -0.22 -0.03 0.21 -0.41 -0.32 -0.20

Fernandez-Viagas & Framinan (2014) is 0.06% better than
Ruiz & Stützle (2007)

Our IGA is 0.4% better than Fernandez-Viagas & Framinan (2014)
in the same time, and is 0.7% better in 30nm2 ms

Small job reordering

Buffer sizes Non-permutation schedules require slightly smaller buffers
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Non-permutation FSSP with Cmax using pseudo-jobs

Benavides, A. J.; Ritt, M. (2018).

Novel pseudo-jobs permutation representation
for non-permutation flow shop schedules

Extended acceleration tech. with the same time complexity

NEHT, NEHBR: O(n2m) (Permutation and non-permutation)

BRN local search: O(nm) per neighbourhood (non-permutation)

Insertion local search: O(n2m) per neighbourhood (Permutation and non-permutation)

FRBBR based on Farahmand Rad, Ruiz & Boroojerdian (2009)
– produces better results than NEHBR, more complex and expensive
– different initial solutions slightly affect IGb



FSSP Non-permutation Results

Non-permutation FSSP with Cmax using pseudo-jobs

Benavides, A. J.; Ritt, M. (2018).

Novel pseudo-jobs permutation representation
for non-permutation flow shop schedules

Extended acceleration tech. with the same time complexity

NEHT, NEHBR: O(n2m) (Permutation and non-permutation)

BRN local search: O(nm) per neighbourhood (non-permutation)

Insertion local search: O(n2m) per neighbourhood (Permutation and non-permutation)

FRBBR based on Farahmand Rad, Ruiz & Boroojerdian (2009)
– produces better results than NEHBR, more complex and expensive
– different initial solutions slightly affect IGb



FSSP Non-permutation Results

Non-permutation FSSP with Cmax using pseudo-jobs

Benavides, A. J.; Ritt, M. (2018).
Makespan in non-permutation flow shop scheduling problem
by the price of permutation.

Iterated greedy algorithms
IGA Reconstr. Local search

IGb NEHBR BRN
IGi NEHBR Insertion
IGbi NEHBR BRN, Insertion
IGp NEH Permutation insertion

NEHT, NEHBR: O(n2m) (Permutation and non-permutation)

BRN local search: O(nm) per neighbourhood (non-permutation)

Insertion local search: O(n2m) per neighbourhood (Permutation and non-permutation)

IGb is the best combination for non-permutation FSSP
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Non-permutation FSSP
Concluding Remarks

Non-permutation schedules can be represented as a permutation of pseudo-jobs, and
this allows the use of an extended taillard acceleration and a BRN local search.

Strategic operation reordering leads to non-permutation schedules with better quality
than the best possible permutation schedules.

Non-permutation schedules can be found using the same computational effort than the
used for permutation schedules
with the makespan and the total completion time criteria.

Non-permutation schedules can be implemented in practice without strong
technological differences.



Solving the Non-permutation
Flow Shop Scheduling Problem

Alexander J. Benavides

ajbenavides@unsa.edu.pe
ajbenavides@ucsp.edu.pe

Thank you!
Questions?
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