
C O M P O S A B L E C M S E VA LUAT I O N ˙ 1

Composable
CMS evaluation

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2

C H A P T E R
O N E

TA B L E O F C O N T E N T S

C H A P T E R
T WO

C H A P T E R
T H R E E

C H A P T E R
F O U R

C H A P T E R
F I V E

Introduction

Background analysis
and planning

Advice for meeting
strategic goals

Considerations for
composable stacks

Vendor
evaluation

Explore common success patterns and learn the pitfalls to
avoid while creating a tech stack

Discover the major criteria for assessing vendor capabilities

Learn the categories and functions to take into account

Management buy-in is key to ensure cross-team
cooperation and the allocation resources

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3

This guide explains the approaches and criteria associated with
composable architectures, especially for organizations that
are planning a migration. Fact is, even though those who have
adopted composable all agree that it’s the right thing to do, the
process is complicated because, besides changing technologies,
it requires a shift in how teams operate and interact.

For simplicity, this guide contains four sections with notes for
specific task groups:

•	 Background analysis and planning, which is useful for the
team in charge of planning: marketing, IT, a combined
digital group, product owner, etc.

•	 Advice for meeting strategic goals, which, based on
Uniform’s extensive experience and CMS knowledge,
delves into common success patterns and specifies the
pitfalls to avoid while creating a tech stack in today’s
constantly evolving market.

•	 Vendor evaluation, which chronicles the major criteria for
assessing vendor capabilities.

•	 Consideration for composable stacks, which, given that
CMSes no longer own digital delivery end to end, recounts
the categories and functions to take into account.

O N E
C H A P T E R

T WO

T H R E E

F O U R

F I V E

Introduction

With a digital experience platform (DXP), you rely on one vendor
for most capabilities, including complementary products at times.
That’s not foolproof, however, due to complex integrations and
the need to justify the high expenditure for that larger platform.

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4

An evaluation of
composable solutions

Rather than examining a single vendor’s features, picking the right CMS for a

composable architecture requires a familiarity with the following:

•	 The industry landscape and the additional functions and vendors you

will need, as well as the way they will fit together.

•	 The various offers and trade-offs in pricing and cost, especially in case

of a significant overlap among vendors.

•	 The SaaS delivery model, which often offers much faster try-before-

you-buy iterations to understand not just the software, but also the

speed at which you can onboard, develop, and integrate. As a rule, your

PoC efforts move much faster and are more self-led than legacy DXPs.

A focus on architectural openness and flexibility would ultimately result

in a more sustainable platform capable of withstanding rapid changes like

new functionality, channels, or programming frameworks. The foundational

investment and organizational revamp needed to support such a switch

promises to serve you well for much longer, if not indefinitely. That’s a

tremendous transformation from traditional platforms, which proffered a fixed

life and amortized cost.

Constantly chasing opportunities without
adequately considering stakeholder needs
might lead to a disconnect in requirements and
frustrations when the new system launches.
Similarly, concentrating on only the existing
problems could result in a narrow vision,
decimating motivations and fracturing efforts.

CHAPTER ONE

Introduction

An evaluation of
composable solutions

Key terms and definitions

Difference between this
guide and RFP templates

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5

Not least, the emergence of MACH (Microservices based, API-first, Cloud-

native SaaS, and Headless) technology has meant that the modern way of

implementing a tech stack requires selecting best-of-need, MACH-oriented

vendors for optimal agility and flexibility.

F R O N T E N D

D I G I TA L E X P E R I E N C E C O M P O S I T I O N

A P I

DATA L AY E R

EXPERIENCE
MANAGEMENT

C O N T E N T (C M S)

C A M PA I G N S

LOYA LT Y

ERP FINANCE

C A R T &
C H E C KO U T

C O M M E R C E E X E C U T I O N M E D I AE X P E R I E N C E
M A N AG E M E N T

P R O M OT I O N S

PRODUCT CATALOG
& MERCHANDISING

(PIM)

AC C O U N T S

S E A R C H

O R D E R S (O M S)

PAY M E N T

C U S TO M E R

P E R S O N A L I Z E

O P T I M I Z E

TA R G E T

A N A LYS I S

C R E AT E

M A N AG E

O P T I M I Z E

D E L I V E R

D E L I V E RY

CHAPTER ONE

Introduction

An evaluation of
composable solutions

Key terms and definitions

Difference between this
guide and RFP templates

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

https://machalliance.org/mach-technology
https://machalliance.org/mach-technology

C O M P O S A B L E C M S E VA LUAT I O N ˙ 6

Before, you might have sought most of the functionality you desire from

only one vendor, often based on features, and far less on the effectiveness

of the solution’s interactions with other systems. A major benefit of going

composable is that, instead of launching a massive all-in-one, rip-and-replace

migration fraught with risks and steep learning curves for your team, you

can move in stages. An exception is that certain old systems lack the APIs to

properly implement headlessness.

For all of MACH’s amazing technological benefits, it can muddle procurement. Be

sure to evaluate multiple vendors and observe how they work together. A case in

point: For commerce, you could realistically start with at least six criteria:

•	 Commerce engine

(cart and checkout, products,

promotional campaigns)

•	 Search

•	 Content management

•	 Digital asset management

•	 Front-end framework

•	 Hosting

CHAPTER ONE

Introduction

An evaluation of
composable solutions

Key terms and definitions

Difference between this
guide and RFP templates

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 7

Application programming
interface (API)

A protocol for software components
to communicate with one another,
with which developers structure
communications among platforms.

Composability

The strategy of building a more
flexible tech stack with open and
headless services and tools.

Content delivery network (CDN)

An origin server that stores and
distributes content worldwide
through a network of servers,
accelerating the loading of websites.

Content management system
(CMS)

Software with which creators
generate website content.

Content model

The content structures, fields, and
relationships that make up the digital
experience of your website and other
channels.

Digital experience composition
platform (DXCP) Learn more

A system that orchestrates
solutions through a composable
architecture, resulting in fast, robust,
and adaptable tools.

Digital experience platform (DXP)

Technologies that started with
CMS capabilities but now comprise
features for personalization, marketing
automation, and other advanced
capabilities.

Headless

Back-end content management
that is separate from the front-end
presentation layer.

MACH

A modern tech standard, coined
by the MACH Alliance, with four
prerequisites: Microservices based,
API-first, Cloud-native SaaS,
and Headless.

Rich media

Dynamic forms of digital advertising,
such as moving images, video, 3D,
AR, and VR.

Query language

A means of requesting APIs for content
systems with advanced capabilities
that support complex operations
like filtering, joining, pagination, and
granular calls.

Software development kit (SDK)

A package of programming tools that
can be installed on a platform. In the
context of CMSes, SDKs are language-
dependent API layers offered by the
vendor on top of its underlying CMS
APIs, facilitating programming in a
specific language.

Key terms and definitions
CHAPTER ONE

Introduction

An evaluation of
composable solutions

Key terms and definitions

Difference between this
guide and RFP templates

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 7

https://uniform.dev/what-is-digital-experience-composition
https://uniform.dev/what-is-digital-experience-composition
https://machalliance.org/about

C O M P O S A B L E C M S E VA LUAT I O N ˙ 8

Difference between
this guide and RFP templates
Vendors often offer similar CMS RFPs. Search for “CMS RFP template” and you’ll

see many examples). This guide does not do that because of the different value

proposition for composable vendors.

Take the common CMS RFP “Vendor five-year roadmap.” Before the evolution of SaaS,

that roadmap was key since product implementations often took at least six months;

time to value, many years. Aligning a vendor’s understanding with your stakeholder

needs was paramount.

In SaaS, however, the equivalent due-diligence process is the ability to try out

software yourself. Instead of rounds of RFP refinement, interviews, demo pitches, and

educated guesses that things will “probably” meet your needs, you can test it. And, if

another vendor can better meet your changing needs later on, it’s far easier to switch.

Accordingly, you must refocus your inquiries on composable.

Previously, the emphasis was on features because it was hard to add or integrate

other features. Despite the fewer features per software solution in composable, you

can evaluate, integrate, and extend the software more smoothly and rapidly, relying

less and less on specific frameworks long term. Indeed, one of the first principles

of composable is that no matter that languages and frameworks come and go, your

underlying investment is your approach to composability and the resulting ability to

readily swap out vendors and languages.

That’s why this guide focuses less on describing features and much more on ensuring

that you can aptly evaluate vendors based on composable’s best practices. For the same

reasons, antiquated CMS RFP questions on browser-based interfaces, vendor versioning,

upgrades, and end-of-life policies no longer apply and are not table stakes anymore.

Conversely, since the architecture is more important in composable, your RFP process

must include—and lend more weight to—input from developers and system architects.

NOTE:

Unlike in traditional enterprise-technology sales, many MACH vendors adopt a land-

and-expand philosophy for growing their business, greatly reducing the number of

RFP cycles in which it participates. That scenario particularly holds true at the lower

end of cost, where most customers are expected to directly evaluate the technology,

especially with the try-before-you-buy option, which we strongly endorse.

Invariably, vendors would answer yes to all RFP criteria because, technically, software

can do anything. What counts is how effectively and quickly you can capitalize on it to

perform the tasks. You can now see that ease of use and development for yourself.

CHAPTER ONE

Introduction

An evaluation of
composable solutions

Key terms and definitions

Difference between this
guide and RFP templates

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 9

To ensure cross-team cooperation and allocate resources,
management buy-in is key. The group that manages the overall
project is responsible for the digital property, including the
creation of a background analysis. You should involve as many
stakeholders as feasible for endorsement and feedback, but
remember that those who’ve been working with the old tools
could contribute valuable input on the current content processes
and strategy.

Key takeaways
Note these two basic rules:

•	 Successful project execution requires a clear understanding of
your resources, stakeholders, and goals.

•	 Agility in evaluation does not mean no planning: It actually
requires preplanning of goals while giving you optimal flexibility
and freedom in experimenting with how to meet them.

For a foundation, conduct a deep analysis of your aspirations,
stakeholders, requirements, and current capabilities. As
mentioned, even while modernizing systems and technologies,
you’ll learn a lot about your current systems and processes. Thus,
first aim at properly evaluating and leveraging what already exists
wherever feasible.

Background analysis
and planning

O N E

C H A P T E R
T WO

T H R E E

F O U R

F I V E

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 0C O M P O S A B L E C M S R F P

Technology audit

Content audit

By adopting a format similar to that previous slide on MACH architecture, examine

your technology and consider the API-filled features that you might be able to

harness. The necessary but API-lacking features are often priority candidates for

replacement or augmentation through composable.

The common composable “first wins” tend to occur in the B2C space, particularly in

social and payment providers. Firmly embedded systems are usually CMSes, product

catalogs, and other content sources. The good news is that they’re often the easiest

to leave in place while still modernizing the process and other tools around them.

A content audit would reveal the following:

•	 The size of—i.e., the number of items in—your content footprint.

•	 The value of your content: SEO, ability to generate inbound marketing traffic, etc.

•	 The effectiveness of the content in meeting the needs of external stakeholders.

•	 An insight into whether your content is well structured and suitable for meeting

future channel requirements.

•	 The content sources with which you might need to integrate.

An audit of your current technology must cover the systems, processes,

content, as well as their pros and cons.

Inventory of systems and processes

CHAPTER ONE

CHAPTER TWO

Background analysis
and planning

Technology audit

The cost of doing nothing

Audit of skills and roles

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

An audit of your current technology
must cover the systems, processes, content,
as well as their pros and cons.

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 0

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 1

Whether to opt for SaaS or on-premise has long been a crucial decision while

selecting new technology. An on-premise (or hosted) system often owns the

entire stack from creation to delivery. If you are removing certain aspects of

your system (e.g., transitioning delivery to a cloud solution), you might need to

determine how to access and work with the existing system through APIs.

In particular, answer these four questions:
1.	 Do you need to comply with firewall rules to grant access to SaaS systems?

2.	 Is the API’s performance acceptable?

3.	 Does the existing system return data in a popular format, e.g., JSON instead

of older standards like XML?

4.	 Do you need to go on-premise so as to comply with certain rules and

regulations?

SaaS versus on-premise systems

Also, consider the likelihood and impact of the risks. Running on old and

potentially insecure software might generate low yet high-impact risks.

Difficulties in recruiting developers to code in legacy programming languages

might be more likely but manageable.

In some cases, it makes sense to retain the old system but modernize the

process. Such an approach, called a strangler pattern, is not new to enterprise

software. What’s new are the layers of digital experience composition that can

more smoothly abstract—and often cache—those requests.

CHAPTER ONE

CHAPTER TWO

Background analysis
and planning

Technology audit

The cost of doing nothing

Audit of skills and roles

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Quantifying what happens if you don’t modernize your tech stack is a worthwhile

exercise. Here are the risks:

•	 You might be running on unsupported hardware or operating systems.

•	 You might incur additional costs, such as difficulties in hiring or retaining talent,

from using outdated technologies.

•	 The longer you wait, the harder it might be to switch due to lack of skilled

resources, support, or migration tools from the vendor.

The cost of doing nothing

https://www.techtarget.com/searchapparchitecture/tip/A-detailed-intro-to-the-strangler-pattern

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 2

When examining your organizational skills, be sure to include those of your

implementation partner, if any, who could be a valuable asset with a host

of expertise, e.g., knowledge of your vertical or experience with applicable

technologies or architectures. In addition to assisting with your front-end

designs and CMS setup, a partner can often bring specific product expertise

around understanding what technologies are used in your domain and

common approaches for connecting those systems.

But of course, your relationship with your partner is key. If you are in a

specialized field in which your partner is a domain expert, you’re likely to have

a closer working relationship and are potentially more inclined to defer to that

partner’s technical preferences and dependencies rather than relying on a

technology vendor.

Be sure to map out the parts of the project to assign to your partner and

specify the related role by answering these questions:

1.	 Will you consult your partner for major decisions?

2.	 Will you augment your team for some of the partner’s assignments?

3.	 Will your partner own the end-to-end implementation?

Finally, project elements, such as evaluation, hand-off, and regular

enhancements, might vary in SaaS. You might be working with actual, live

software or nonproduction environments rather than developer instances and

copies of the software.

Audit of skills and roles

Given that digital transformation projects often require a massive amount of
time, effort, and expenditure, it is extremely common—even among the most
technologically savvy organizations—to do the initial build through vendors.
However, for long-term development and maintenance, various models exist,
ranging from a partner being continually involved and almost “owning” the
architecture—to the exact opposite, whereby a partner hands off to the client,
who continues to run the system.

Build versus
run teams:

CHAPTER ONE

CHAPTER TWO

Background analysis
and planning

Technology audit

The cost of doing nothing

Audit of skills and roles

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 2

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 3

Preferably, while embarking on a digital transformation project,
you balance the pursuit of new opportunities (adding channels,
customer segments, capabilities, etc.) with your current tooling’s
challenges stakeholders must grapple with. Constantly chasing
opportunities without adequately considering stakeholder needs
might lead to a disconnect in requirements and frustrations
when the new system launches. Similarly, concentrating on only
the existing problems could result in a narrow vision, decimating
motivations and fracturing efforts.

Advice for meeting
strategic goals

New market opportunities

Thanks to the players described below, the last few years have seen tremendous

advancements in the ways in which to deliver software and work with it in a

composable fashion.

•	 Cloud providers for scalable SaaS solutions that can fulfill the needs of all

use cases and industries, triggering a move from large, generic platforms.

•	 JavaScript-based frameworks and JavaScript Object Notation (JSON) for

wide interoperability of native data.

•	 Content delivery networks (CDNs) that offer major performance gains.

When was the last time you heard of a successful distributed denial-of-

service (DDOS) attack on a modern platform?

•	 Computation for complex and dynamic tasks, such as personalization, on

the edge or even on client hardware, e.g., a mobile device running your app.

•	 Newer channels in addition to the web: mobile, text, kiosks, social, and,

lately, metaverse and augmented reality.

•	 AI for augmenting, categorizing, and generating content.

O N E

C H A P T E R

T WO

T H R E E

F O U R

F I V E

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 4

Organizational structure
A common failure in shifting to composable emerges from not adapting your

team to work with the technology and to take advantage of new channels as well

as accelerated campaigns and publishing.

Most large organizations boast teams tasked with the functions spelled out in

the diagram below. Find out which functions and roles apply to your business

and add them to the digital-transformation and technology-evaluation process.

FUNCTION TITLES TASKS

Visual & architecture design
Component library
Sitemap & wireframing

Head of UX,
creative directors,
visual designers

Analyze &
optimize

Content personalization
A/B testing

Growth marketers,
performance marketers

Deploy Content delivery
Cloud infrastructure

Information technology,
DevOps

Content
design

Visual
design

Content architecture
Content modeling
Taxonomies & ontologies
Content governance
Author workflows

Content designers,
content engineers,
content strategists

Create
Content authoring & localization
CMS input
Content approval & workflows
Experience assembly

Content teams,
product managers

Gather requirements
User journey mapping
SEO/accessibility
Content strategy, design and analysis
Architecture audit/planning

Discover
CXOs,
enterprise architects,
information architects,
product owners

Engineer
Data integration
Front-end coding

Product managers,
engineers,
front-end devs

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

Advice for meeting
strategic goals

Organizational structure

Common pitfalls

Proof-of-concept phase

CHAPTER FOUR

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 5

Additionally, the Create functions might have the following stakeholders who’re

assigned an outsized role or forgotten during evaluation:

•	 Skilled superusers, who support other content creators and who require

more robust tools for such tasks as bulk editing and scheduling.

•	 Casual users, who rarely work in the CMS but would serve as a good proxy

for determining the intuitiveness of the system and its implementation.

•	 Nonusers, who might be content stakeholders relying on superusers,

interacting with those folks outside the CMS, for example, by email.

External subject-matter experts: legal counsel, content-creation agencies, etc.

Determine how to grant and revoke their access as warranted.

Most of all, ruthlessly prioritize the needs of those stakeholders. Since chances

are that your first iterations will not completely satisfy them all, be vigilant about

the implementation phases and update them regularly on the progress.

Heed stakeholder pains
A usual reason for updating enterprise software is to address ongoing user

frustration. Identify, categorize, and prioritize the issues, ensuring that the new

system satisfactorily and promptly removes the majority of the roadblocks.

Take note of what works
Avoid being caught up in problems and opportunities. Rather, in consultation

with stakeholders, catalog what works well with your current system:

customizations, features, and processes that appeal to your business users, who

would feel lost without them. Vigorously managing changes here often makes for

a successful rollout instead of a stress-filled one.

In principle, involve as many stakeholder teams
as possible to secure buy-in and feedback on all
aspects of the digital production cycle.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

Advice for meeting
strategic goals

Organizational structure

Common pitfalls

Proof-of-concept phase

CHAPTER FOUR

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 5

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 6

Common pitfalls
Avoid the four common pitfalls, as described below.

1. Missing out on an organizational change to an agile approach
Migrating to composable requires organizational change to support the new

architecture and its goals for an agile approach that accelerates iterations and

tests on the underlying systems, visual designs, and campaigns. Collaborative

teams are a must for success.

Similarly, SaaS and composable platforms shift many responsibilities to the

vendor. Hence, you and your partner must make many decisions for the

architecture. If you previously worked with a CMS or DXP, your choices for

hosting, programming language, design philosophy, etc. were made for you. Going

composable means that you must understand and own those decisions.

2. Reimplementing old, ineffectual patterns and content models
A common mistake is simply copying your old content structure or, worse,

embedding visual layouts into a content mode in the hope of speeding up the

migration process. In fact, it does the opposite by codifying and compounding

bad practices.

During replatforming, scrutinize your goals, content strategy, and team structure.

A sound approach for minimizing change is through a DXCP, i.e., architect new

content models in the CMS and combine them with the old content and models

from your other platforms.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

Advice for meeting
strategic goals

Organizational structure

Common pitfalls

Proof-of-concept phase

CHAPTER FOUR

CHAPTER FIVE

During replatforming, scrutinize your goals,
content strategy, and team structure.

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 6

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 7

3. Planning for a big-bang migration
Oftentimes, failure occurs because you assume that you must implement

composable projects in the same way in which you chose architectures before.

That is, you would implement the new system, migrate the content, and retire

the old system—usually as quickly as possible to avoid business disruptions—

primarily because not only the software did not interoperate, but also you’d

already licensed the entire package.

However, composable spells “pay as you go,” i.e., you can implement it in

small steps at lower cost. Given the goal of minimizing risk, changing systems

in miniature increments makes a lot of sense, assuming that licensing of the

underlying, to-be-retired systems costs only a minimal amount or less with

reduced usage.

4. Losing sight of long-term sustainability and flexibility
Rather than treating it as an ongoing process, organizations often reimplement

software as a one-and-done activity, plunging into other pitfalls as a result.

Composable encourages trying out new technologies or frameworks. That leads

to a focus on long-term improvement and sustainability instead of the one-and-

done process, which usually requires labor-intensive, painful migrations and

disrupts the business. You can then always adapt to changing circumstances or

technologies with negligible impact. Remember: The more you can do to keep

your organization agile and your systems loosely coupled, the less the risk and

cost for future projects.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

Advice for meeting
strategic goals

Organizational structure

Common pitfalls

Proof-of-concept phase

CHAPTER FOUR

CHAPTER FIVE

Remember: The more you can do to keep
your organization agile and your systems
loosely coupled, the less the risk and cost
for future projects.

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 7

The team that owns the digital property should also be in charge of

the migration project, including the PoC. For example, if marketing

is the owner, IT must not run the PoC even if that team handles

most of the evaluation tasks.

In principle, involve as many stakeholders teams as possible

to secure buy-in and feedback on all aspects of the digital

production cycle.

Key takeaways
Note these facts about PoC:

•	 A major benefit of moving to composable (and SaaS vendors

in general) is that most vendors offer free access to limited

product capabilities or full-featured free trials.

•	 The point of a PoC is to validate the vendor’s technology and

your composable approach. In other words, besides evaluating

a vendor, also assess the larger flow and integrate stack

elements to test the content flow, the UX for your tools, etc.

•	 Be aware of the functional requirements, categorize the

important ones, and validate that they meet your needs.

Benefits of DXCPs
DXCPs abstract underlying systems so that you can seamlessly

build content structures and components as well as test CMS

systems without changing the front-end code.

Again, the purpose of a PoC is twofold: validate vendor technology

and your approach for building digital experiences and involving

stakeholders. However, with composable, you can often leave

systems or APIs as is because you are evaluating a change to the

way you work alongside the new technology, such as a move to

Agile.

Proof-of-concept (PoC) phase

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

Advice for meeting
strategic goals

Organizational structure

Common pitfalls

Proof-of-concept phase

CHAPTER FOUR

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 8

C O M P O S A B L E C M S E VA LUAT I O N ˙ 1 9

Once you’ve prioritized what you’d like to replace, including
stakeholder needs and technological and resource constraints,
list the composable technologies you want to add.

Remember that, since the goal is to minimize risk, updating
systems in small increments is the way to go, assuming that
licensing of the underlying, to-be-removed systems costs
minimally or you can reduce their usage.

Of help is a digital experience composition layer with its SaaS-
performance benefits, e.g., caching and CDN, on top of legacy
APIs and abstractions against older APIs. As a result, you need not
update the front-end development when ultimately swapping out
content to a new system. After all, agile approaches are based
on the concept of building a Minimum Viable Product (MVP) for
validating key questions and iterating from there.

NOTE:
Be sure to evaluate the nonfunctional requirements that any
solution must satisfy. That’s a key but often overlooked step.

Vendor
evaluation

O N E

C H A P T E R

T WO

T H R E E

F O U R

F I V E

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2 0

Non functional criteria
This section covers the nonfunctional requirements in detail.

Key takeaways

Intangibles are an important criterion for vendors. Even though, with

composable, you can readily change vendors from a technical perspective, you

must still invest heavily in training and connecting systems, as well as take into

account the longer-term implications of working with a vendor.

Equally important are nonfunctional requirements that permeate the project,

from evaluation to implementation to ongoing support.

Each criterion contains two categories:

Baseline
capability

This is the minimum commoditized capability
to ideally expect from a vendor. Absent this
capability, critically evaluate if that’s acceptable
for your use case.

Advanced
capabilities

These are examples of some—but not all—
additional or differentiating capabilities. Carefully
assess if you need them since you often pay
more for them because they represent where the
majority of differences in vendor capabilities lies.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Key takeaways

Evaluation of onboarding

Partner network

Geographical footprint

Community

Documentation

Reputation

Functional criteria

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2 1

Find out how quickly you can start evaluating and doing business with a

vendor. During the evaluation process, developers usually opt for trying out the

software as quickly as possible. Most composable vendors do offer free trial

accounts for limited functionality or time period, with some requiring a sales

presentation or credit card at the start, or taking longer to respond.

Baseline

capability

•	 The ability to open a trial account with
minimal vendor intervention: demos, sales
pitches, etc.

Advanced

capabilities

•	 The ability to get a trial account immediately.

•	 The ability to get a free account with no time
limits for individual developers.

•	 Onboarding material: training videos, walk-
throughs, example code, etc.

Evaluation of onboarding and operational process

FUNCTION:CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Key takeaways

Evaluation of onboarding

Partner network

Geographical footprint

Community

Documentation

Reputation

Functional criteria

CHAPTER FIVE

DISCOVER CONTENT DESIGN ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2 2

Understanding the depth and experience of your vendor’s partner network

is vital. Even if you already have partners, who might prefer a certain vendor,

being familiar with the nuances of their skills—e.g., industry, application type,

location, working cadence, agile versus waterfall across the partner network—

helps in scoping vendors that can fulfill your architectural and domain

expertise needs.

A major shift in a composable world in deference to agility is that the brand,

not the partner, chooses the stack components to gain the competitive

differentiation.

Baseline
capability

Partners within your region with an understanding
of the vendor’s capabilities and experience in
running a small number of projects.

Advanced
capabilities

•	 Same as above, but with domain expertise
specific to your business.

•	 The ability to work within your team as agile
resources.

•	 Completion of a greater number of projects
with multiple vendor tools for comparison and
contrast during evaluation.

Partner network

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Key takeaways

Evaluation of onboarding

Partner network

Geographical footprint

Community

Documentation

Reputation

Functional criteria

CHAPTER FIVE

FUNCTION: DISCOVER CONTENT DESIGN ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2 3

Examine the support model, including that from a partner network, and gauge

the vendor’s knowledge of the local laws and regulations. The best “functional”

vendor that doesn’t overlap with your development team or understand

regional privacy rules would be suboptimal long term.

Baseline

capability
Support in your preferred regions and time zones.

Advanced

capabilities

•	 The regional infrastructure for complying with
regulatory requirements, e.g., hosted in Europe
for meeting German or EU laws.

•	 The vendor’s capabilities for regional
compliance, e.g., GDPR data processing and
retention.

Geographical footprint

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Key takeaways

Evaluation of onboarding

Partner network

Geographical footprint

Community

Documentation

Reputation

Functional criteria

CHAPTER FIVE

FUNCTION: DISCOVER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2 4

The developer and practitioner communities can be key information sources

and starter code to assist not just your initial efforts, but also down the road

with advanced concepts. So, find out the community size and available

resources.

Baseline
capability

The active community on social channels: GitHub,
Discord, Slack, etc.

Advanced
capabilities

•	 Sponsored community events, e.g., meetups
and user groups.

•	 Large amounts of open-source contributions to
codebase or add-ons.

•	 Tutorials in the form of blog posts, videos, etc.

Community

FUNCTIONCHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Key takeaways

Evaluation of onboarding

Partner network

Geographical footprint

Community

Documentation

Reputation

Functional criteria

CHAPTER FIVE

FUNCTION: DISCOVER CONTENT DESIGN ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2 5

Browsing vendor documentation is an often-overlooked lifehack for software

evaluation. Documentation lends insight into how the vendor works by

answering questions like these:

•	 Does the vendor release products without documentation? If so, the

vendor might lack sound release processes or thoroughness.

•	 Does the documentation clearly address the needs of all your

stakeholders? Is it solely developer focused or does it also take business

users into account?

•	 Does the documentation contain useful examples, including those posted

on source-code repositories like GitHub? Do the examples address real-

world use or merely demonstrate abstract concepts?

•	 Does the documentation include clearly and concisely written tutorials?

Baseline
capability

Clear and up-to-date product documentation.

Advanced
capabilities

•	 Conceptual and practitioner documentation.

•	 Example code and tutorials.

Documentation

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Key takeaways

Evaluation of onboarding

Partner network

Geographical footprint

Community

Documentation

Reputation

Functional criteria

CHAPTER FIVE

FUNCTION: CONTENT DESIGN CREATE ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2 6

Determine if the vendor has published customer case studies that you can

review and relate to your use case. In addition, ask other authoritative sources,

such as analysts and implementation partners, about the vendor’s reputation,

viability, and relative scoring for the above criteria.

Baseline
capability

Common usage from technical and
implementation partners you already work with
through webinars, integrations, etc.

Advanced
capabilities

•	 Case studies of the vendor’s industrial clients
or use cases similar to yours.

•	 Recognition from industry analysts.

NOTE:
Don’t just look at rankings because vendors
have strengths and weaknesses relevant to
use cases. If you have a niche use case, it’s
worth vetting a niche vendor instead of a
leading one.

Reputation

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Key takeaways

Evaluation of onboarding

Partner network

Geographical footprint

Community

Documentation

Reputation

Functional criteria

CHAPTER FIVE

FUNCTIONFUNCTION: DISCOVER CREATE ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2 7

Functional criteria
The criteria described in this section relate to the product itself. Since costs

can vary considerably based on features, accurately assess your true needs in

advance. For example, single sign-on (SSO) is often priced at an enterprise tier,

an order of magnitude higher than the lowest tier.

Key takeaways

Do the following:

•	 Discuss your needs with stakeholders beforehand and weigh your criteria

appropriately.

•	 Refrain from being distracted by the shiny attractions in a vendor demo.

They might look impressive but distract from the underlying—yet ultimately

more important—requirements.

The criteria below are ranked, starting with the simplest and most common

needs. We recommend that you establish your own prioritization and weighting.

Delivery model:
SaaS versus on-premise

The way in which the vendor delivers the software
to you and maintains it.

Pricing model

The price options of the software. Pricing models
vary from complexity, e.g., more content types,
roles, etc.; to consumption, e.g., pay for API calls.
Pick one that fits your needs.

Content modeling

capabilities

The ability to create and link content types, which

is a foundational capability of headless CMSes.

Delivery APIs
The ability to deliver content through APIs and

query granularly and performantly.

Authoring interface

The maturity and usability of the interface

on which authors create and reuse content,

especially for applications and sites that are

updated regularly.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2 8

Preview

The ability to double-check page content before

publication, which is necessary even though

headless and composable systems require that

content be portable—and not locked into a

channel-specific or proprietary format, hence

separate from the content’s presentation.

DevOps and

application-

management

capabilities

(including management

APIs)

The ability to interact with the application

through management APIs, which is a

differentiator for advanced use cases for

maintaining applications, especially at an

enterprise level.

Software

development kits

(SDKs)

The ability to more easily program in a specific

language through language-dependent,

vendor-offered API layers on top of their

underlying CMS APIs, called SDKs.

Internal search
The ability to reference and sort content internally

by content creators and through APIs.

Content delivery

network CDN

The ability to deliver content fast, particularly for

globally distributed consumers.

Workflow

The ability to move content through various

stages of editing and review, which is important

to organizations with stringent governance

requirements.

Governance (roles

and permissions)

The ability to define granular roles and

permissions so as to restrict content viewing and

editing privileges to the appropriate groups.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 2 9

Internationalization

(“i18n”)

The ability to work with multilingual content and

integrate with translation providers, in some cases

through an editing interface in other languages.

Integration and

plug-in framework

The ability to build applications—along with other

elements of a composable stack—on top of the

platform.

UX customization

framework

The ability to extend or customize the UX for

content creators.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3 0

Most modern headless CMSes are SaaS, i.e., the vendor offers you a web-based

login, after which you interact directly with the vendor-maintained software.

The advantage of this approach is that, since the vendor is responsible for the

software’s performance, scalability, upgrades, and security, you spend less

operational effort on running the underlying systems.

Note the terms of the Service Level Agreement (SLA) for uptime,

performance, and, in some cases, throttling of API requests. If you are using

other delivery systems for caching or static generation of content, that might

be less of an issue. But, if you are working with the APIs “live” regularly, treat

the SLA as a top priority.

Some headless and open-source vendors fit in a composable stack because

they share many of the same characteristics like content modeling and delivery

APIs. Be aware, however, that you might have to tackle legacy problems: hosting,

security patches, upgrades.

Delivery model: SaaS versus on-premise

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: DEPLOY ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3 1

Typical pricing levers for most CMSes belong to these categories:

Why are they important? Because some organizations have advanced

complexity but low consumption, and vice versa. Ensure that the vendor’s

pricing model is aligned to your needs. The exact same requirements might

result in vastly different quotes from the vendors you’re considering.

In general, small use cases boast pricing models that are clearly detailed on

vendor websites. If, however, you need enterprise features, such as CDNs and

SSO, pricing is still opaque: You go from simple pay-as-you-go, usually with a

credit card, to enterprise sales processes, which usually involve more discovery,

needs-based negotiation, longer contract agreements, etc.

See the criteria below.

•	 Organizational complexity
•	 Content complexity and scale

•	 Enterprise features
•	 Consumption

Pricing model

Important: Weigh your solution-specific needs across the

entire composable stack. If you are on a DXCP like Uniform,

you can often limit the number of roles and content types

within your CMS, and run with a lower tier. Similarly, if you

are integrating a digital asset management (DAM) system,

you likely need not pay for extra storage in your CMS.

Organizational complexity

This criterion encompasses the

numbers of users and roles, called

workflow types. Also think about the

ability to customize roles in depth, e.g.,

“Our German translation provider can

read and update the German content

in these branches only.”

Content complexity and scale

This criterion includes the limits of

the number of repositories, content

types, and content items.

Enterprise features

This criterion comprises these

advanced features: auditing, granting

access to external or guest users,

and SSO. More advanced SLAs for

application performance or support

responsiveness might also be a

factor.

Consumption

This criterion includes metrics, such

as the number of API calls, storage,

and bandwidth.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: DISCOVER CONTENT DESIGN DEPLOY

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3 2

Content modeling, a foundational capability of omnichannel CMSes, typically

includes field types like text, images, rich text, checkboxes, etc. If you need

specific features, such as addresses and geolocation data, identify them and

verify that they exist. If they don’t, find out if you could extend the system to

accommodate your needs and how easy it is to do so.

Baseline
capability

A web-based interface for business users to
create content models.
NOTE:
Some vendors lack this ability and offer a code/
configuration-only function, which is acceptable
if your content-management practice is largely
developer led.

Advanced
capabilities

•	 More advanced field options:

•	 Granular reference control: one-way, two-way, etc.

•	 Raw JSON storage along with the ability
to customize UIs. This is a major area of
extensibility for complex use cases.

•	 Management API with export, enabling
developers to make updates and take charge of
source control.

•	 Custom field types and interfaces.

•	 Permissions for field values, e.g., the number of
references to other items.

•	 Data validation capabilities:

•	 Basic: out-of-the-box rules or regular
expressions.

•	 Advanced: the ability to call custom code.

Channel-specific content modeling

Some headless CMS vendors emphasize the ability to smoothly create content

for visual display through a capability like modules or blocks that can be used

on a page. Though excellent for smaller use cases, those components are often

problematic at scale, limiting where content can reside in omnichannel scenarios.

For example, you must adapt the front-end code to work with the blocks, which

might be nested, generating complexity for developers. Not to mention that the

blocks might not be searchable or usable as content outside of that page context.

Content modeling capabilities

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: CONTENT DESIGN

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3 3

The quality of an internal search engine within the CMS becomes more

important as your content multiplies and your governance becomes more

complex. Being able to easily pinpoint existing content is key to its reuse

through references and avoidance of duplication.

Internal search and findability

Since internal search capabilities are rarely external (front-

end) components for your visitors to search your content,

a common practice is to also evaluate external Search and

Recommendations and Search Merchandising capabilities,

where appropriate.

Baseline
capability

The search capability for creators to easily filter
content to granularly identify what you want to find
based on criteria like content field types and values.

Advanced
capabilities

•	 The ability to save and share configured
searches.

•	 Content tagging and taxonomies.

•	 The ability to apply search criteria to reference
fields.

•	 Advanced search capabilities that are also
exposed to the content delivery API, not just
the authoring UI.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: CONTENT DESIGN CREATE

https://docs.google.com/document/d/1pC2GXdKGVXUf4LGFXEE-Rb4OWL5I6z4juk6fPBjtkr0/edit#heading=h.vhzaoohrgsan
https://docs.google.com/document/d/1pC2GXdKGVXUf4LGFXEE-Rb4OWL5I6z4juk6fPBjtkr0/edit#heading=h.nqscrhxnzidd

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3 4

Doubtless, the quality, performance, and extensibility of the day-to-day

authoring interface is a crucial aspect of CMSes. However, those needs

are too often overlooked in favor of architectural suitability, support of the

programming framework, and other developer requirements, leading to

frustration and dissatisfaction among teams and operational inefficiencies that

translate to lost revenue.

Therefore, when evaluating solutions with your content creators, ask these

important questions:

•	 Is the interface well designed and intuitive?

•	 How well does the UI match the content creators’ current or desired
workflows?

•	 How fast and responsive is the interface?

•	 Do content authors feel comfortable entering or creating content on the
interface?

•	 Would common tasks be easy to do, i.e., with only minimal clicks?

•	 How easy is it to create and manage compound content if a single unit of
work involves updating multiple content items?

•	 Can we customize the interface? If so, at what of these three levels?

•	 Field level

•	 Item level

•	 High-level dashboards, i.e., the start screen that’s displayed upon login

•	 If required, how well does the interface accommodate bulk actions like
editing or updating content or metadata?

•	 How easy is it to add semantic information, e.g., tags and taxonomies?

•	 How accessible is the interface? This question is particularly important
for organizations in regulated industries, which require a high degree of
accessibility compliance.

Authoring interface

NOTE:
When running your RFP and PoC phases, be sure to ask content

creators to validate their scenarios and ways of working against the

CMS. Oftentimes, customizing the interface is among the first project

deliverables to be dropped in case of time or cost constraints. Hence,

prioritize those resources in the build phase.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: CREATE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3 5

Validate the preview capabilities and ensure that they match your

requirements. No matter that, with most systems, you can build a preview URL

that points to your application outside the headless system, you might require

advanced capabilities, such as the ability to preview content before publishing.

Some headless CMSes also offer visual-editing capabilities, which often require

a bridge API and scripts such that your output HTML contains references back

to the underlying content items in your repository. Do the following:

•	 Confirm with your creative stakeholders if they need that type of inline

editing for their tasks. If they regularly work with web content, they might

prefer that to the layout-agnostic, form-based editing approach.

•	 Exercise real use cases. Ask authors to report how quickly they can create

content in the interface, how easy the interface is to use, and how well it

aligns with their workflows.

•	 Assess these yardsticks:

•	 How concise the common workflows are by counting the number of

clicks required.

•	 How clear and helpful is the microcopy, e.g., field labels and error

messages.

•	 How easy it is to move around and find things, aka the intuitiveness of

the information architecture.

•	 How intuitive is the interface without the content creators having to

refer to documentation or training material.

•	 Ensure that you can correctly attribute back to the source content,

especially in larger, distributed content scenarios. This capability might

limit how you can structure web properties.

Baseline
capability

The ability to initiate a render with a webhook
and build a preview URL for an examination of
published changes by content creators.

Advanced
capabilities

•	 Inline editing.

•	 Preview of work-in-progress content.

•	 Preview of changes across content items in a
scheduled multiitem deployment.

Preview and visual editing

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: VISUAL DESIGN CREATE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3 6

As organizations grow their content-management footprints, being able to perform

more tasks programmatically and automate processes becomes increasingly

critical. Even though, as a rule, those are advanced features, understanding

them enables you to identify the ones your organization might require.

Webhooks

Webhooks are a critical component for headless systems to communicate

events to other systems in a composable architecture. A typical use case is to

initiate a search-indexing operation for new content, rerendering changes or

initiating a deploy function.

Baseline
capability

Webhooks for typical content operations: create,
read, update, delete, publish, etc.

Advanced
capabilities

•	 Webhooks for content-model changes or
system events, such as publishing and adding
users or roles.

•	 Logging of webhooks.

•	 The ability to customize the request, e.g.,
headers, format, etc.

API coverage for content modeling

Some CMSes support content modeling by business users within the

application; others afford programmatic access to that functionality. The

latter is key for advanced use cases, which require, for example, simultaneous

deployment of code and content changes—or the ability to backup and restore

or easily build projects from existing configurations

.

Baseline
capability

N/A. Only certain vendors offer this capability.

Advanced
capabilities

•	 The ability to update content models through APIs.

•	 Webhooks for content-model changes.

•	 Controlled and addressable development
environments for testing content-model
changes with rollback and deployment.

DevOps and application-management capabilities

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: DEPLOY ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3 7

API coverage for administration tasks

Since some systems support modeling through the UI only, some applications

might not offer full API coverage for all administration tasks.

Baseline
capability

N/A. Only certain vendors offer this capability.

Advanced
capabilities

•	 The ability to update content models through APIs.

•	 Webhooks for content-model changes.

•	 Controlled and addressable development
environments for testing content-model
changes with rollback and deployment.

Bulk import and export of content

Baseline
capability

N/A. Only certain vendors offer this capability.

Advanced
capabilities

The ability to upload or export large amounts of
content to facilitate backup or migration through a
single package or another prescribed method.

Command-line interfaces (CLIs)

CLIs are key for organizations that prioritize the repeatability of their digital

footprints. System implementers with reusable patterns and multiple clients

or shared-services teams within larger organizations would consider this

functionality a must-have, but smaller teams or less complex use cases might

attribute less importance to it.

Baseline
capability

N/A. Only certain vendors offer this capability.

Advanced
capabilities

•	 The ability to perform common tasks, e.g.,
creating projects and uploading content-
model changes on the command line.

•	 Full API coverage related to management
APIs and examples for advanced tasks. Also,
the ability to script processes for building
repeatable structures from start to finish.

DevOps and application-management capabilities

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3 8

Large organizations tend to require more functions vis-à-vis compliance,

governance, and logging, for example:

•	 Account-usage statistics and warnings, particularly if you are nearing an
overage based on your license and consumption.

•	 SSO integration.

•	 A system for cross-domain identity management (SCIM) to automatically
share groups or roles with other enterprise systems and provision users.

•	 Audit logs for access and content updates.

•	 Bulk backup and restore.

•	 Compliance certifications, e.g. GDPR, CCPA, SOC2, and ISO27001.

Enterprise features

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: DISCOVER DEPLOY ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 3 9

Technically, you can use any headless system with any programming language

or framework. In practice, however, you’d likely want to align your team’s efforts

around single frameworks that work across applications. Similarly, if you have

teams in older server-side languages, you must ensure that those languages

are supported through SDKs.

In general, SDKs support headless systems in three groups:

Software development kits (SDKs)

•	 JavaScript-based frameworks

These frameworks offer the most common support for development

on headless CMSes. Examples are React, Vue, Angular, and static-site

generation systems, such as Gatsby and 11ty, which are based on core

JavaScript frameworks.

•	 Server-side languages

If your development team specializes in languages like Java, PHP, and

C# (.Net), see if SDK support is available for a slick integration of the

headless CMS into your existing teams and applications. However, just

because your organization might use server-side languages doesn’t

mean that your team does. Don’t list this item as a requirement unless

it’s actually aligned to relevant use cases.

•	 Mobile languages

If you’re developing native mobile applications, analyze the SDK

support for the use case on the related frameworks: React Native,

Flutter, Swift (iOS), Android.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: DEPLOY ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4 0

Most headless applications and front-end frameworks now exchange data

through JSON. Legacy RFPs might reference XML, but, unless your use cases

must interoperate with specific XML types like DITA for documentation, just

review the JSON capabilities.

If your CMS cannot deliver JSON over REST, the most popular delivery method,

most people probably wouldn’t consider it headless. Plus, most modern

development practices work with JSON output.

Baseline
capability

JSON delivered over REST-based APIs.

Advanced
capabilities

JSON delivered over GraphQL.

JSON and REST

JSON is now the most commonly used data-interchange format for most

composable applications. Despite its name’s reference to JavaScript,

JSON is actually language agnostic as a way to set up data already in the

correct JavaScript array format. The upshot is, unlike XML, which requires

transformation, a JSON response can be referenced immediately and natively

by all JavaScript frameworks.

Also, while XML understands data formats, aka schemas for applications, JSON

does not. When looking at your CMS’s JSON and REST output, seek the answers

to these questions:

•	 How verbose is the response? Are there unnecessary system fields in the

output? If so, can I minimize them?

•	 Can I pull referenced content into a single query?

•	 Does the response require nesting, i.e., traversing many parent-children

levels in the array?

Delivery APIs

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4 1

GraphQL

GraphQL was invented by Meta, formerly Facebook, for generating more

granular queries to underlying data sources. Previously, an API would provide

all request-related information. With GraphQL, you can not only select specific

fields, but also retrieve data from the related items through, for example,

references or child items. Doing so minimizes the number and size of API

requests, which counts in scenarios with latency and performance issues.

Despite its being an advanced capability, not all scenarios require GraphQL.

Conversely, the GraphQL API exposed by a CMS frequently has restrictions

that limit the complexity. For example, you might have a query size limit

or might not be able to nest deeply enough to retrieve all the necessary

elements—a common occurrence for atomic content models. Therefore, before

adopting GraphQL, validate its capabilities against your use case.

Since GraphQL is no magic bullet, determine if it costs extra and if your use

case does need it. Scenarios like Static Site Generation (SSG) and DXCPs

do not require it because they act as a filtering and linking layer, similar to

GraphQL. In the case of DXCPs, GraphQL could be a business-user capability

rather than solely a developer one.

Delivery APIs

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4 2

Currently, three common ways are available for storing and working with rich

text on a headless CMS: HTML, Markdown, and JSON, each with its own pros

and cons.

HTML is difficult to transform for nonweb uses, e.g., a mobile application.

However, you must convert Markdown or JSON, both agnostic formats, for use

in HTML output. In either case, find out how complex and proprietary the JSON

schema structure is and how robust the conversion and extension tools are

within the system.

Baseline
capability

Storage of rich text in a format that fits your use
case, e.g., web, omnichannel, etc.

Advanced
capabilities

•	 Channel-agnostic storage, ideally JSON, and
a robust transformation framework.

•	 The ability to extend RTE with custom
formats or tags.

Rich text editing (RTE)

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: CONTENT DESIGN CREATE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4 3

If you are directly reading from a content-delivery API, that is, not with static

generation or on a DXCP, evaluate the capabilities of the API and CDN against

your requirements. Answer these questions:

•	 Do I require multiple, redundant CDNs?

•	 Do I require content delivery for multiple locations worldwide?

•	 Are there API restrictions and limits?

•	 Does the vendor provide an SLA and uptime statistics?

CDN and delivery performance

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: DEPLOY

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4 4

Workflow needs and capabilities vary vastly among vendors and

implementations. The complexity of workflow requirements tends to scale

based on the number of approvals and the degree of compliance with

regulations.

For example, healthcare providers have the most complex workflows,

typically involving many approvals—legal, marketing, product teams, regional

compliance, etc.—and the timing of marketing and regulatory announcements.

Conversely, for organizations with a high degree of trust and little oversight,

people mostly just make updates and publish them as necessary.

Baseline
capability

The ability to have configured approval steps
for different roles, enabling typical
draft ► review ► publish processes

Advanced
capabilities

•	 Support for multiple workflows.

•	 The ability to preassign on specific content
types or through rules.

•	 The ability to route rules-based tasks.

•	 Extensibility, such as webhooks, for enabling
external processes like translation.

•	 External review and approval.

•	 Advanced collaboration features, such as
inline commenting.

•	 The ability to launch multiple items in
a single release.

Workflows

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: CONTENT DESIGN CREATE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4 5

Mostly, you desire the minimum level of governance that meets the most

critical organizational needs. Many organizations spend a great deal of time

defining complex rules and requirements up front, only to discover that those

regulations are an ongoing obstacle for their content teams. Nonetheless, in

larger and more sophisticated organizations, e.g., multinational corporations,

sound governance raises agility and efficiency by making it unambiguously

clear what content can be used, shared, or published among teams.

Baseline
capability

The ability to define roles and permissions for
common tasks, such as creating, editing, publishing,
and personas.

Advanced
capabilities

Granular or custom roles and permissions based
on content characteristics like language and
locale.

Governance roles and permissions

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: CONTENT DESIGN CREATE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4 6

Multilingual support is key for most sizable organizations. Obviously, some of

them are large multinationals, but significant populations in local markets prefer

the option of using another language they’re more familiar with. Thus, clearly

define your requirements in multilingual support, which addresses concerns

across multiple categories:

Internationalization (i18n)

•	 Application

Must the CMS be available in other languages? If so, does the vendor

support them? Otherwise, can I set up my own support? What does

that process entail?

•	 Translation

Can I create and manage content in multiple languages for those who

will consume it? Are there integrations that enable translation with

other providers?

•	 Localization

Can I customize both the translation and the content for various

locales to meet different needs? For example, if I translate a

regulatory block in English to French, can I also enable content

changes for the Quebec version versus the Belgium one if the

regulatory language is only slightly different?

Baseline
capability

The ability to work with multiple languages and
locales per content item.

Advanced
capabilities

•	 The ability to define fields as being
translatable or not, such as content that
remains the same for all languages, e.g.,
metadata and imagery.

•	 A validation process through which to audit
and ensure translation coverage.

•	 Configuration of fallback to another language
in case of missing content in a language.

•	 Language-based roles and permissions.

•	 Integration with translation providers.

	
NOTE:
Internationalization can get extremely complex, let alone that vendor support is often
limited. If you do require internationalization, be sure to add it to your PoC, including, if
applicable, workaround governance and permissions to enable internationalization correctly.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: CONTENT DESIGN CREATE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4 7

A significant advantage of composable is that integrating systems is mostly a

smooth sail. Most systems contain clear APIs and methods, such as iframes,

for embedding external functionalities into the systems’ application. Given

that a digital experience in composable requires integration as a rule, a robust

solution is a key differentiator.

Contrast that approach with legacy systems, which usually mandate that

you integrate on top of their application, code in their specific programming

language, and update version references regularly—a process aptly called the

expressway to upgrade hell.

Nonetheless, some vendors enable integration more effectively than others

through concrete APIs and means for connecting applications. Similarly, if your

underlying content systems lack a reliable approach, consider a DXCP as a way

of connecting to other systems.

Baseline
capability

The ability to integrate with third-party services
within the application, e.g., connecting to a DAM
system for image or document assets.

Advanced
capabilities

•	 The ability to run customizations as
background processes.

•	 The ability on the vendor’s part to host
integration code. Absent that ability, you
must do that yourself—usually alongside
other applications.

•	 Well-documented design systems with
which partners can build integrations with
a similar look and feel of the rest of the
application.

Integration and plug-in framework

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: CREATE ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4 8

The ability to customize UIs is a default requirement for all but the simplest

scenarios. Here are two related tasks:

1.	 Adding custom fields for your domain and extending the interface as

necessary, which significantly fosters adoption and satisfaction among

content creators.

2.	 Extending the CMS to the level required.

Baseline
capability

The ability to customize content-field interfaces,
e.g., create a brand-compliant color picker.

Advanced
capabilities

•	 The ability to customize the UI for editing the
entire item.

•	 The ability to customize dashboards, i.e., the
start screens.

•	 The ability for the vendor to host the code
required for customization.

UI customization framework

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

Non-functional criteria

Functional criteria

 	 Key takeaways

Delivery model

Pricing model

Content modeling
capabilities

Internal search

Authoring interface

Preview and visual editing

DevOps and
application-management

Enterprise features

Software development kits

Delivery APIs

Rich text editing (RTE)

CDN and delivery
performance

Workflows

Governance roles and
permissions

Internationalization (i18n)

Integration and plug-in
frameworks

UI Customization
framework

CHAPTER FIVE

FUNCTIONFUNCTION: CREATE ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 4 9

To determine how much the success of your digital project
depends on composable, you must have a clear grasp of the
larger ecosystem and your requirements. The greater number of
dependent systems, the more important interoperability is, and
the more likely you’ll switch the elements within the stack.

Headless CMSes customarily offer the features and functions for
content modeling and storage along with all the other capabilities
described above. However, a modern digital experience typically
requires more functions, including those in the pages that follow.

Considerations for
composable stacks

O N E

C H A P T E R

T WO

T H R E E

F O U R

F I V E

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5 0

Even though programming languages and frameworks were among the mission-

critical choices for early resolution in an RFP process in the past, they have

been moderately upended by composable architectures.

Given the lightning-fast evolution of language frameworks and channels, you

can, hands down, try out—and discard—new frameworks with composable,

opening up new opportunities with minimal risk. Before, your vendor choices

and programming languages were inexorably linked. Not in a composable world.

Nevertheless, if you prefer a particular framework, verify that all the related

vendors offer SDKs that support that framework.

Ask these three questions while gauging front-end rendering approaches:

1.	 What frameworks does my run team prefer?

2.	 Do my main composable applications furnish SDKs for those frameworks?

3.	 Will my use case be accessing the CMS APIs live, through static-site

rendering, or both?

In addition, be aware that—

•	 A performance tradeoff is the norm. SSG sites, though loading much faster,

often require longer build times, limiting preview and causing frustration for

content creators.

•	 A common complaint against headless systems is that they deprive

business users of control when those folks are building pages because

tasks like page layout or personalization require developer help. A DXCP can

help here so that developers can continue to work on top of headless APIs

while business users manage the visual and structural elements.

Rendering of the front end and templating

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

FUNCTIONFUNCTION: VISUAL DESIGN CREATE ENGINEER

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5 1

Unless you are serving mobile devices that run your application as an app

and accessing underlying APIs directly, hosting must be in place to provide

a domain to route requests and host your site code. Some platforms offer

additional benefits, such as edge-caching and computation or rendering as a

built-in feature, e.g., Vercel Incremental Static Regeneration. You then get the

best of both worlds: fast front-end performance and minimized buildtimes.

Hosting and delivery

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

FUNCTIONFUNCTION: DEPLOY ENGINEER

https://vercel.com/docs/concepts/incremental-static-regeneration/overview

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5 2

Gartner first defined the digital experience composition category in a 2022

article Hype Cycle for Digital Commerce, 2022 and then in a later post

Innovation Insight for Digital Experience Composition. The related technology

realizes the potential of headless systems in a larger composable approach.

Gartner’s definition calls for a product that satisfies three requirements:

1.	 Prebuilt connectors for content sources, with which to reduce the amount

of data-access logic to be built by developers.

2.	 No-code or low-code tools, e.g., webpages, mobile-app screens, and

email campaigns, with which business users can create and manage

digital experiences. Those tasks involve leveraging data from the prebuilt

connectors and UX components from a design system or component

library.

3.	 Front-end orchestration, which encompasses the capabilities that make

the digital experiences composed by business users available to end-

users. Examples are front-end components and connections to CDNs.

Digital experience composition

NOTE:
Uniform is an example of a DXCP with additional capabilities
for personalization and caching of underlying systems for
improved performance.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

FUNCTIONFUNCTION: CONTENT DESIGN CREATE ENGINEER

https://www.gartner.com/interactive/hc/4016451
https://www.gartner.com/document/4017054

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5 3

Customer data is important for delivering relevant personal experiences.

The sources of customer data described below are in wide use in composable

architectures.

Customer data platforms (CDPs)

As first-party information sources that work across channels, CDPs come with

functions for cleaning data; unifying profiles, e.g., someone logging in to the

same account on multiple devices; and building audiences for personalization.

For composable, the APIs’ ease of use and ability to work with those segments

in real time are important features. Verify that you can consume those

segments into your downstream usage, either directly on your site and your

custom code, or through a personalization vendor.

B2B or account-based marketing (ABM)

ABM platforms lend an understanding of visitor-segmentation information

based upon network identifiers, affording marketers an insight into the industry,

revenue, company name, and other information. If you need a high degree of

segmentation and must qualify at scale, integrate ABM platforms into your

stack. Take into account the answers to these questions:

•	 Can I query for the information in real time for a fast consumer experience?

•	 Can I readily ascertain that my segments and content sources are

synchronized between applications and delivery to channels to avoid

duplication and accelerate content creation and deployment?

Data management platforms (DMPs)

DMPs are third-party data sources that are coordinated with advertisers and

resold. Those ads that pop up that relate to a product you browsed on a site

you visited before are likely thanks to a DMP.

DMPs are falling out of favor, however, because privacy regulations in

jurisdictions are limiting the data-sharing and metadata arrangements that

make those targeted ads effective and economical for sellers. Instead, first-

party data captured and enabled by CDPs is gaining popularity.

Customer data

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

FUNCTIONFUNCTION: ANALYZE & OPTIMIZE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5 4

While evaluating personalization in the context of composable vendors, answer

this question on how to manage content variations: Can I consume these

context variations—and create personalization rules—from within my CMS? If

the answer is no, a management issue might ensue unless solid governance is

available to prevent old content from being used in those contexts.

Another critical aspect to evaluate is front-end performance. Many

personalization solutions perform DOM replacement on the client side, i.e.,

they deliver a page to your end-user and then swap out content. Negative

consequences emerge, including the following:

•	 Content must be copied to your personalization system, limiting agility and

introducing errors in case of out-of-date content.

•	 The swap step adds time and request round trips. The resulting

performance lag might negate any uptick in content success from

effective targeting. Similarly, personalizing across systems on top of a

CMS, commerce, and search provider would be difficult, if not impossible,

without a DXCP.

Personalization

Uniform was founded to address the challenges of content

duplication and usability in headless scenarios with a focus

on personalization and speedy rendering through edge

technologies. Ultimately, we built a full DXCP.

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

FUNCTIONFUNCTION: ANALYZE & OPTIMIZE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5 5

Commerce requirements include functions related to product catalogs,

product recommendations, customer profiles, pricing, cart and checkout,

offers, and promotions, some of which constantly bleed into each other. Some

vendors offer more functions; others offer fewer. The requirements described

below actually contain categories.

Product information management (PIM) system

All commerce implementations require a product catalog, and stand-alone PIM

systems usually boast capabilities that go beyond commerce, including the

ability to associate imagery and comply with regional labeling requirements.

Since some DAM systems have PIM features as well, allow more time here to

validate the options and approaches for complex product-catalog needs.

Recommendations and search merchandising

Since larger retailers customarily recommend products through external

systems, knowledge of your datasets, the way in which to leverage them in

recommendations, and even the process of incorporating them into navigation

and product-display pages is essential. Remember that a recommendation

algorithm is only as good as the data sources behind it. So, make it a priority

to learn the input requirements of that system and the output requirements of

your data sources.

Commerce

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

FUNCTIONFUNCTION: CREATE ANALYZE & OPTIMIZE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5 6

Although most CMSes comprise internal search capabilities for authoring

findability and reference creation, those features are not on the front end,

rendering an external search index a popular element. To meet commerce- and

recommendations-oriented requirements, a specialized Recommendations and

Search Merchandising tool might be the answer.

Search

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

FUNCTIONFUNCTION: CONTENT DESIGN CREATE

https://docs.google.com/document/d/1pC2GXdKGVXUf4LGFXEE-Rb4OWL5I6z4juk6fPBjtkr0/edit#heading=h.nqscrhxnzidd
https://docs.google.com/document/d/1pC2GXdKGVXUf4LGFXEE-Rb4OWL5I6z4juk6fPBjtkr0/edit#heading=h.nqscrhxnzidd

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5 7

An effective composable platform should share content and customer data

among all your channels, including email. By sharing those same foundational

data sources, you can ensure consistent customer experiences across

channels. Be sure to validate that you can repurpose the audience segments

and content from your other systems without difficulty.

Email and marketing automation

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

FUNCTIONFUNCTION: CONTENT DESIGN CREATE ANALYZE & OPTIMIZE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5 8

Although content repositories are a resource for assessing a CMS, organizations

tend to have multiple CMSes, e.g., a DXP like Adobe Experience Manager for the

marketing site, WordPress for the corporate blog, and Contentful for the mobile

application.

To build a cohesive experience across those platforms, see that they can

integrate seamlessly or adopt a DXCP for an out-of-the-box experience.

Content repositories

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

FUNCTIONFUNCTION: CONTENT DESIGN CREATE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 5 9

DAM is a core technology for many sites filled with media: images, video,

documents, even 3D rendering assets. Even though you can handle media-

management tasks with most CMSes, you might have additional media-creation

workflow or transcoding needs, which your CMS does not support.

If you are leveraging a DAM system, which is ordinarily deeply embedded into a

content-creation process, verify that the DAM system and CMS work together.

It would be ideal if the DAM vendor supplies a plug-in for your CMS. Incorporate

the plug-in into the PoC you’re evaluating. Otherwise, see if you can effectively

assemble content and assets together on a DXCP.

Media-asset repositories

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

NOTE:
While evaluating DAM systems, verify that they are true
SaaS applications and that they deliver assets. Older DAM
systems stored assets locally and, even if they have moved
to the cloud, their delivery capabilities might be subpar.

FUNCTIONFUNCTION: VISUAL DESIGN CREATE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 6 0

A routine requirement for most organizations is collecting form submissions

related to sales and marketing activities. That task could become extremely

complex given GDPR and CCPA rules and the process of leveraging the data

for marketing and channel campaigns.

Form handling

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

Rendering of the front
end and templating

Hosting and delivery

Digital experience
composition

Customer data

Personalization

Commerce

Search

Email and marketing
automation

Content repositories

Media-asset
repositories

Form handling

FUNCTION: CREATE ANALYZE & OPTIMIZE

C O M P O S A B L E C M S E VA LUAT I O N ˙ 6 1

Before choosing a CMS for composable, become familiar with
the digital landscape and requirements for functions and
vendors. Since SaaS delivery spells faster iterations and PoC
efforts, shifting toward architectural openness creates a more
sustainable platform, necessitating foundational investment and
organizational change yet yielding long-lasting benefits.

Transition to composable calls for a lot of organizational change and advance

planning. The simple comparison to LEGO bricks is commonplace, but a more

accurate metaphor would be erecting a building with a pile of random bricks

without a manual. Besides infinite flexibility, you must also build the muscle of

knowing what pieces fit together to achieve various aims. We hope that this

guide is a useful resource, equipping you with the knowledge of the pieces you

need and the process of assembling them.

We also hope that this guide highlights the fact that you must invest more

around the organizational mindset of how to efficiently plan, learn, and adapt

well, and that a composable approach accelerates and complements that

working style. In contrast, attempting to implement composable without

changing the underlying organizational mindset results in solution gaps and

team bottlenecks rather than technology winners.

All told, as noted at the top of Chapter 1, notwithstanding all the effort, “those

who have adopted composable all agree that it’s the right thing to do.”

Conclusions

C O M P O S A B L E C M S E VA LUAT I O N ˙ 6 2

This guide was written by experts with hands-on experience
and expertise in many projects with numerous vendors in all the
categories mentioned. We hope our explanations, suggestions,
and prompts will help you succeed in your composable journey.

Acknowledgments

Much of the experience behind this guide went into building a DXCP at Uniform,

specifically to speedily propel composable projects by solving many of the

conventional challenges.

Special thanks go to these industry luminaries: Irina Guseva of Gartner

(https://gartner.com), Karen McGrane of Autogram (https://autogram.is), and

Cathy McKnight of The Content Advisory (https://contentadvisory.net), for their

external perspective and valuable feedback.

C O M P O S A B L E C M S E VA LUAT I O N ˙ 6 3

About Uniform

With Uniform Digital Experience Composition Platform (DXCP), you
can quickly combine headless services with their legacy tools in an
intuitive, visual interface on which to create web and app experiences
at a speed beyond your competitors’ belief.

While doing that, you can eliminate huge amounts of tech debt—the
most boring tasks—for developers, simultaneously freeing marketers
from waits in the developer backlog and arming those professionals
with the tools they need to efficiently and agilely meet their KPIs.

Customers that have adopted Uniform include Cobham Satcom,
Sunweb, and Triumph.

Learn more at uniform.dev and follow us on LinkedIn and Twitter.

C O M P O S A B L E C M S E VA LUAT I O N ˙ 6 3

http://www.uniform.dev
https://www.linkedin.com/company/uniformdev/
https://twitter.com/UniformDev

