

Name, Construct & Structure

Organizing Readable Code

by Khalil Stemmler

This is version 1.0. It was published June 16th, 2019.

Newer versions can be downloaded from https://khalilstemmler.com/resources.

Found typos? Want to suggest an update? Reach out to me, I’m pretty receptive to

feedback.

Check back @ khalilstemmler.com for revisions.

© 2019 - Khalil Stemmler

https://khalilstemmler.com/resources
mailto:khalilstemmler@gmail.com
https://khalilstemmler.com/

Table of Contents
Nice to meet you! 4

Introduction 5
Organizing code more effectively 6
What does it mean when code is readable? 6
About this book 6

Name 7
Tips for picking good names 8

Approach #1: Name files by Domain + Construct 8
Approach #2: Name folders by Subdomain, and (optionally) Subdomain +
Construct 12

There’s a construct for everything 13
Learn into Design Patterns 14
Bad names 15
Look out for too many helper/utility/service classes 15

Construct 16
Each construct is responsible for one type of behavior 16
A construct instance should never be responsible for more than one subdomain
element 17
Architectural Boundaries 20

Structure 22
Project size 23
Package by Infrastructure 24

At a glance, this tells us nothing about the project 25
Features are developed vertically, not horizontally 26

Package by component 27
Package by component for everything 28

Univjobs’ React-Redux App Structure 28
Tips for good structure 29

Nesting rules 29
Shared things 29

In Summary 30
Names 30

What to look out for 30
Constructs 30
Structure 30

A real life project 30

Nice to meet you!
What’s up? I’m Khalil Stemmler from khalilstemmler.com. Thanks so much for

downloading this free ebook. I sincerely hope it’s useful to you.

My goal is to help developers learn best practices towards creating and maintaining

large scale typescript & node.js applications. I frequently publish blog posts, guides,

books, and courses for developers building enterprise software with JavaScript &

TypeScript.

If you’d like to leave feedback on this book, suggest any other topics for me to cover,

or simply just chat, check me on Twitter @stemmlerjs and see what I’m working on

@ GitHub @stemmlerjs.

https://khalilstemmler.com/
https://twitter.com/stemmlerjs
https://github.com/stemmlerjs

Introduction

Have you ever come back to an old codebase and felt like it was way too hard to

understand what things are, what they do, and where they’re located?

I came about realizing that I wanted to write a short ebook on organizing codebases

for readability when I was tasked with adding new code to an old project I created for

Univjobs a few years ago.

It took me way longer than I wanted it to have taken me to get things done. I found

that I was spending a lot of time trying to figure out where things were and what they

were responsible for.

Over the past year of writing code using Domain-Driven Design, I’ve paid a lot more

attention to how I organize my code. Also over this time, I’ve experimented with a

bunch of different approaches to code organization and noticed a few patterns for

extremely readable code.

To summarize, it comes down to how we organize our files and folder with respect

to the names, constructs & structure.

Naming files well, using well-understood technical constructs, and structuring our

projects well are three ways to improve our ability to change code quickly.

https://univjobs.ca/
https://khalilstemmler.com/courses/domain-driven-design-typescript

Having all three of these when we’re organizing codebases makes them highly

readable.

The ultimate goal is to organize our projects to be readable &

understandable so that we can rapidly make changes and add new

features.

Organizing code more effectively

The fact of the matter is that we spend more time reading code than we do writing

code (usually).

What does it mean when code is readable?

When code is readable, it means that we’re very quickly able to determine:

- Name: what it is

- Construct: what it does

- Structure: where it’s located & why it’s there

The faster we can discover what it is, what it does and where it’s located and why,

the more readable the code is (and the faster we can change or implement new

things).

About this book

The approaches to organizing code in this book are what works for my team and I.

You don’t have to agree with all (or any) of it, but I hope that it at the very least

prokes thought on how you can improve your own code organization to be more

productive.

Name

What it is

“There are only two hard things in Computer Science: cache
invalidation and naming things”. -- Phil Karlton

Choosing names for classes, files, and folders can be incredibly hard sometimes.

However, it’s kind of important to put some effort into it.

It’s important because the goal of naming things is to inform the reader as quickly as

possible what it is.

How do we do that? How do we name things so that it quickly informs the reader

what it is?

Tips for picking good names

Here are a few of the approaches that I use for most cases. Having these in my back

pocket enables me to usually never spend more than a couple of seconds thinking

about a name.

Approach #1: Name files by Domain + Construct

When naming files, I’ll often choose names based on the subdomain it belongs to +

the construct type.

You might be wondering, “what’s a domain”?

Secondly, we should understand what constructs are.

Since we understand what subdomains and constructs are now, we could use them

to assemble names for our files by appending the construct type to the subdomain

(or element from the subdomain - see the image on the next page).

Let’s see what some of that might look like in principle.

It’s a good start, but there’s a problem. We’re not organizing our subdomains

properly.

Things from the Job subdomain are mixed up with the Users subdomain. That’s

definitely giving me clutter-y feels.

It’s time to think about naming folders.

Approach #2: Name folders by Subdomain, and (optionally) Subdomain

+ Construct

Naming folders by the name of the subdomain is a great way to segment code so

that you can focus on one particular part of your project at a time.

Here’s a start.

That’s better, but you might still feel a little bit discombobulated looking at this many

files at one time. I like to take the next step of also creating sub-folders and naming

them by the construct type.

I like this a lot. We talk about it more in Part 3: Structure, but this is called

“Packaging by Component”.

There’s a construct for everything

If we can’t decide on a good name for a file, it might be because we don’t know what

type of construct the class in our file actually is.

So beware of naming things “etc-manager” and “etc-implementor”, because when we

start to do that, files become harder to understand what they’re singularly

responsible for at first glance.

If you’re finding that you’re often not sure what type of construct to use, my

suggestion is the following:

Learn Design Patterns

Design patterns tend to be pretty narrowly scoped solutions to common problems in

software.

For example, when I started getting into Domain-Driven Design and realized that I

needed to convert a Job model to different formats (to a Domain entity, to an ORM

representation, to a DTO, etc), I went looking for a pattern. I discovered that the

pattern was the Data Mapper pattern.

From then on, anytime I realize I need to do this particular thing, I name it an

“[Entity name from Domain]Mapper”.

So dig around a little bit! That’s the best way to learn design patterns. By actually

having problems that need to get solved, to looking for the correct tool for the job, to

implementing it, you’ll find that you’ll find that you retain that information much

deeper than if you simply went through the entire catalog of design patterns.

That being said, the best resources for to sift through are these books:

- Martin Fowler’s book called Patterns of Enterprise Application Architecture

- GoF: Design Patterns Book

- PoSA: Pattern Oriented Software Architecture Book

Also, if you want to learn how to write cleaner code overall, check out “Clean Code”

by Robert C. Martin (Uncle Bob). It’s a great read.

https://khalilstemmler.com/articles/domain-driven-design-intro/

Bad names

If you want to see an entire list of ways to do evil and keep your job forever, check
out this repo: https://github.com/Droogans/unmaintainable-code

Look out for too many helper/utility/service classes

It’s easy to call just about everything a “helper”, “utility” or “service”. Understanding if

something should be a helper comes from having knowledge about the domain.

I’ve talked about this topic quite a bit here and here (anemic domain models).

https://github.com/Droogans/unmaintainable-code
https://khalilstemmler.com/articles/solid-principles/single-responsibility/
https://khalilstemmler.com/wiki/anemic-domain-model/

Construct

What it does

Constructs are the tools (or patterns) in our software development toolbox that we

plug together to build web applications (mappers, controllers, views, models, etc).

Each construct is responsible for one type of behavior
Mappers map data between domain objects, ORM models, dtos and the like.

Controllers handle web requests.

Domain Entities have zero infrastructure-layer dependencies and describe the
modeled attributes and capabilities of real-life entity.

Repositories are responsible for retrieving and persisting domain entities.

https://khalilstemmler.com/articles/enterprise-typescript-nodejs/clean-nodejs-architecture/

In Angular, RouteGuards guard routes and allow for custom logic to be plugged in to
determine if a route can be routed to or not.

Every construct should be singularly responsible for one thing. A Mapper should
never also inherit the behaviours of a Controller, and vice-versa.

A construct instance should never be responsible for more than
one subdomain element

Let’s say we implemented a JobMapper like so:

https://khalilstemmler.com/articles/solid-principles/single-responsibility/

This JobMapper is pretty narrowly scoped. It’s only responsible to mapping the Job
domain entity. That’s great.

Now, let’s say that we needed to also return the User that the Job belonged to as a
key called ownedByUser in the JobDTO like this:

Where the UserDTO has the following properties:

What should we do with our toDTO() method on the JobMapper?

Should we also define how we map Users to UserDTOs from within the JobMapper’s
toDTO() method like this?

No. At this point, we should create another Mapper: UserMapper.

And then delegate that responsibility to the UserMapper in our JobDTO.

Much better.
What we’re doing here is performing quality control on our architectural boundaries.

Architectural Boundaries

If we have a construct named "UserMap" in an application that trades vinyl (we

actually will soon , check out this repo), we should be careful thinking about our

architectural boundaries when we mention entities from other subdomains in our

application, like "vinyl" or "billing", from the “users” subdomain.

Here’s an example of a UserRepo interface from my Domain-Driven Design with

TypeScript course.

Yes, this is a UserRepo in the users subdomain, but it seems like the observable

responsibility is actually to retrieve Vinyl.

It would probably make more sense to create a VinylRepo.

These are the types of constant discussions that we need to have if we care about

software design and architecture. We’ll never get everything right the first time

around.

Why should we care so much about architectural boundaries?

If we keep our code siloed in architectural boundaries, it leaves options open for us

in the future to potentially do many different things if our project grows. Some of

those things are to:

https://github.com/stemmlerjs/white-label
https://khalilstemmler.com/courses/domain-driven-design-typescript
https://khalilstemmler.com/courses/domain-driven-design-typescript

a) delegate ownership of parts of the project to separate teams

i) If we keep boundaries at bay, this means we’ll be able to break apart

the application so that separate development teams could set up their

own version control and testing pipelines.

b) microservice deployment

i) If we keep boundaries at bay, we can not only separate our code

logically, but physically too.

ii) Code can be split into separate repos and communication between the

deployments could take place over the network (HTTP, RabbitMQ, etc).

Either way, as codebases grow larger, and more developers join our company, we

look for ways to improve productivity and at scale. Keeping an eye on boundaries

can make transitions a whole lot less painful.

Structure

Where it belongs

Structure is most concerned with where we place files and how we lay out our

folders. Structure is code organization and asks the question, “are things where

they’re meant to be”?

When our first guesses towards finding a particular file are correct, it greatly

improves productivity.

When we have to guess and flip through too many files and folders, our productivity

tanks.

Project size

This is increasingly difficult as projects grow in size. When projects are small, it

might be pragmatic to use a flat file structure and simple, yet generic names.

Take this file structure example of a script written to automate users into a

MailChimp List.

How much can you tell about the project from this structure and the file names?

An assumption would be that the mailchimp.js does the bulk of the work. Maybe it’s

what actually connects to the MailChimp API. Not sure what list.js is responsible for,

but since we have so few files, I wouldn’t quarrel too much with this.

As soon as the project starts getting more complex, you can be sure I’ll be looking

for ways to be more declarative with these files and folder names.

Package by Infrastructure

This is an important topic.

Most developers starting out, package their applications by infrastructure. This is the

opposite of packaging your application by component.

Package by infrastructure is when we name our top level folders by the construct

name.

To illustrate, here’s the folder structure of the old project that I was working on that

spawned my motivation to write this book.

If it’s not obvious why this is not useful, let me make an analogy.

Imagine picking up a dictionary looking to find a particular word.

When you open the dictionary, it’s not sorted by alphabetical order, but instead it’s

sorted by “the types of words”.

So “long words”, “short words”, “scary words”, “funny words”...

It would take you much longer and considerably more cognitive energy to find what

you’re looking for.

That’s what we’re doing here with packaging by infrastructure.

At a glance, this tells us nothing about the project

There’s a term called Screaming Architecture from Uncle Bob’s “Clean Architecture”

book (I recommend it highly). It means that when we open a project’s codebase, the

code should practically be screaming at us what type of project we’re looking at.

Within seconds, you should be able to determine: “hey, this is a healthcare

application” or “this is a restaurant app”.

Having code organized by construct at the top-level doesn’t help us understand the

project.

Features are developed vertically, not horizontally
When we develop features, it pretty much cuts across the entire stack. For example,

let’s say a POST request gets fired off by the client to Create a User. Here’s how that

might cut across several constructs.

Imagine that all of those constructs are in separate folders, away from each other.

That means, in order to develop one feature, you have to flip between several layers

of folders to find the right construct to edit.

I believe we as humans can only remember at max 7 or so things at one time. So this

approach isn’t very human-friendly.

So let’s go back to the human-friendly approach.

Package by component

In order words, packaging to be brain-friendly.

Here’s that same project, but this time refactored to use package by component.

Doesn’t that tell you so much more?

Package by component for everything

I used to think that this only really applied to backend code, but now also convinced

this is the way to organize code in general.

Univjobs’ React-Redux App Structure

The entirety of the Univjobs application is split into the modular silos by “feature” (or
component, as we’ve been referring to it).

For example, the Create Job feature looks like this:

Everything related to a particular feature (container components, validation logic,

styles, services, redux, models, etc) lives in a single individual feature module.

This has made it incredibly easy to identify where I need to go in the project to

change code.

So here’s my approach for good structure:

Tips for good structure

1. Start the first layer by identifying the features (or components or modules,

whatever you want to call it).

2. The second layer in holds the constructs. Refer to the construct names here.

Nesting rules

Sometimes, we’re in a feature that is split into several sub-features.

I’ll repeat #1 until I’m at the lowest sub-feature and then implement #2.

Shared things

Be sure to identify when things are shared and place them in a shared module. For a

good example of this, see the source code for khalilstemmler.com.

https://github.com/stemmlerjs/khalilstemmler-website-2019

In Summary

Name, Construct and Structure all contribute to the readability of your project. As

projects grow, it becomes harder to keep the same level of productivity up, so

special attention to these three things becomes vital.

Names

What it is.

What to look out for

Look out for naming things too generally and assigning the code that lives inside of

the files way too much responsibility.

For a guide on this, check out this article.

Constructs

What it does.

Structure

Where it belongs.

A real life project

I’m working on a Domain-Driven Design with TypeScript course where we build a

Vinyl Trading Enterprise application called “White Label”.

https://khalilstemmler.com/articles/solid-principles/single-responsibility/

I’ll be putting into practice what I’ve taught in this book, so if you want to see a real

life example, check out the repo.

https://github.com/stemmlerjs/white-label

