# Solving the Non-permutation Flow Shop Scheduling Problem



### Alexander J. Benavides

ajbenavides@unsa.edu.pe ajbenavides@ucsp.edu.pe



October, 2019

### Today we'll see...

How to solve very-difficult combinatorial-optimization problems by using computers to model problems and produce solutions.

Case Study: Flow Shop Scheduling Problem (FSSP)

Methods: constructive heuristics, local search, meta-heuristics, ...

Thinking out of the box!!! ...

Benavides A.J., & Ritt M., (2016), Two simple and effective heuristics for minimizing the makespan in non-permutation flowshop scheduling problems. Comput. Oper. Res. 60, 160–169.

Benavides A.J., & Ritt M., (2018), Fast heuristics for minimizing the makespan in non-permutation flow shops. Comput. Oper. Res. 100, 230–243.

### Outline

#### FSSP, Introduction and concepts

**FSSP** definition

NEH heuristic and Taillard acceleration

Local search heuristics

Non-permutation FSSP, Motivations and proposed heuristics

Permutation FSSP vs. Non-permutation FSSP

Constructing non-permutation schedules

Constructing non-permutation schedules

New permutation representation for non-permutation schedules and

new constructive heuristic NEH<sub>BR</sub>

Local search heuristics for non-permutation FSSP

#### Results and Remarks

Non-permutation FSSP with makespan (Benavides & Ritt, 2016)

Non-permutation FSSP with makespan (Benavides & Ritt, 2018)

Concluding Remarks



 $6 \times 6$  instance of the FSSP

| 0 × 0 ilistance of the 1 331 |            |       |             |       |       |       |
|------------------------------|------------|-------|-------------|-------|-------|-------|
| Jobs                         | Operations |       |             |       |       |       |
|                              | $M_1$      | $M_2$ | $\dot{M}_3$ | $M_4$ | $M_5$ | $M_6$ |
| $\overline{J_1}$             | 3          | 6     | 3           | 3     | 4     | 3     |
| $J_2$                        | 4          | 3     | 5           | 3     | 5     | 2     |
| $J_3$                        | 6          | 5     | 2           | 2     | 2     | 4     |
| $J_4$                        | 4          | 5     | 2           | 2     | 5     | 5     |
| $J_5$                        | 2          | 2     | 5           | 6     | 3     | 5     |
| $J_6$                        | 2          | 3     | 5           | 5     | 3     | 3     |



A set of jobs  $J_1, \ldots, J_n$  must be processed on a set of machines  $M_1, \ldots, M_m$ 

with given processing times  $p_{ij}$  for each job  $J_j$  on machine  $M_i$ 

Objective function:

min.  $C_{\text{max}} = \max C_j$  (makespan) There are n! possible solutions



6! 720

10! 3628800

## Flow Shop Scheduling Problem (FSSP)

20! 2.43e+18 $50! \ 3.04e + 64$ 100! 9.33e+157 200! 7.88e+374 500! 1.22e+1134 800! 7.71e+1976 Grains of sand on Earth 7.5e+18 Stars in the observable universe 2e+2060 s \* 60 m \* 24 h \* 365 d = 31536000 Taillard (1993): 120 instances  $n \in 20, 50, 100, 200, 500$  jobs by  $m \in 5, 10, 20$  machines.

Vallada, Ruiz, Framinan (2015) 240 small instances  $n \in 10, 20, 30, 40, 50, 60$  jobs by  $m \in 5, 10, 15, 20$  machines.

240 large instances  $n \in 100, 200, 300, 400, 500, 600, 700, 800 \text{ jobs by } \\ m \in 20, 40, 60 \text{ machines}.$ 

6! 720

10! 3628800

20! 2.43e+18

50! 3.04e+64

100! 9.33e+157

200! 7.88e+374

500! 1.22e+1134

800! 7.71e+1976

Grains of sand on Earth 7.5e+18 Stars in the observable universe 2e+20

4 GHz = 4e+9 op/s = 4 op/s

60 s \* 60 m \* 24 h \* 365 d = 31536000 operations per year: 1.26144e+17 so 2.4e+18/1.2e+17 20 years.

Taillard (1993): 120 instances  $n \in 20, 50, 100, 200, 500$  jobs by  $m \in 5, 10, 20$  machines.

Vallada, Ruiz, Framinan (2015) 240 small instances  $n \in 10, 20, 30, 40, 50, 60$  jobs by  $m \in 5, 10, 15, 20$  machines.

240 large instances  $n \in 100, 200, 300, 400, 500, 600, 700, 800$  jobs by  $m \in 20, 40, 60$  machines.

6! 720

10! 3628800

20! 2.43e+18

50! 3.04e+64

100! 9.33e+157

200! 7.88e+374

500! 1.22e+1134

800! 7.71e+1976

Grains of sand on Earth 7.5e+18
Stars in the observable universe 2e+20

4 GHz = 4e+9 op/s = 4 op/s

60 s \* 60 m \* 24 h \* 365 d = 31536000

operations per year: 1.26144e+1 so 2.4e+18/1.2e+17 20 years.

Taillard (1993): 120 instances  $n \in 20, 50, 100, 200, 500$  jobs by  $m \in 5, 10, 20$  machines.

Vallada, Ruiz, Framinan (2015) 240 small instances

 $n \in 10, 20, 30, 40, 50, 60$  jobs by  $m \in 5, 10, 15, 20$  machines.

240 large instances  $n \in 100, 200, 300, 400, 500, 600, 700, 800$  jobs by  $m \in 20, 40, 60$  machines.

6! 720

10! 3628800

20! 2.43e+18

50! 3.04e+64

100! 9.33e+157

200! 7.88e+374

500! 1.22e+1134

800! 7.71e+1976

Grains of sand on Earth 7.5e+18 Stars in the observable universe 2e+20

4 GHz = 4e+9 op/s = 4 op/s

60 s \* 60 m \* 24 h \* 365 d = 31536000

operations per year: 1.26144e+17

so 2.4e+18/1.2e+17 20 years.

Taillard (1993): 120 instances  $n \in 20, 50, 100, 200, 500$  jobs by  $m \in 5, 10, 20$  machines.

Vallada, Ruiz, Framinan (2015)

240 small instances

 $n \in 10, 20, 30, 40, 50, 60$  jobs by

 $m \in 5, 10, 15, 20$  machines.

240 large instances

 $n \in 100, 200, 300, 400, 500, 600, 700, 800$  jobs by

 $m \in 20, 40, 60$  machines.

6! 720

## Flow Shop Scheduling Problem (FSSP)

10! 3628800 20! 2.43e+18 50! 3.04e+64 100! 9.33e+157 200! 7.88e+374 500! 1.22e+1134

800! 7.71e+1976

Grains of sand on Earth 7.5e+18 Stars in the observable universe 2e+20 4 GHz = 4e+9 op/s = 4 op/s 60 s \* 60 m \* 24 h \* 365 d = 31536000 operations per year: 1.26144e+17

so 2.4e+18/1.2e+17 20 years.

Taillard (1993): 120 instances  $n \in 20, 50, 100, 200, 500$  jobs by  $m \in 5, 10, 20$  machines.

Vallada, Ruiz, Framinan (2015) 240 small instances  $n \in 10, 20, 30, 40, 50, 60$  jobs by  $m \in 5, 10, 15, 20$  machines.

240 large instances  $n \in 100, 200, 300, 400, 500, 600, 700, 800 \text{ jobs by } \\ m \in 20, 40, 60 \text{ machines}.$ 

 $6 \times 6$  instance of the FSSP

| o x o mistance of the root |       |            |             |       |       |       |          |
|----------------------------|-------|------------|-------------|-------|-------|-------|----------|
| Jobs                       |       | Operations |             |       |       |       |          |
|                            | $M_1$ | $M_2$      | $\dot{M}_3$ | $M_4$ | $M_5$ | $M_6$ | Total    |
| $\overline{J_1}$           | 3     | 6          | 3           | 3     | 4     | 3     | 22       |
| $J_2$                      | 4     | 3          | 5           | 3     | 5     | 2     | 22       |
| $J_3$                      | 6     | 5          | 2           | 2     | 2     | 4     | 21       |
| $J_4$                      | 4     | 5          | 2           | 2     | 5     | 5     | 23<br>23 |
| $J_5$                      | 2     | 2          | 5           | 6     | 3     | 5     |          |
| $J_6$                      | 2     | 3          | 5           | 5     | 3     | 3     | 21       |
|                            |       |            |             |       |       |       |          |

First, determine insertion order:

$$\pi_o = (J_4, J_5, J_1, J_2, J_3, J_6)$$

The, insert one by one at the best position starting with  $\pi = (J_4)$ 

- 1: **function** NEH\_Constructive\_Heuristic()
- $\pi_o := (\pi_o(1), \dots, \pi_o(n))$  from large to small
- $\pi := (\pi_o(1))$
- for  $\pi_o(j), j \in [2, n]$  do 4:
- 5: evaluate all the insertion positions of job  $\pi_o(j)$  into  $\pi$ 
  - insert job  $\pi_o(j)$  into  $\pi$  at the position which minimizes  $C_{\max}$
- 7: end for

6:

- return  $\pi$
- 9: end function



$$\pi_o = (J_4, J_5, J_1, J_2, J_3, J_6)$$
  $\pi = (J_4)$  Next job:  $J_5$ 

$$\tau = (J_4)$$





- 1: **function** NEH\_Constructive\_Heuristic()
- $\pi_o := (\pi_o(1), \dots, \pi_o(n))$  from large to small
- $\pi := (\pi_o(1))$
- 4: for  $\pi_o(i), i \in [2, n]$  do
- 5: evaluate all the insertion positions of job  $\pi_o(i)$  into  $\pi$ 
  - insert job  $\pi_o(j)$  into  $\pi$  at the position which minimizes  $C_{\max}$
- 7. end for

6:

- 8: return  $\pi$
- 9: end function

$$\pi_o = (J_4, J_5, J_1, J_2, J_3, J_6)$$
  $\pi = (J_5, J_4)$  Next job:  $J_1$ 

$$=(J_5,J_4)$$



And so on ... until all jobs are inserted:  $\pi = (J_5, J_4, J_6, J_2, J_1, J_3)$ 



Original NEH has a time complexity of  $O(n^3m)$ 

NEH inserts n jobs, evaluates O(n) insertion positions, (exactly n(n+1)/2-1 evaluations) and each evaluation has a time complexity of O(nm)

# Nawaz, Enscore & Ham (1983) NEH $_T$ heuristic with Taillard (1990) acceleration technique for $C_{\rm max}$

#### Earliest completion times $e_{i,j}$ before insertion position remain unchanged

Also  $q_{i,j}$  times after insertion position remain unchanged



#### Taillard defines:

$$\begin{array}{ll} e_{i,j} = \max\{e_{i,j-1}, e_{i-1,j}\} + p_{i,\pi(j)}, & \text{for } i \in [m], j \in [|\pi|], & \text{with } e_{0,j} = 0 \text{ and } e_{i,0} = 0 \\ q_{i,j} = \max\{q_{i,j+1}, q_{i+1,j}\} + p_{i,\pi(j)}, & \text{for } i \in [m], j \in [|\pi|], & \text{with } q_{m+1,j} = 0 \text{ and } q_{i,k+1} = 0 \\ for i \in [m], j \in [|\pi|], & \text{with } q_{m+1,j} = 0 \text{ and } q_{i,k+1} = 0 \\ for i \in [m], j \in [|\pi|], & \text{with } f_{0,j} = 0 \end{array}$$

These calculations evaluate n insertion positions in time O(nm)

This reduces the time complexity of NEH $_T$  from  $O(n^3m)$  to  $O(n^2m)$ 



# Nawaz, Enscore & Ham (1983) NEH $_T$ heuristic with Taillard (1990) acceleration technique for $C_{\rm max}$

Earliest completion times  $e_{i,j}$  before insertion position remain unchanged Also  $q_{i,j}$  times after insertion position remain unchanged



#### Taillard defines:

```
\begin{array}{ll} e_{i,j} = \max\{e_{i,j-1}, e_{i-1,j}\} + p_{i,\pi(j)}, & \text{for } i \in [m], j \in [|\pi|], & \text{with } e_{0,j} = 0 \text{ and } e_{i,0} = 0 \\ q_{i,j} = \max\{q_{i,j+1}, q_{i+1,j}\} + p_{i,\pi(j)}, & \text{for } i \in [m], j \in [|\pi|], & \text{with } q_{m+1,j} = 0 \text{ and } q_{i,k+1} = 0 \\ f_{i,j} = \max\{f_{i-1,j}, e_{i,j-1}\} + p_{i,t}, & \text{for } i \in [m], j \in [|\pi|], & \text{with } q_{m+1,j} = 0 \text{ and } q_{i,k+1} = 0 \\ M_j = \max_{i \in [m]} \{f_{i,j} + q_{i,j}\}, & \text{for } j \in [|\pi| + 1] \end{array}
```

These calculations evaluate n insertion positions in time O(nm)

This reduces the time complexity of  $\operatorname{NEH}_T$  from  $O(n^3m)$  to  $O(n^2m)$ 

# Nawaz, Enscore & Ham (1983) NEH $_T$ heuristic with Taillard (1990) acceleration technique for $C_{\rm max}$

Earliest completion times  $e_{i,j}$  before insertion position remain unchanged Also  $q_{i,j}$  times after insertion position remain unchanged



#### Taillard defines:

```
\begin{array}{ll} e_{i,j} = \max\{e_{i,j-1}, e_{i-1,j}\} + p_{i,\pi(j)}, & \text{for } i \in [m], j \in [|\pi|], & \text{with } e_{0,j} = 0 \text{ and } e_{i,0} = 0 \\ q_{i,j} = \max\{q_{i,j+1}, q_{i+1,j}\} + p_{i,\pi(j)}, & \text{for } i \in [m], j \in [|\pi|], & \text{with } q_{m+1,j} = 0 \text{ and } q_{i,k+1} = 0 \\ f_{i,j} = \max\{f_{i-1,j}, e_{i,j-1}\} + p_{i,l}, & \text{for } i \in [m], j \in [|\pi|], & \text{with } q_{m+1,j} = 0 \text{ and } q_{i,k+1} = 0 \\ M_j = \max_{i \in [m]} \{f_{i,j} + q_{i,j}\}, & \text{for } j \in [|\pi| + 1] \end{array}
```

These calculations evaluate n insertion positions in time O(nm)

This reduces the time complexity of NEH<sub>T</sub> from  $O(n^3m)$  to  $O(n^2m)$ 

Swapping adjacent jobs (n-1 neighbors)

Swapping arbitrary pairs of jobs (  $\binom{n}{2}$  neighbors)

Swapping adjacent jobs (n-1 neighbors)

$$\pi = ( J_1, J_2, J_3, J_4, J_5, J_6 )$$

Swapping arbitrary pairs of jobs (  $\binom{n}{2}$  neighbors)

Swapping adjacent jobs (n-1 neighbors)

$$\pi = ( J_1, J_2, J_3, J_4, J_5, J_6 )$$

Swapping arbitrary pairs of jobs (  $\binom{n}{2}$  neighbors)

Swapping adjacent jobs (n-1 neighbors)

$$\pi = (\quad J_1, \quad J_2, \quad J_3, \quad J_4, \quad J_5, \quad J_6 \quad \ \, )$$

Swapping arbitrary pairs of jobs (  $\binom{n}{2}$  neighbors)

Swapping adjacent jobs (n-1 neighbors)

$$\pi = (\quad \widetilde{J_1}, \ \widetilde{J_2}, \ \widetilde{J_3}, \ \widetilde{J_4}, \ \widetilde{J_5}, \ J_6 \quad \ )$$

Swapping arbitrary pairs of jobs (  $\binom{n}{2}$  neighbors)

$$\pi = ( J_1, J_2, J_3, J_4, J_5, J_6 )$$

Swapping adjacent jobs (n-1 neighbors)

$$\pi = (\quad \widetilde{J_1}, \ \widetilde{J_2}, \ \widetilde{J_3}, \ \widetilde{J_4}, \ \widetilde{J_5}, \ J_6 \quad \ )$$

Swapping arbitrary pairs of jobs ( $\binom{n}{2}$  neighbors)

$$\pi = ( J_1, J_2, J_3, J_4, J_5, J_6 )$$

Swapping adjacent jobs (n-1 neighbors)

$$\pi = (\quad J_1, \quad J_2, \quad J_3, \quad J_4, \quad J_5, \quad J_6 \quad \ \, )$$

Swapping arbitrary pairs of jobs ( $\binom{n}{2}$  neighbors)

$$\pi = ( J_1, J_2, J_3, J_4, J_5, J_6 )$$

Swapping adjacent jobs (n-1 neighbors)

$$\pi = (\quad \widetilde{J_1}, \ \widetilde{J_2}, \ \widetilde{J_3}, \ \widetilde{J_4}, \ \widetilde{J_5}, \ J_6 \quad \ )$$

Swapping arbitrary pairs of jobs ( $\binom{n}{2}$  neighbors)

$$\pi = (\quad J_1, \ J_2, \ J_3, \ J_4, \ J_5, \ J_6 \quad )$$

$$\pi = ( \ \ \ J_1, \ \ J_2, \ \ J_3, \ \ J_4, \ \ J_5, \ \ J_6 )$$

Swapping adjacent jobs (n-1 neighbors)

$$\pi = (\quad \widetilde{J_1}, \ \widetilde{J_2}, \ \widetilde{J_3}, \ \widetilde{J_4}, \ \widetilde{J_5}, \ J_6 \quad \ )$$

Swapping arbitrary pairs of jobs ( $\binom{n}{2}$  neighbors)

$$\pi = ( J_1, J_2, J_3, J_4, J_5, J_6 )$$

Swapping adjacent jobs (n-1 neighbors)

$$\pi = (\quad J_1, \quad J_2, \quad J_3, \quad J_4, \quad J_5, \quad J_6 \quad \ \, )$$

Swapping arbitrary pairs of jobs ( $\binom{n}{2}$  neighbors)

$$\pi = (\quad J_1, \ J_2, \ J_3, \ J_4, \ J_5, \ J_6 \quad \ )$$

$$\pi = ( J_1, J_2, J_3, J_4, J_5, J_6 )$$

part of:



# Neighborhoods for local search for permutation schedules

Swapping adjacent jobs (n-1 neighbors)

$$\pi = (\quad \widetilde{J_1}, \ \widetilde{J_2}, \ \widetilde{J_3}, \ \widetilde{J_4}, \ \widetilde{J_5}, \ J_6 \quad \ )$$

Swapping arbitrary pairs of jobs ( $\binom{n}{2}$  neighbors)

$$\pi = ( J_1, J_2, J_3, J_4, J_5, J_6 )$$

Reinserting a job into another position (  $(n-1)^2$  neighbors)

$$\pi = (J_1, J_2, J_3, J_4, J_5, J_6)$$

Taillard acc.  $O(n^2m)$ 

```
procedure IteratedGreedy for PFSP
                                            by Ruiz & Stützle (2007)
   \pi := NEH \text{ heuristic};
   \pi := \text{IterativeImprovement\_Insertion}(\pi);
   \pi_h := \pi:
   while (termination criterion not satisfied) do
      \pi' := \pi:
                                            % Destruction phase
      for i := 1 to d do
          \pi' := remove one job at random from \pi' and insert it in \pi'_{R};
      endfor
      for i := 1 to d do
                                           % Construction phase
         \pi' := \text{best permutation obtained by inserting job } \pi_R(i) \text{ in all possible positions of } \pi';
      endfor
      \pi'' := IterativeImprovement_Insertion(\pi'); % Local Search
      if C_{max}(\pi'') < C_{max}(\pi) then % Acceptance Criterion
         \pi := \pi'':
         if C_{max}(\pi) < C_{max}(\pi_b) then % check if new best permutation
             \pi_h := \pi;
          endif
      elseif (random < \exp\{-(C_{max}(\pi'') - C_{max}(\pi))/Temperature\}) then
         \pi := \pi'':
      endif
   endwhile
   return \pi_b
end
```

### Outline

FSSP, Introduction and concepts
FSSP definition
NEH heuristic and Taillard acceleration
Local search heuristics

Non-permutation FSSP, Motivations and proposed heuristics

Permutation FSSP vs. Non-permutation FSSP

Constructing non-permutation schedules

Constructing non-permutation schedules

New permutation representation for non-permutation schedules and new constructive heuristic  $NEH_{BR}$ 

Local search heuristics for non-permutation FSSP

Results and Remarks

Non-permutation FSSP with makespan (Benavides & Ritt, 2016)

Non-permutation FSSP with makespan (Benavides & Ritt, 2018)

Concluding Remarks



#### Practically are the same problem!

All machines have the same processing order

Simplified problem

- Possible solutions: n! disregarding the number of machines
- 99% of the literature

Excludes better (optimal) non-permutation schedules

Some machines may have different processing orders

Harder problem

- Possible solutions:  $n!^{(m-2)}$  for min.  $C_{\text{max}}$   $n!^{(m-1)}$  for min.  $C_{\text{sum}}$
- 1% of the literature

### Permutation

$$(J_1,J_2)$$



$$(J_2,J_1)$$



## FSSP $2 \times 4$ instance.

 $C_{\text{max}} = 11$ 

| Jobs  | Operations |       |       |       |  |  |
|-------|------------|-------|-------|-------|--|--|
|       | $M_1$      | $M_2$ | $M_3$ | $M_4$ |  |  |
| $J_1$ | 1          | 3     | 3     | 1     |  |  |
| $J_2$ | 3          | 1     | 1     | 3     |  |  |

### Permutation FSSP

VS.

### Non-permutation FSSP

### Permutation

$$(J_1,J_2)$$







### Non-permutation

$$(J_1, J_2)$$
  $M_2$   $M_3$   $(J_2, J_1)$   $M_4$ 



 $C_{\text{max}} = 10$ 

#### Permutation



#### Non-permutation

#### Practically are the same problem!

All machines have the same processing order

#### Simplified problem:

- Possible solutions: n! disregarding the number of machines
- 99% of the literature

Excludes better (optimal) non-permutation schedules

Some machines may have different processing orders

#### Harder problem

- Possible solutions:  $n!^{(m-2)}$  for min.  $C_{\max}$   $n!^{(m-1)}$  for min.  $C_{\text{sum}}$
- 1% of the literature

### Practically are the same problem!

All machines have the same processing order

Simplified problem:

- Possible solutions: n! disregarding the number of machines
- 99% of the literature

Excludes better (optimal) non-permutation schedules

Some machines may have different processing orders

#### Harder problem

- Possible solutions:  $n!^{(m-2)}$  for min.  $C_{\max}$   $n!^{(m-1)}$  for min.  $C_{\text{sum}}$
- 1% of the literature

### Practically are the same problem!

All machines have the same processing order

Simplified problem:

- Possible solutions: n! disregarding the number of machines
- 99% of the literature

Excludes better (optimal) non-permutation schedules

Some machines may have different processing orders

#### Harder problem

- Possible solutions:  $n!^{(m-2)}$  for min.  $C_{\max}$   $n!^{(m-1)}$  for min.  $C_{\text{sum}}$
- 1% of the literature

# Job insertion for non-permutation FSSP

Optimal schedules have small differences in the processing order of subsequent machines.

$$(J_1, J_2)$$
  $M_2$   $M_3$   $(J_2, J_1)$   $M_4$   $M_$ 

$$(J_1, J_2)$$
  $M_1$   $M_2$   $(J_2, J_1)$   $M_3$   $C_{\text{sum}} = 18$ 

# Job insertion for non-permutation FSSP with anticipation and delay after an intermediate machine

## Original NEH inserts jobs only into straight positions





We also insert jobs with delay after an intermediate machine





and with anticipation after an intermediate machine





# Job insertion for non-permutation FSSP with anticipation and delay after an intermediate machine

#### Original NEH inserts jobs only into straight positions





#### We also insert jobs with delay after an intermediate machine





#### and with anticipation after an intermediate machine





# Job insertion for non-permutation FSSP with anticipation and delay after an intermediate machine

#### Original NEH inserts jobs only into straight positions





#### We also insert jobs with delay after an intermediate machine





#### and with anticipation after an intermediate machine







# Job insertion for non-permutation FSSP NEH-like heuristics for non-permutation FSSP

```
1: function NEH_like_Constructive_Heuristic()
      \pi_o := (\pi_o(1), \dots, \pi_o(n)) from large to small
 2:
       \pi := (\pi_o(1))
 4:
       for \pi_o(j), j \in [2, n] do
 5:
         for all insertion positions k \in [j] do
            evaluate insertion of \pi_o(j) at k with anticipation after M_i with i \in [2, m-2]
 6:
            evaluate insertion of \pi_o(j) at k with delay after M_i with i \in [2, m-2]
 8:
            evaluate insertion of J_i at k straight
 9:
         end for
         Apply the best insertion of job \rho_o(j) into \pi which minimizes C_{\max}
10:
11:
       end for
12:
       return \pi
13: end function
```

The number of insertion possibilities goes from O(n) to O(nm)

# Job insertion for non-permutation FSSP NEH-like heuristics for non-permutation FSSP

```
1: function NEH_like_Constructive_Heuristic()
      \pi_o := (\pi_o(1), \dots, \pi_o(n)) from large to small
       \pi := (\pi_o(1))
 4:
      for \pi_o(j), j \in [2, n] do
 5:
         for all insertion positions k \in [j] do
            evaluate insertion of \pi_o(j) at k with anticipation after M_i with i \in [2, m-2]
 6:
            evaluate insertion of \pi_o(i) at k with delay after M_i with i \in [2, m-2]
 8:
            evaluate insertion of J_i at k straight
 9:
         end for
         Apply the best insertion of job \rho_o(j) into \pi which minimizes C_{\max}
10:
11:
       end for
12:
       return \pi
13: end function
```

The number of insertion possibilities goes from O(n) to O(nm)

Inserts n jobs in time  $O(n^3m^2)$  for Csum (cannot use Taillard acceleration)

# Job insertion for non-permutation FSSP Non-permutation insertions with Taillard acceleration

Taillard acceleration technique needs adjustments because...

Non-permutation insertions produces invalid  $e_{i,j}$  and  $q_{i,j}$  when used with m-permutation representation, e.g.:

Two possible alternative solutions:

Update invalid  $e_{i,j}$  and  $q_{i,j}$  efficiently NFS constructive heuristic  $O(n^2m^2W)$  (Benavides & Ritt, 2016)

Propose a new representation that supports Taillard acceleration NEH<sub>BR</sub> constructive heuristic  $O(n^2m)$  (same as NEH<sub>T</sub>, Benavides & Ritt, 2018)

# Job insertion for non-permutation FSSP Non-permutation insertions with Taillard acceleration

Taillard acceleration technique needs adjustments because...

Non-permutation insertions produces invalid  $\boldsymbol{e}_{i,j}$  and  $\boldsymbol{q}_{i,j}$ 

when used with m-permutation representation, e.g.:

Two possible alternative solutions:

Update invalid  $e_{i,j}$  and  $q_{i,j}$  efficiently NFS constructive heuristic  $O(n^2m^2W)$  (Benavides & Ritt, 2016)

Propose a new representation that supports Taillard acceleration NEH<sub>BR</sub> constructive heuristic  $O(n^2m)$  (same as NEH<sub>T</sub>, Benavides & Ritt, 2018)

# New representation for non-permutation schedules: Permutation of pseudo-jobs

Pseudo-job  $J_i[i,i']$ : operations of job  $J_i$  from  $M_i$  to  $M_{i'}$ , others are missing

Times  $e_{i,j}$  and  $q_{i,j}$  are valid, but some operations are missing

# Taillard acceleration redefinition: straight insertion

$$e_{i,j} = \begin{cases} \max\{e_{i,j-1}, e_{i-1,j}\} + p_{i,\pi(j)}, & \text{if } \exists \ p_{i,\pi(j)} \\ e_{i,j-1}, & \text{if } \not \exists \ p_{i,\pi(j)} \end{cases} \quad \text{for } i \in [m], j \in [|\pi|],$$

with  $e_{0,j} = 0$  and  $e_{i,0} = 0$ 

$$q_{i,j} = \begin{cases} \max\{q_{i,j+1}, q_{i+1,j}\} + p_{i,\pi(j)}, & \text{if } \exists \ p_{i,\pi(j)} \\ q_{i,j+1}, & \text{if } \not \exists \ p_{i,\pi(j)} \end{cases} \quad \text{for } i \in [m], j \in [|\pi|],$$

with  $q_{m+1,i} = 0$  and  $q_{i,k+1} = 0$ 

$$f_{i,j} = \max\{f_{i-1,j}, e_{i,j-1}\} + p_{i,\pi_o(l)}, \quad \text{for } i \in [m], j \in [|\pi|+1] \quad \text{ with } f_{0,j} = 0$$

$$MC_j = \max_{i \in [m]} \{ f_{i,j} + q_{i,j} \}, \text{ for } j \in [|\pi| + 1]$$

$$g_{i,j} = \max\{g_{i+1,j},q_{i,j}\} + p_{i,\pi_o(l)}, \ \text{ for } i \in [m], j \in [|\pi|+1] \quad \text{ with } g_{m+1,j} = 0$$

$$MC'_{i,j} = \begin{cases} \max\{f_{i,j+1} + g_{i+1,j}, \\ \max_{i' \in [i]} \{g_{i',j+1} + e_{i',j}\}, \\ \max_{i'' \in [i+1,m]} \{f_{i'',j} + q_{i'',j}\}\}, & \text{if } \exists p_{i,\pi(j)} \land \exists p_{i+1,\pi(j)} \\ \infty, & \text{if } \nexists p_{i,\pi(j)} \lor \nexists p_{i+1,\pi(j)} \end{cases} \text{ for } i \in [2, m-2], j \in [|\pi|]$$



$$g_{i,j} = \max\{g_{i+1,j},q_{i,j}\} + p_{i,\pi_o(l)}, \quad \text{for } i \in [m], j \in [|\pi|+1] \quad \text{ with } g_{m+1,j} = 0$$

$$MC'_{i,j} = \begin{cases} \max\{f_{i,j+1} + g_{i+1,j}, \\ \max_{i' \in [i]} \{g_{i',j+1} + e_{i',j}\}, \\ \max_{i'' \in [i+1,m]} \{f_{i'',j} + q_{i'',j}\}\}, & \text{if } \exists p_{i,\pi(j)} \land \exists p_{i+1,\pi(j)} \\ \infty, & \text{if } \nexists p_{i,\pi(j)} \lor \nexists p_{i+1,\pi(j)} \end{cases}$$
 for  $i \in [2, m-2], j \in [|\pi|]$ 



$$g_{i,j} = \max\{g_{i+1,j},q_{i,j}\} + p_{i,\pi_o(l)}, \ \text{ for } i \in [m], j \in [|\pi|+1] \quad \text{ with } g_{m+1,j} = 0$$

$$MC'_{i,j} = \begin{cases} \max\{f_{i,j+1} + g_{i+1,j}, \\ \max_{i' \in [i]} \{g_{i',j+1} + e_{i',j}\}, \\ \max_{i'' \in [i+1,m]} \{f_{i'',j} + q_{i'',j}\}\}, & \text{if } \exists p_{i,\pi(j)} \land \exists p_{i+1,\pi(j)} \\ \infty, & \text{if } \nexists p_{i,\pi(j)} \lor \nexists p_{i+1,\pi(j)} \end{cases} \text{ for } i \in [2, m-2], j \in [|\pi|]$$



$$g_{i,j} = \max\{g_{i+1,j},q_{i,j}\} + p_{i,\pi_o(l)}, \ \text{ for } i \in [m], j \in [|\pi|+1] \quad \text{ with } g_{m+1,j} = 0$$

$$MC'_{i,j} = \begin{cases} \max\{f_{i,j+1} + g_{i+1,j}, \\ \max_{i' \in [i]} \{g_{i',j+1} + e_{i',j}\}, \\ \max_{i'' \in [i+1,m]} \{f_{i'',j} + q_{i'',j}\}\}, & \text{if } \exists p_{i,\pi(j)} \land \exists p_{i+1,\pi(j)} \\ \infty, & \text{if } \nexists p_{i,\pi(j)} \lor \nexists p_{i+1,\pi(j)} \end{cases} \text{ for } i \in [2, m-2], j \in [|\pi|]$$



$$g_{i,j} = \max\{g_{i+1,j},q_{i,j}\} + p_{i,\pi_o(l)}, \ \text{ for } i \in [m], j \in [|\pi|+1] \quad \text{ with } g_{m+1,j} = 0$$

$$MC'_{i,j} = \begin{cases} \max\{f_{i,j+1} + g_{i+1,j}, \\ \max_{i' \in [i]} \{g_{i',j+1} + e_{i',j}\}, \\ \max_{i'' \in [i+1,m]} \{f_{i'',j} + q_{i'',j}\}\}, & \text{if } \exists p_{i,\pi(j)} \land \exists p_{i+1,\pi(j)} \\ \infty, & \text{if } \nexists p_{i,\pi(j)} \lor \nexists p_{i+1,\pi(j)} \end{cases} \text{ for } i \in [2, m-2], j \in [|\pi|]$$



# Taillard acceleration extension: insertion with delay

$$e_{i,j}' = \begin{cases} \max\{e_{i-1,j}', f_{i,j}\} + p_{i,\pi(j)}, & \text{if } \exists \ p_{i,\pi(j)} \\ f_{i,j}, & \text{if } \not\equiv p_{i,\pi(j)} \end{cases} \quad \text{for } i \in [m], j \in [|\pi|] \quad \text{ with } e_{0,j}' = 0$$

$$q'_{i,j} = \begin{cases} \max\{q'_{i+1,j}, g_{i,j+1}\} + p_{i,\pi(j)}, & \text{if } \exists \ p_{i,\pi(j)} \\ g_{i,j+1}, & \text{if } \not\equiv p_{i,\pi(j)} \end{cases} \quad \text{for } i \in [m], j \in [|\pi|] \quad \text{ with } q'_{m+1,j} = 0$$

$$MC_{i,j}^{\prime\prime} = \begin{cases} \max\{e_{i,j}^{\prime} + q_{i+1,j}^{\prime}, \\ \max_{i^{\prime} \in [i]} \{f_{i^{\prime},j} + q_{i^{\prime},j}\}, \\ \max_{i^{\prime\prime} \in [i+1,m]} \{g_{i^{\prime\prime},j+1} + e_{i^{\prime\prime},j}\}\}, & \text{if } \exists p_{i,\pi(j)} \land \exists p_{i+1,\pi(j)} \\ \infty, & \text{if } \nexists p_{i,\pi(j)} \lor \nexists p_{i+1,\pi(j)} \end{cases} \text{ for } i \in [2,m-2], j \in [|\pi|]$$



# Constructive heuristic NEH<sub>BR</sub> has time complexity of $O(n^2m)$

### Besides calculating

MC: makespan for O(n) straight insertions (like NEH)

Calculations are triplicated to obtain:

MC': makespan for O(nm) insertions with anticipation

MC'': makespan for O(nm) insertions with delay

Calculations have time complexity of  $O(|\pi|m)$ ,  $n \leq |\pi| \leq 2n$ 

 $NEH_{BR}$  evaluates O(nm) insertion possibilities in time O(nm)

 $\mathsf{NEH}_\mathsf{BR}$  has time complexity of  $O(n^2m)$ 

Same time complexity but three times more expensive than  $NEH_T$  for permutation FSSP

$$\pi = (J_5, J_4, J_2, J_1)$$
 Next job:  $J_3$ 



| $\overline{j}$ | $MC_j$ | $_{\_}j$ | $MC'_{2,j}$  | $MC'_{3,j}$ | $MC'_{4,j}$ |  |  |  |
|----------------|--------|----------|--------------|-------------|-------------|--|--|--|
| 1              | 44     | 1        | 46           | 43          | 41          |  |  |  |
| 2              | 41     | 2        | 41           | 40          | 40          |  |  |  |
| 3              | 40     | 3        | 43           | 40          | 40          |  |  |  |
| 4              | 40     | 4        | 40           | 39          | 38          |  |  |  |
| 5              | 39     |          |              |             |             |  |  |  |
| st             | raight |          | anticipation |             |             |  |  |  |

| j | $MC_{2,j}^{\prime\prime}$ | $MC_{3,j}^{\prime\prime}$ | $MC_{4,j}^{\prime\prime}$ |
|---|---------------------------|---------------------------|---------------------------|
| 1 | 46                        | 46                        | 46                        |
| 2 | 42                        | 41                        | 41                        |
| 3 | 42                        | 42                        | 42                        |
| 4 | 44                        | 44                        | 44                        |
|   |                           |                           |                           |

delay

$$\pi = (J_5, J_4, J_2, J_1[1, 4], J_3, J_1[5, 6])$$
 with anticipation



| $\overline{j}$ | $MC_j$ | $_{j}$ | $MC'_{2,j}$  | $MC'_{3,j}$ | $MC'_{4,j}$ |  |  |  |
|----------------|--------|--------|--------------|-------------|-------------|--|--|--|
| 1              | 44     | 1      | 46           | 43          | 41          |  |  |  |
| 2              | 41     | 2      | 41           | 40          | 40          |  |  |  |
| 3              | 40     | 3      | 43           | 40          | 40          |  |  |  |
| 4              | 40     | 4      | 40           | 39          | 38          |  |  |  |
| 5              | 39     |        |              |             |             |  |  |  |
| st             | raight |        | anticipation |             |             |  |  |  |

|           | J | $MC_{2,j}^{\prime\prime}$ | $MC_{3,j}^{\prime\prime}$ | $MC_{4,j}^{\prime\prime}$ |
|-----------|---|---------------------------|---------------------------|---------------------------|
| 2 42 41 4 | 1 | 46                        | 46                        | 46                        |
| 2 T2 T1 T | 2 | 42                        | 41                        | 41                        |
| 3 42 42 4 | 3 | 42                        | 42                        | 42                        |
| 4 44 44 4 | 4 | 44                        | 44                        | 44                        |

delay

$$\pi = (J_5, J_4, J_2, J_1[1, 4], J_3, J_1[5, 6])$$
 with anticipation



| j  | $MC_j$ | j | $MC'_{2,j}$  | $MC'_{3,j}$ | $MC'_{4,j}$ |  |  |  |
|----|--------|---|--------------|-------------|-------------|--|--|--|
| 1  | 44     | 1 | 46           | 43          | 41          |  |  |  |
| 2  | 41     | 2 | 41           | 40          | 40          |  |  |  |
| 3  | 40     | 3 | 43           | 40          | 40          |  |  |  |
| 4  | 40     | 4 | 40           | 39          | 38          |  |  |  |
| 5  | 39     |   |              |             |             |  |  |  |
| st | raight |   | anticipation |             |             |  |  |  |

| j | $MC_{2,j}^{\prime\prime}$ | $MC_{3,j}^{\prime\prime}$ | $MC_{4,j}^{\prime\prime}$ |
|---|---------------------------|---------------------------|---------------------------|
| 1 | 46                        | 46                        | 46                        |
| 2 | 42                        | 41                        | 41                        |
| 3 | 42                        | 42                        | 42                        |
| 4 | 44                        | 44                        | 44                        |
|   |                           |                           |                           |

delay

$$\pi = (J_5, J_4, J_2, J_1[1, 4], J_3, J_1[5, 6])$$
 Next job:  $J_6$ 



| j | $MC_j$ |   | j | $MC'_{2,j}$ | $MC'_{3,j}$ | $MC'_{4,j}$ | j | $MC_{2,j}^{\prime\prime}$ | $MC_{3,j}^{\prime\prime}$ | $MC_{4,j}^{\prime\prime}$ |
|---|--------|---|---|-------------|-------------|-------------|---|---------------------------|---------------------------|---------------------------|
| 1 | 43     |   | 1 | 45          | 47          | 45          | 1 | 45                        | 48                        | 46                        |
| 2 | 42     |   | 2 | 46          | 46          | 46          | 2 | 42                        | 40                        | 44                        |
| 3 | 41     |   | 3 | 44          | 46          | 46          | 3 | 46                        | 46                        | 45                        |
| 4 | 43     |   | 4 | 47          | 47          | 46          | 4 | 49                        | 48                        | 45                        |
| 5 | 46     |   | 5 | 51          | 51          | 51          | 5 | 50                        | 47                        | 47                        |
| 6 | 48     |   | 6 | 48          | 48          | 48          | 6 | 44                        | 44                        | 48                        |
| 7 | 44     | - |   |             |             |             |   |                           |                           |                           |

 $\pi = (J_5, J_6[1, 3], J_4, J_6[4, 6], J_2, J_1[1, 4], J_3, J_1[5, 6])$  with delay



| $\overline{j}$ | $MC_j$ |   | j | $MC'_{2,j}$ | $MC_{3,j}'$ | $MC'_{4,j}$ | j | $MC_{2,j}^{\prime\prime}$ | $MC_{3,j}^{\prime\prime}$ | $MC_{4,j}^{\prime\prime}$ |
|----------------|--------|---|---|-------------|-------------|-------------|---|---------------------------|---------------------------|---------------------------|
| 1              | 43     |   | 1 | 45          | 47          | 45          | 1 | 45                        | 48                        | 46                        |
| 2              | 42     |   | 2 | 46          | 46          | 46          | 2 | 42                        | 40                        | 44                        |
| 3              | 41     |   | 3 | 44          | 46          | 46          | 3 | 46                        | 46                        | 45                        |
| 4              | 43     |   | 4 | 47          | 47          | 46          | 4 | 49                        | 48                        | 45                        |
| 5              | 46     |   | 5 | 51          | 51          | 51          | 5 | 50                        | 47                        | 47                        |
| 6              | 48     |   | 6 | 48          | 48          | 48          | 6 | 44                        | 44                        | 48                        |
| 7              | 44     | _ |   |             |             |             |   |                           |                           |                           |

 $\pi = (J_5, J_6[1, 3], J_4, J_6[4, 6], J_2, J_1[1, 4], J_3, J_1[5, 6])$  with delay



| j | $MC_j$ | j | $MC'_{2,j}$ | $MC'_{3,j}$ | $MC'_{4,j}$ | j | $MC_{2,j}^{\prime\prime}$ | $MC_{3,j}^{\prime\prime}$ | $MC_{4,j}^{\prime\prime}$ |
|---|--------|---|-------------|-------------|-------------|---|---------------------------|---------------------------|---------------------------|
| 1 | 43     | 1 | 45          | 47          | 45          | 1 | 45                        | 48                        | 46                        |
| 2 | 42     | 2 | 46          | 46          | 46          | 2 | 42                        | 40                        | 44                        |
| 3 | 41     | 3 | 44          | 46          | 46          | 3 | 46                        | 46                        | 45                        |
| 4 | 43     | 4 | 47          | 47          | 46          | 4 | 49                        | 48                        | 45                        |
| 5 | 46     | 5 | 51          | 51          | 51          | 5 | 50                        | 47                        | 47                        |
| 6 | 48     | 6 | 48          | 48          | 48          | 6 | 44                        | 44                        | 48                        |
| 7 | 44     | _ |             |             |             |   |                           |                           |                           |

$$\pi = (J_5, J_6[1, 3], J_4, J_6[4, 6], J_2, J_1[1, 4], J_3, J_1[5, 6])$$





NEH produces  $\pi' = (J_5, J_4, J_6, J_2, J_1, J_3)$ 

# Local search heuristics for non-permutation FSSP



### Extended Neighbourhood of Nowicki & Smutnicki (1996)

Used in (Benavides & Ritt, 2016)

Interchange the first two (or the last two) operations in a critical block Evaluate the interchange only on critical machine  $M_i$ 

Evaluate the interchange on machines  $M_1, \ldots, M'_i$  for all  $i' \geq i$ Evaluate the interchange on machines  $M''_i, \ldots, M_m$  for all  $i'' \leq i$ 

Evaluates O(nm) neighbours in time  $O(n^2m^2)$  proposed before pseudo-jobs permutation representation



# Local search heuristics for non-permutation FSSP



#### Extended Neighbourhood of Nowicki & Smutnicki (1996)

Used in (Benavides & Ritt, 2016)

Interchange the first two (or the last two) operations in a critical block

Evaluate the interchange only on critical machine  $M_i$ 

Evaluate the interchange on machines  $M_1, \ldots, M_i'$  for all  $i' \geq i$ 

Evaluate the interchange on machines  $M_i'',\ldots,M_m$  for all  $i''\leq i$ 

Evaluates O(nm) neighbours in time  $O(n^2m^2)$  proposed before pseudo-jobs permutation representation



# Local search heuristics for non-permutation FSSP with pseudo-jobs and acceleration

$$\pi = (\dots, J_a[1, 2], J_b, J_a[3, 4], \dots)$$

$$e + g$$

$$f_+ g$$

$$f + q$$

Non-permutation insertion local search 
$$\pi = (\overbrace{J_1,J_2,J_3,J_4,J_5,J_6}^{\bullet})$$

evaluates  $(n-1)^2(2m-5)$  non-permutation neighbours in time  $O(n^2m)$  same as the insertion local search for  $(n-1)^2$  permutation neighbours

#### New BRN local search

$$\pi = (J_1, J_2, J_3, J_4, J_5, J_6)$$

based on swapping adjacent jobs completely or partially evaluates (n-1)(2m-5) non-permutation neighbours in time O(nm)

# Local search heuristics for non-permutation FSSP with pseudo-jobs and acceleration

$$\pi = (\dots, J_a[1, 2], J_b, J_a[3, 4], \dots)$$

$$e + g$$

$$f_+ g$$

$$f + q$$

Non-permutation insertion local search 
$$\pi = (\overbrace{J_1,J_2,J_3,J_4,J_5,J_6}^{\bullet})$$

evaluates  $(n-1)^2(2m-5)$  non-permutation neighbours in time  $O(n^2m)$  same as the insertion local search for  $(n-1)^2$  permutation neighbours

#### New BRN local search

$$\pi = (\overrightarrow{J_1, J_2, J_3, J_4, J_5, J_6})$$

based on swapping adjacent jobs completely or partially evaluates (n-1)(2m-5) non-permutation neighbours in time O(nm)

First calculates  $e_{i,j}$  and  $q_{i,j}$  in a time of complexity O(nm)

## Best-improvement

## Reduced-neighbourhood

## Non-permutation

with a time complexity of O(m) for each  $(\pi(j), \pi(j+1)) \in R$ , with  $|R| \le |\pi|$ 

First calculates  $e_{i,j}$  and  $q_{i,j}$  in a time of complexity O(nm)

#### Best-improvement

chooses the best in the adjacent job swap neighbourhood

#### Reduced-neighbourhood

#### Non-permutation

with a time complexity of O(m) for each  $(\pi(j), \pi(j+1)) \in R$ , with  $|R| \le |\pi|$ 

First calculates  $e_{i,j}$  and  $q_{i,j}$  in a time of complexity O(nm)

#### Best-improvement

chooses the best in the adjacent job swap neighbourhood

#### Reduced-neighbourhood

$$(\pi(j), \pi(j+1)) \in R \iff e_{i,j} + q_{i+1,j} = C_{\max}(\pi) \vee e_{i,j+1} + q_{i+1,j+1} = C_{\max}(\pi)$$

Either  $\pi(j)$  or  $\pi(j+1)$  has critical operations on consecutive machines

Like Nowicki & Smutnicki but considering all the critical paths

#### Non-permutation

Calculates the makespan of swapping two consecutive jobs  $\pi(j), \pi(j+1)$ 

MC: swap completely

MC': swap on the first machines (like insertion with anticipation)

MC'': swap on the last machines (like insertion with delay)

with a time complexity of O(m) for each  $(\pi(j), \pi(j+1)) \in R$ , with  $|R| \leqslant |\pi|$ 

First calculates  $e_{i,j}$  and  $q_{i,j}$  in a time of complexity O(nm)

#### Best-improvement

chooses the best in the adjacent job swap neighbourhood

#### Reduced-neighbourhood

$$(\pi(j), \pi(j+1)) \in R \iff e_{i,j} + q_{i+1,j} = C_{\max}(\pi) \lor e_{i,j+1} + q_{i+1,j+1} = C_{\max}(\pi)$$

Either  $\pi(j)$  or  $\pi(j+1)$  has critical operations on consecutive machines

Like Nowicki & Smutnicki but considering all the critical paths

#### Non-permutation

Calculates the makespan of swapping two consecutive jobs  $\pi(j), \pi(j+1)$ 

MC: swap completely

MC': swap on the first machines (like insertion with anticipation)

MC'': swap on the last machines (like insertion with delay)

with a time complexity of O(m) for each  $(\pi(j),\pi(j+1))\in R$ , with  $|R|<|\pi|$ 

## Outline

FSSP, Introduction and concepts

**FSSP** definition

NEH heuristic and Taillard acceleration

Local search heuristics

Non-permutation FSSP, Motivations and proposed heuristics

Permutation FSSP vs. Non-permutation FSSP

Constructing non-permutation schedules

Constructing non-permutation schedules

New permutation representation for non-permutation schedules and

new constructive neuristic NETBR

Local search heuristics for non-permutation FSSP

#### Results and Remarks

Non-permutation FSSP with makespan (Benavides & Ritt, 2016)

Non-permutation FSSP with makespan (Benavides & Ritt, 2018)

Concluding Remarks



# Non-permutation FSSP with Cmax (2016)

Benavides, A. J.; Ritt, M. (2016). (first attempt)

Two simple and effective heuristics for minimizing the makespan in non-permutation flow shops.

Computers & Operations Research, Elsevier, v. 66, p. 160–169.

CAPES WebQualis A1; Impact Factor 1.861;

5-Year Impact Factor 2.454

### Iterated greedy algorithm for non-permutation FSSP with Cmax

Greedy Reconstruction Perturbation scheme:

Based on NFS,  $O(nm^2W)$  per insertion

Local search scheme:

Extended Neighbourhood of Nowicki & Smutnicki

# Non-permutation FSSP with Cmax (2016)

| Demirkol  | Lin & | Rossi &  |       | Our IGA   |       |  |
|-----------|-------|----------|-------|-----------|-------|--|
| instances | Ying  | Lanzetta | min   | min avg i |       |  |
| Averages  | 0.00  | 7.99     | -1.98 | -1.57     | -1.13 |  |

Our IGA is better in the same adjusted time

Our IGA finds new BKV for the 40 instances

| 28 Taillard | Yagmahan & | Rossi & | Rossi & Lanzetta |       | Our IGA |       |  |  |
|-------------|------------|---------|------------------|-------|---------|-------|--|--|
| instances   | Yenisey    | min     | avg              | min   | avg     | max   |  |  |
| Averages    | 6.86       | 5.02    | 5.98             | -0.69 | -0.51   | -0.25 |  |  |

Our IGA is better in the less than their adjusted time

Our IGA finds new BKV for 13 of those 28 instances and 32 of all 120



# Non-permutation FSSP with Cmax (2016)

| Demirkol  | Lin & | Rossi &  |       | Our IGA |       |  |
|-----------|-------|----------|-------|---------|-------|--|
| instances | Ying  | Lanzetta | min   | min avg |       |  |
| Averages  | 0.00  | 7.99     | -1.98 | -1.57   | -1.13 |  |

Our IGA is better in the same adjusted time

Our IGA finds new BKV for the 40 instances

| 28 Taillard | Yagmahan & | Rossi & Lanzetta |      | Our IGA |       |       |
|-------------|------------|------------------|------|---------|-------|-------|
| instances   | Yenisey    | min              | avg  | min     | avg   | max   |
| Averages    | 6.86       | 5.02             | 5.98 | -0.69   | -0.51 | -0.25 |

Our IGA is better in the less than their adjusted time

Our IGA finds new BKV for 13 of those 28 instances and 32 of all 120

Better results for  $30nm^2$  ms in both cases



# Non-permutation FSSP with Cmax (2016) compared to permutation FSSP

| Taillard  | Permutation |      | Our I | GA 30nn | n ms | Our IGA $30nm^2~{\rm ms}$ |       |       |  |
|-----------|-------------|------|-------|---------|------|---------------------------|-------|-------|--|
| instances | RS          | FF   | min   | avg     | max  | min                       | avg   | max   |  |
| Averages  | 0.44        | 0.38 | -0.22 | -0.03   | 0.21 | -0.41                     | -0.32 | -0.20 |  |

Fernandez-Viagas & Framinan (2014) is 0.06% better than Ruiz & Stützle (2007)

Our IGA is 0.4% better than Fernandez-Viagas & Framinan (2014) in the same time, and is 0.7% better in  $30nm^2$  ms

Small job reordering

Buffer sizes

Non-permutation schedules require slightly smaller buffers



Benavides, A. J.; Ritt, M. (2018).

Novel pseudo-jobs permutation representation for non-permutation flow shop schedules

Extended acceleration tech. with the same time complexity

 $NEH_T$ ,  $NEH_{BR}$ :  $O(n^2m)$  (Permutation and non-permutation)

(non-permutation)

Insertion local search:  $O(n^2m)$  per neighbourhood

BRN local search: O(nm) per neighbourhood

(Permutation and non-permutation)

FRB<sub>BR</sub> based on Farahmand Rad, Ruiz & Boroojerdian (2009)

- produces better results than NEH<sub>BR</sub>, more complex and expensive
- different initial solutions slightly affect IG<sub>b</sub>

Benavides, A. J.; Ritt, M. (2018).

Novel pseudo-jobs permutation representation for non-permutation flow shop schedules

### Extended acceleration tech. with the same time complexity

 $NEH_T$ ,  $NEH_{BR}$ :  $O(n^2m)$  (Permutation and non-permutation)

BRN local search: O(nm) per neighbourhood (non-permutation)

Insertion local search:  $O(n^2m)$  per neighbourhood (Permutation and non-permutation)

FRB<sub>BR</sub> based on Farahmand Rad, Ruiz & Boroojerdian (2009)

- produces better results than NEH<sub>BR</sub>, more complex and expensive
- different initial solutions slightly affect IG<sub>b</sub>

### Benavides, A. J.; Ritt, M. (2018).

Makespan in non-permutation flow shop scheduling problem by the price of permutation.

#### Iterated greedy algorithms

| IGA              | Reconstr.         | Local search          |
|------------------|-------------------|-----------------------|
| IG <sub>b</sub>  | NEH <sub>BR</sub> | BRN                   |
| IG <sub>i</sub>  | NEH <sub>BR</sub> | Insertion             |
| IG <sub>bi</sub> | NEH <sub>BR</sub> | BRN, Insertion        |
| IG <sub>p</sub>  | NEH               | Permutation insertion |

 $NEH_T$ ,  $NEH_{BR}$ :  $O(n^2m)$ 

(Permutation and non-permutation)

BRN local search: O(nm) per neighbourhood

(non-permutation)

Insertion local search:  $O(n^2m)$  per neighbourhood

(Permutation and non-permutation)

IG<sub>b</sub> is the best combination for non-permutation FSSP

Benavides, A. J.; Ritt, M. (2018).

Novel pseudo-jobs permutation representation for non-permutation flow shop schedules

Extended acceleration tech. with the same time complexity

 $NEH_T$ ,  $NEH_{BR}$ :  $O(n^2m)$ 

(Permutation and non-permutation)

BRN local search: O(nm) per neighbourhood

Insertion local search:  $O(n^2m)$  per neighbourhood

(Permutation and non-permutation)

FRB<sub>BR</sub> based on Farahmand Rad, Ruiz & Boroojerdian (2009)

- produces better results than NEH<sub>BR</sub>, more complex and expensive
- different initial solutions slightly affect IG<sub>b</sub>

(non-permutation)

**Table 6**Average relative percentage deviations for variants of the BR heuristic with different percentages of non-permutation insertions on the small VRF instances. Best values are highlighted in grey. Bold values Bold values are not significantly different from the best value according to Tukey's test with a confidence level of 95%.

| Heu-ristic      | Percent | age p of j | obs that | consider r | non-perm | utation in | sertions |       |       |       |       |
|-----------------|---------|------------|----------|------------|----------|------------|----------|-------|-------|-------|-------|
|                 | 0       | 10         | 20       | 30         | 40       | 50         | 60       | 70    | 80    | 90    | 100   |
| BR <sub>0</sub> | 3.845   | 3.609      | 3.368    | 3.200      | 3.145    | 2.993      | 2.946    | 2.831 | 2.804 | 2.800 | 2.794 |
| $BR_{FF}$       | 3.549   | 3.299      | 3.121    | 3.020      | 2.856    | 2.599      | 2.603    | 2.682 | 2.569 | 2.634 | 2.719 |
| $BR_{BR}$       | 3.845   | 2.730      | 2.473    | 2.264      | 2.232    | 2.182      | 2.140    | 2.245 | 2.188 | 2.208 | 2.186 |
| $BR_{Pc}$       | 1.858   | 0.982      | 0.762    | 0.635      | 0.651    | 0.650      | 0.595    | 0.593 | 0.651 | 0.653 | 0.647 |
| $BR_{F5}$       | 1.775   | 0.814      | 0.723    | 0.765      | 0.691    | 0.579      | 0.620    | 0.675 | 0.692 | 0.664 | 0.665 |
| $BR_R$          | 1.643   | 0.690      | 0.531    | 0.476      | 0.470    | 0.507      | 0.481    | 0.486 | 0.532 | 0.466 | 0.464 |
| $BR_{Pa}$       | 1.504   | 0.441      | 0.351    | 0.346      | 0.282    | 0.234      | 0.265    | 0.289 | 0.290 | 0.313 | 0.308 |



**Fig. 5.** Computational efficiency of the constructive heuristics on the smaller VRF instances.

 Table 9

 ARD of the permutation variants  $IG_{c,1}$  for different time limits, constructive heuristics and local searches on the Taillard instances.

| IG <sub>c, 1</sub> | Time li | mit 15nm | ms    |       | Time li | mit 30nm | ms    |       | Time limit 45nm ms |       |       |       |  |
|--------------------|---------|----------|-------|-------|---------|----------|-------|-------|--------------------|-------|-------|-------|--|
|                    | Pa      | Pc       | Ins   | Avg.  | Pa      | Pc       | Ins   | Avg.  | Pa                 | Pc    | Ins   | Avg.  |  |
| BRo                | 0.320   | 0.291    | 0.294 | 0.302 | 0.269   | 0.247    | 0.247 | 0.254 | 0.243              | 0.225 | 0.224 | 0.230 |  |
| $BR_{FF}$          | 0.305   | 0.292    | 0.299 | 0.299 | 0.257   | 0.242    | 0.253 | 0.251 | 0.231              | 0.218 | 0.230 | 0.226 |  |
| $BR_{Pc}$          | 0.309   | 0.284    | 0.287 | 0.293 | 0.265   | 0.240    | 0.244 | 0.250 | 0.243              | 0.219 | 0.222 | 0.228 |  |
| $BR_{F5}$          | 0.315   | 0.287    | 0.294 | 0.299 | 0.270   | 0.242    | 0.248 | 0.254 | 0.245              | 0.219 | 0.225 | 0.230 |  |
| $BR_R$             | 0.311   | 0.281    | 0.290 | 0.294 | 0.265   | 0.236    | 0.244 | 0.248 | 0.238              | 0.211 | 0.219 | 0.223 |  |
| $BR_{Pa}$          | 0.293   | 0.264    | 0.273 | 0.277 | 0.248   | 0.224    | 0.230 | 0.234 | 0.226              | 0.205 | 0.209 | 0.213 |  |
| Avg.               | 0.309   | 0.283    | 0.290 |       | 0.262   | 0.239    | 0.244 |       | 0.238              | 0.216 | 0.221 |       |  |

**Table 10**ARD of the non-permutation variants of  $IG_{c,1}$  for different time limits, constructive heuristics, and local searches on the Taillard instances.

| $IG_{c, 1}$ | Time lin | nit 15 <i>nm</i> n | าร     |        |        | Time lim | it 30nm m | IS     |        |        | Time limit 45nm ms |        |        |        |        |
|-------------|----------|--------------------|--------|--------|--------|----------|-----------|--------|--------|--------|--------------------|--------|--------|--------|--------|
|             | Pa       | Pc                 | Ins    | RNB    | Avg.   | Pa       | Pc        | Ins    | RNB    | Avg.   | Pa                 | Pc     | Ins    | RNB    | Avg.   |
| $BR_0$      | -0.103   | -0.147             | -0.144 | -0.246 | -0.160 | -0.179   | -0.216    | -0.217 | -0.315 | -0.232 | -0.218             | -0.252 | -0.258 | -0.348 | -0.269 |
| $BR_{FF}$   | -0.103   | -0.147             | -0.145 | -0.245 | -0.160 | -0.176   | -0.216    | -0.220 | -0.317 | -0.232 | -0.215             | -0.251 | -0.258 | -0.353 | -0.269 |
| $BR_{BR}$   | -0.110   | -0.156             | -0.150 | -0.251 | -0.167 | -0.185   | -0.225    | -0.225 | -0.319 | -0.238 | -0.223             | -0.257 | -0.262 | -0.353 | -0.273 |
| $BR_{Pc}$   | -0.124   | -0.162             | -0.162 | -0.261 | -0.177 | -0.189   | -0.225    | -0.228 | -0.324 | -0.242 | -0.223             | -0.256 | -0.263 | -0.354 | -0.274 |
| $BR_{F5}$   | -0.120   | -0.160             | -0.162 | -0.251 | -0.173 | -0.189   | -0.224    | -0.226 | -0.315 | -0.239 | -0.225             | -0.256 | -0.262 | -0.351 | -0.273 |
| $BR_R$      | -0.126   | -0.166             | -0.195 | -0.257 | -0.186 | -0.193   | -0.227    | -0.286 | -0.319 | -0.256 | -0.233             | -0.260 | -0.340 | -0.350 | -0.296 |
| $BR_{Pa}$   | -0.146   | -0.179             | -0.187 | -0.268 | -0.195 | -0.207   | -0.241    | -0.251 | -0.330 | -0.257 | -0.241             | -0.273 | -0.285 | -0.360 | -0.290 |
| Avg.        | -0.119   | -0.160             | -0.164 | -0.254 |        | -0.188   | -0.225    | -0.236 | -0.320 |        | -0.225             | -0.258 | -0.275 | -0.353 |        |

**Table 12**ARDs for the state-of-the-art methods for permutation and non-permutation FSSP with a time limit of  $\tau nm$  ms on Taillard instances ( $\tau \in \{15, 30, 45\}$ ).

| Instar | ices | Permutation FSSP Non-permutation FSSP |                      |       |                                   |                                 |                                                  |       |       |       |         |        |                      |        |        |        |
|--------|------|---------------------------------------|----------------------|-------|-----------------------------------|---------------------------------|--------------------------------------------------|-------|-------|-------|---------|--------|----------------------|--------|--------|--------|
|        |      | IG_RS <sub>LS</sub>                   | IG <sub>0, Ins</sub> |       | IG <sub>BR<sub>FF</sub>,Ins</sub> | + TB <sub>FF</sub> <sup>a</sup> | B <sub>FF</sub> <sup>a</sup> IG <sub>R, Pc</sub> |       |       |       | NFS+IGA | (LS)   | IG <sub>R, RNB</sub> |        |        |        |
| n      | m    | 15 <sup>b</sup>                       | 15                   | 30    | 45                                | 15                              | 30                                               | 45    | 15    | 30    | 45      | 30     | 30m                  | 15     | 30     | 45     |
| 20     | 5    | 0.04                                  | 0.014                | 0.001 | 0.001                             | 0.013                           | 0.002                                            | 0.000 | 0.010 | 0.003 | 0.000   | -0.326 | -0.341               | -0.368 | -0.379 | -0.385 |
| 20     | 10   | 0.06                                  | 0.006                | 0.001 | 0.001                             | 0.010                           | 0.002                                            | 0.001 | 0.013 | 0.007 | 0.001   | -1.387 | -1.596               | -1.407 | -1.457 | -1.479 |
| 20     | 20   | 0.03                                  | 0.011                | 0.005 | 0.004                             | 0.016                           | 0.010                                            | 0.005 | 0.010 | 0.006 | 0.003   | -2.001 | -2.451               | -2.070 | -2.169 | -2.219 |
| 50     | 5    | 0.00                                  | 0.000                | 0.000 | 0.000                             | 0.000                           | 0.000                                            | 0.000 | 0.001 | 0.000 | 0.000   | -0.159 | -0.164               | -0.165 | -0.165 | -0.165 |
| 50     | 10   | 0.56                                  | 0.362                | 0.312 | 0.290                             | 0.356                           | 0.298                                            | 0.281 | 0.391 | 0.334 | 0.316   | 0.379  | 0.082                | 0.061  | 0.018  | -0.010 |
| 50     | 20   | 0.94                                  | 0.646                | 0.533 | 0.473                             | 0.631                           | 0.524                                            | 0.474 | 0.645 | 0.546 | 0.477   | 0.146  | -0.744               | -0.308 | -0.505 | -0.611 |
| 100    | 5    | 0.01                                  | 0.000                | 0.000 | 0.000                             | 0.001                           | 0.000                                            | 0.000 | 0.002 | 0.001 | 0.000   | -0.122 | -0.132               | -0.120 | -0.123 | -0.123 |
| 100    | 10   | 0.20                                  | 0.101                | 0.062 | 0.047                             | 0.124                           | 0.074                                            | 0.053 | 0.117 | 0.071 | 0.051   | 0.217  | 0.013                | 0.023  | -0.016 | -0.034 |
| 100    | 20   | 1.30                                  | 0.901                | 0.741 | 0.665                             | 0.865                           | 0.694                                            | 0.622 | 0.838 | 0.702 | 0.616   | 1.026  | 0.419                | 0.372  | 0.229  | 0.163  |
| 200    | 10   | 0.12                                  | 0.051                | 0.042 | 0.039                             | 0.052                           | 0.044                                            | 0.042 | 0.053 | 0.046 | 0.042   | 0.131  | -0.001               | -0.036 | -0.050 | -0.054 |
| 200    | 20   | 1.26                                  | 0.976                | 0.858 | 0.788                             | 1.006                           | 0.875                                            | 0.805 | 0.923 | 0.803 | 0.733   | 1.136  | 0.744                | 0.637  | 0.527  | 0.479  |
| 500    | 20   | 0.78                                  | 0.463                | 0.408 | 0.373                             | 0.464                           | 0.412                                            | 0.383 | 0.367 | 0.315 | 0.296   | 0.637  | 0.382                | 0.298  | 0.261  | 0.242  |
| Avera  | ges  | 0.44                                  | 0.294                | 0.247 | 0.224                             | 0.295                           | 0.245                                            | 0.222 | 0.281 | 0.236 | 0.211   | -0.027 | -0.316               | -0.257 | -0.319 | -0.350 |

**Table 13**ARDs for the state-of-the-art methods for permutation and non-permutation FSSP with a time limit of  $\tau nm$  ms on all groups of insta  $(\tau \in \{15, 30, 45\})$ .

| Instances | Permutation FSSP     |       |       |                              |       |       |                     |        |        |                      | Non-permutation FSSP |        |  |  |
|-----------|----------------------|-------|-------|------------------------------|-------|-------|---------------------|--------|--------|----------------------|----------------------|--------|--|--|
|           | IG <sub>0, Ins</sub> |       |       | $IG_{BR_{FF},Ins} + TB_{FF}$ |       |       | IG <sub>R, Pc</sub> |        |        | IG <sub>R, RNB</sub> |                      |        |  |  |
|           | 15                   | 30    | 45    | 15                           | 30    | 45    | 15                  | 30     | 45     | 15                   | 30                   | 45     |  |  |
| Taillard  | 0.295                | 0.245 | 0.222 | 0.294                        | 0.247 | 0.224 | 0.281               | 0.236  | 0.211  | -0.257               | -0.319               | -0.350 |  |  |
| VRF-small | 0.164                | 0.115 | 0.090 | 0.163                        | 0.117 | 0.093 | 0.176               | 0.132  | 0.107  | -1.312               | -1.402               | -1.452 |  |  |
| VRF-large | 0.503                | 0.361 | 0.282 | 0.513                        | 0.368 | 0.287 | 0.073               | -0.043 | -0.107 | -0.298               | -0.462               | -0.540 |  |  |
| Averages  | 0.326                | 0.239 | 0.193 | 0.329                        | 0.244 | 0.197 | 0.156               | 0.083  | 0.042  | -0.695               | -0.809               | -0.867 |  |  |

# Non-permutation FSSP Concluding Remarks

Non-permutation schedules can be represented as a permutation of pseudo-jobs, and this allows the use of an extended taillard acceleration and a BRN local search.

Strategic operation reordering leads to non-permutation schedules with better quality than the best possible permutation schedules.

Non-permutation schedules can be found using the same computational effort than the used for permutation schedules with the makespan and the total completion time criteria.

Non-permutation schedules can be implemented in practice without strong technological differences.

# Solving the Non-permutation Flow Shop Scheduling Problem



### Alexander J. Benavides

ajbenavides@unsa.edu.pe ajbenavides@ucsp.edu.pe

Thank you! Questions?

