
Whether you’re ready to go composable or just thinking about it,
be sure to first consider a number of factors. In particular, closely
examine how your current technologies, workflow, and tech
strategies will affect—and be influenced by—the switch.

At a recent CMSWire webinar, Digital experiences without drama:
Empower marketers and streamline development, I discussed a
cheat sheet that contains guidelines for getting composable right.
Below is a recap.

The above five steps are a prerequisite
for your decision and selection process
for building a composable stack.
For more information, watch the webinar.

Digital experiences without the drama

Composable without compromise • uniform.dev

Write up a manifest for
your future composable stack.
When building a composable-based tech stack, keep in mind that it
must be composable, not composed. Composable means easily
assembled, modified, and reassembled as requirements change. A
composed solution needs glue code to connect the composable
API-orchestration and front-end layers. The more tools you use, the
more glue code you need. That can make things … well … sticky. Plus,
the tools stay agile only for a while—pretty much until that glue dies.

Take a close look at your existing technologies, which likely
stemmed from large investments in the past. You might not want
to scrap your entire suite of solutions just because they do not
connect with modern developer tools. Instead, consider
incorporating them as part of a composable stack so that you
can continue to leverage their content, features, and assets.

1

2

3

4

5

Evaluate your current technologies

Answer these questions:

Being value-first means you are in the driver's seat,
free to focus on making the systems in the new
stack compatible with your business goals.

1.

2.

3.

What is the current workflow between design,

development, marketing, and business teams?

How can you optimize the various elements to eliminate bottlenecks

and long wait times within the workflow?

Can you streamline the workflow to start the process of creating

content, design, coding, or even optimization first with resources as

they become available so as to launch digital experiences faster?

When putting together the proof-of-concept for a composable
stack, start with your design system because that content library
is unique to your business. Next, try out different tools based on
that system for an indicator of how well they will serve your
needs based on what you want to build.

Update the workflow.

A key question to ask when selecting vendors is how much glue
code will be necessary to implement your new tech stack with
those vendors’ tools. For instance, an accelerator that’s tied to a
specific agency would require a lot of glue code and render the
stack virtually impossible for other agencies or developers to work
with in the future.

Find the right vendors
and ask the right questions.

A value-first approach focuses on the final outcome, which is
vastly different from the platform-first philosophy companies
have adopted over the past 20 years. By being platform-first,
brands are locked into a certain platform and end up having to
look for agencies that specialize in it for upgrades and
maintenance.

Adopt a value-first approach

A cheat sheet
for getting
composable right

By Lars Peterson
Cofounder and CEO, Uniform.dev

At the outset, take these five steps:

In preparation, write a manifest that describes what
you want your stack to be—and not to be—with an emphasis
on the following:

How fast the features in each tool

can be replaced or swapped given

that best-of-need solutions must

accommodate evolving needs. For

example, a tactical feature in

composable product X might be

replaced with a dedicated product

with more advanced features. If Phase

0 uses a CMS’s media capability and

then, later in Phase N, you want a

dedicated DAM for media, no CMS

switch occurs, just a swap of the

media features offered by the DAM.

What you want to avoid. For

example, too many different

spin-ups by different teams would

result in redundant tools that are

not part of the stack. Also, explain

how to build a sustainable stack

that can serve as many facets of

your business as possible.

Watch now

https://uniform.dev/resources/digital-experiences-without-drama
https://uniform.dev/blogs/composable-platforms-what-why-how
https://uniform.dev/resources/digital-experiences-without-drama
https://uniform.dev

