
1From Configuring to Controlling: Transforming Cloud Operations

From Configuring to
Controlling: Transforming
Cloud Operations
Dan Sullivan

1

CONTENTS
The way we utilize infrastructure
is increasingly similar to the way
large cloud providers manage their
infrastructure businesses� 2

The future of IaC and how control
planes are the new solution� 4

Common problems with using IaC as a
one-time blueprint� 4

Open source Crossplane provides
a universal control plane based on
Kubernetes� 6

Why Upbound is the key to taking
control planes to production� 7

Learn more about Upbound� 7

IN THIS PAPER
While there have been great leaps made in the individual realms

of software and hardware, the way businesses organize their IT

resources utilizing new software and hardware configurations has

drastically shifted infrastructure design philosophies.

In the current era, the most recent method of segmentation pushing

infrastructure design forward is containers.

Highlights include:

•	 How Kubernetes has changed the way organizations manage their

infrastructure

•	 An essential feature of modern infrastructure management is

Infrastructure as Code (IaC)

•	 Learn how Upbound’s fully managed control planes enable you to

scale your infrastructure while minimizing system administra-

tion overhead

2From Configuring to Controlling: Transforming Cloud Operations

Simply put, Kubernetes, sometimes abbreviated as

“K8s,” is an open source platform for managing contain-

erized applications and services. Announced by Google

in 2014, K8s was influenced by Borg, Google’s in-house

cluster manager, although the company worked with

The Linux Foundation and the Cloud Native Computing

Foundation (CNCF) to open source the platform.

The name itself is from the Greek term for helmsman or

pilot, with the thing it “pilots,” or orchestrates, being

containerized applications (as shown in Figure 1). This may

seem like just a fun fact, but the etymology of the name can

be useful in understanding the benefits of Kubernetes.

BENEFITS OF KUBERNETES
Kubernetes has changed the way organizations deploy

and manage infrastructure. It provides service discov-

ery to make applications and services easily accessible

by their network. It also provides load balancing, so as

workloads increase or decrease, K8s will distribute the

load and deploy or remove compute resources as needed,

and Kubernetes supports storage orchestration using

both local and cloud-based storage services. These fea-

tures cover a lot of ground, but Kubernetes deployments

often impact almost every aspect of an organization’s

infrastructure.

The foundation of any K8s environment is a description

of a desired state. The user first describes the desired

functionality and connectivity of their Kubernetes

Some of the largest advancements in information tech-

nology over the past 30 years have been behind the scenes

in infrastructure management. While there have been

great leaps made in the individual realms of software and

hardware, the way businesses organize their IT resources

utilizing new software and hardware configurations has

drastically shifted infrastructure management philosophies.

Data centers were once home to a single mainframe

running multiple applications, but the advent of server

technology shifted the common way of deploying appli-

cations. A large part of the infrastructure was dedicated to

servers each running a single application.

Then virtual machines (VMs) shifted infrastructure design

again. VMs could increase efficiency by allowing multiple

applications to run in isolated environments, but on a sin-

gle server. Each step forward has been driven by the ability

to further segment and streamline infrastructure.

The most recent method of segmentation pushing infra-

structure design forward is with containers.

The way we utilize infrastructure
is increasingly similar to the way
large cloud providers manage
their infrastructure businesses
Today, containers extend the efficiency of running appli-

cations beyond VMs, and software engineers are taking

advantage of the benefits of containerization to build

more scalable applications.

The downside is that each new container adds to the com-

plexity of the overall infrastructure, and an organization

utilizing containers will have greater management chal-

lenges than one running a small set of servers. Kubernetes

has changed the way that organizations manage their

containerized infrastructure—but what is Kubernetes?

The most recent method
of segmentation pushing
infrastructure design forward
is with containers.

Figure 1: Automated orchestration enables more efficient and
scalable use of resources

Before orchestration
platforms

With orchestration platforms

CONTROL PLANE

3From Configuring to Controlling: Transforming Cloud Operations

complex policy making and configurations to specify how

each service or resource should be managed. There’s also

a growing ecosystem of tools to support K8s manage-

ment, but each of those have their own elements of com-

plexity. One method of meeting the challenges presented

by Kubernetes deployments is using Infrastructure as

Code tools.

INFRASTRUCTURE AS CODE
Infrastructure as Code (IaC) is an essential feature of

modern infrastructure management. It allows admins

to focus on the “what” instead of worrying about the

“how.” For example, it can enable admins to specify what

specific elements of an infrastructure should be deployed,

such as the number of servers and CPUs, the amount of

memory, and the number and size of storage disks. IaC

then removes some configuration barriers.

The reduced focus on how infrastructure is deployed

means organizations don’t need to know platform-spe-

cific commands for deploying VMs, or how to configure

network rules to access them. Instead, IaC lets you specify

which networks or subnets should be accessible, then lets

the Kubernetes platform configure it for you. This means

deployment is automated while the decisions that require

human creative thinking, such as configuring infrastruc-

ture for a specific use case, can still be done manually.

In the end, IaC lets organizations treat deploying infra-

structure a lot like deploying software. Infrastructure

specifications can be treated as code, meaning version

control, code reviews, and deployment pipelines all end

up specified in written code. This all adds up to what

looks like the first iteration of a cloud-like data center

operations philosophy. But what comes next?

environment, and K8s monitors the environment for

deviations from that desired state. If that state of the

cluster deviates from the desired state then Kubernetes

will work to bring it back to its expected configuration

and functionality. This process involves the monitoring

and manipulation of many aspects of an infrastructure.

K8s works to optimize the use of compute and storage

resources to run containers efficiently. For instance,

if a cluster is underutilizing resources or found to be

redundant, K8s, in certain configurations, can remove

resources, nodes, or entire clusters to maintain efficiency.

Similarly, Kubernetes can monitor the health of con-

tainers, as well as the K8s abstractions called “pods,”

and will replace any that are failing or unhealthy. K8s

can also help manage configurations and store secrets,

such as SSH keys and OAuth tokens. While Kubernetes

comes with many benefits by being flexible and powerful,

there are many challenges associated with adopting and

deploying Kubernetes to production.

KUBERNETES CHALLENGES
First, Kubernetes is complex. It’s designed to orchestrate

many different types of resources, including compute,

storage, and networking resources. It also provides many

types of functionalities, like load balancing and health

monitoring.

What this adds up to is a platform that can facilitate many

complex interactions. For example, K8s makes it simple

to increase the number of container deployments, but this

can put a heavy load on servers or nodes. This would lead to

multiple containers experiencing a spike in workload and

cause degraded performance until the issue is resolved.

As Kubernetes impacts so much of an organization’s

infrastructure, administrators must utilize the available

tools to avoid problems such as this. Of course, many

aspects of operations are automated, and that requires

Kubernetes has changed the
way organizations deploy and
manage infrastructure.

While Kubernetes comes
with many benefits by being
flexible and powerful, there are
many challenges associated
with adopting and deploying
Kubernetes to production.

4From Configuring to Controlling: Transforming Cloud Operations

The first option is like an architectural drawing for build-

ing a house. It lays out the initial setup of the building,

but once the house is built, owners may make changes

as they see fit. Over time, those first blueprints will no

longer accurately describe the state of the house—e.g.,

walls have been added and removed, carpet has been

replaced with hardwood, and so on. This method of using

infrastructure as code lets organizations deploy an initial

infrastructure state efficiently, while still allowing you to

alter it at will moving forward.

The second approach is to use IaC as both an initial blue-

print, and a method of managing infrastructure config-

urations over time. This option is more analogous to a

flight path. It describes a course the plane will fly, and

can be used during the flight to adjust course as needed.

It’s an extended use of IaC to help manage infrastructure,

instead of just a starting point.

This option works well in dynamic environments where

changes are likely to occur, like environments where

resources like VMs or containers might fail and must be

replaced automatically.

Using the first option of utilizing IaC as an initial blue-

print, container replacement would need to be done man-

ually, allowing room for someone to deploy a VM in a way

that violates a policy. In the end, this second option lends

itself to a more robust method of self-correction and

promotes automated infrastructure management.

Common problems with using
IaC as a one-time blueprint

UNCONTROLLED CHANGES TO
CONFIGURATIONS

IaC has many advantages over manually managing

infrastructure or using imperative scripts to create

infrastructure by executing a fixed set of steps. Manual

changes to infrastructure are error-prone and diffi-

cult to scale, which is why many system administrators

have opted to write scripts that execute specific steps to

deploy infrastructure.

The future of IaC and how control
planes are the new solution
First, let’s dive a little deeper into IaC. IaC is a declara-

tive specification for what infrastructure to deploy. For

example, we can declare that we want to deploy a VM in a

cloud with 4 CPUs, 256GB of memory, 2 local SSD drives

with 500GB of storage each, and that that VM should have

access to a particular subnet in our virtual private cloud.

The entire specification is just about what the VM should

be, but no instructions about how to actually implement

what we want. IaC enables automatic implementation of

your configuration, sidestepping a manual approach. This

is the essence of IaC (see Figure 2).

There are two primary approaches to using IaC: Using

it as a blueprint for resource deployment, or using it

to specify a full deployment and what should persist

over time.

Figure 2: IT resources become something that can be
configured in software with IaC

Infrastructure Specification

CLUSTER 1

Node 1
 cpu: 4
 memory: 256 GB

Node 2
 cpu: 8
 memory: 512 GB
 SSD: 1 TB

Object Storage
 bucket 1:
 region: east
 lifecycle policy: policy1

5From Configuring to Controlling: Transforming Cloud Operations

to get right. There may be subtle dependencies between

modules that are difficult to discern.

As a result, engineers may have to spend a lot of time

refactoring their IaC modules. This in turn can be disrup-

tive on development teams if they cannot count on hav-

ing stable development environments. It can also lead to

delays in deploying production environments where it’s

important to get things right the first time.

When we do use modules, which are like software librar-

ies, developers may have to learn a new configuration

language. The effort can be worth it because using mod-

ules raises the level of abstraction for application devel-

opers. Unfortunately, it doesn’t necessarily raise the level

of control abstraction.

EXAMPLE DEPLOYMENT
LET’S CONSIDER HOW WE WOULD
DEPLOY THREE VM INSTANCES IN A
PUBLIC CLOUD USING A TOOL LIKE
HASHICORP’S TERRAFORM.
We start with creating a file that specifies the resources

we want to deploy. This requires that we tell Terraform

what cloud provider we’re working with, as well as

the region or other location information that may be

required. We then list our resources we want. In the case

of VMs, we can specify the machine type, operating sys-

tem, and other specifications.

Next, we use the command line or a CI/CD pipeline to

have the infrastructure deployed by Terraform. The IaC

tool will inspect that state of infrastructure and build

an execution plan that details the steps needed to have

the deployed infrastructure match the description in the

Terraform specification file. After the execution plan

runs, the infrastructure will be in the desired state.

Having a tool that can deploy infrastructure to our spec-

ification is a valuable resource. If there’s little to no

chance of configuration drift or unhealthy resources, this

approach to IaC may be sufficient. Engineers and system

administrators can use the command-line utility or CI/

CD pipeline to run it again whenever they think it may

be needed.

While an improvement over manually changing your

infrastructure, these scripts tend to be brittle because they

typically assume a known starting state. For example, a

script might deploy a set of VMs using a particular operat-

ing system, and assign specific IP addresses to those VMs.

This works well when all the VMs have to be deployed at

once, and none of the VMs are currently deployed.

But consider the problem of a single VM becoming

unhealthy. The script is designed to deploy all the VMs,

not detect when one has failed. In this case, a system

administrator could manually deploy a new VM or copy

and edit the script to deploy just a single instance. There’s

no way to automatically detect the changes in the state

of your infrastructure and correct for that change. This

is known as “configuration drift,” and is a significant

obstacle to smooth-running infrastructure.

Configuration drift isn’t just the result of unhealthy VMs

or containers. DevOps engineers and developers may

decide they need additional infrastructure and deploy

a new VM or create a Kubernetes cluster. This may be

acceptable in development environments, but in most

enterprises, we need to have more control over our

infrastructure.

COLLABORATION CHALLENGES

A hallmark of modern software engineering is collabora-

tion. We build and work with complex systems that can

entail an array of technologies, including custom soft-

ware applications, databases, and networks.

Creating a production environment can require contri-

butions from a team of engineers with different areas of

expertise. One person might know the details of deploy-

ing an application, while another member of the team

knows how to configure data pipelines to send data from

the application to a data warehouse. A network engineer

knows how to configure virtual private clouds, set up

subnets, and control traffic between subnets using fire-

wall rules.

Like other areas of software development, modulariza-

tion is used to manage complexity. The problem, though,

is that modularization of infrastructure as code is difficult

6From Configuring to Controlling: Transforming Cloud Operations

growth in their Slack channel, over 5,000 stars on

GitHub, and 60-plus open source providers.

Crossplane relies on “providers” to allow native

Kubernetes tools and functions to operate on any piece of

infrastructure or cloud resource, from Amazon S3 buckets

and networking to bare metal servers hosted on-prem-

ises. Providers bridge the gap between Kubernetes APIs

and operations and any third-party resource creating an

end-to-end, API-first infrastructure.

Beyond providers, Crossplane introduces the concepts

of “claims” and “compositions.” These allow infra-

structure operators to build their own customized clouds

while simplifying how developers consume these cloud

resources. Claims are custom APIs defined by the infra-

structure owners that only expose the things users care

about. For example, a claim may only allow a developer

to ask for a “small” or “medium” database. This custom

API then works in tandem with Crossplane compositions.

Compositions live on the other side of the API line and

define all the components required to provide a resource

to a developer. Things like which cloud provider, how

much disk, adding resources to monitoring systems,

and the required networking and security policies. These

things are unnecessary details to the developer but criti-

cally important to infrastructure operators.

By extending Kubernetes, all the Crossplane compo-

nents are REST API-enabled, including providers, claims,

and compositions. Everything is just another element

within the Kubernetes cluster. A VM running in Azure

and a database in AWS are both managed through the

same Kubernetes APIs and tools that manage native

pods and nodes.

A significant shortcoming of this approach is that some-

thing about the state of infrastructure can change without

someone detecting it. Our resources could be misconfig-

ured for an extended period of time until someone notices

the difference between the actual state of infrastructure

and the desired state (see Figure 3). In a worst-case sce-

nario, a service or application can be down, and the infra-

structure problem is discovered only after users complain

about a service outage.

This is a similar problem to one we find in container

orchestration, where a container may fail or there is

some other change to the deployed state of a service.

Kubernetes addresses this problem by monitoring the

state of services and compares it to the desired state: If

there are differences, Kubernetes executes actions to

bring the existing state back to the desired state. Ideally,

we would have a similar tool for managing IaC.

Open source Crossplane
provides a universal control
plane based on Kubernetes
Crossplane is an open source framework for build-

ing control planes. Crossplane extends the capabilities

of Kubernetes and provides the power of IaC with the

built-in monitoring and state enforcement capabilities

of a control plane. Terraform takes a different approach,

relying on a custom “domain specific language” and its

own methods to verify the state of the infrastructure.

Crossplane was donated to the CNCF in 2020 and

became an incubating project in 2021. The Crossplane

community is rapidly expanding with 8% monthly

Figure 3: Control planes are used to maintain the desired state
of infrastructure

CONTROL PLANE CONTROL PLANE

Crossplane extends the
capabilities of Kubernetes and
provides the power of IaC with
the built-in monitoring and
state enforcement capabilities
of a control plane.

https://slack.crossplane.io/
https://github.com/crossplane/crossplane
https://github.com/crossplane/crossplane
https://github.com/crossplane-contrib

7From Configuring to Controlling: Transforming Cloud Operations

and infrastructure they already have. Customers also

benefit from reduced costs and increase efficiency from

automating the management of complex infrastructures.

Upbound democratized control plane technology with

the Crossplane project. Upbound’s collective expertise in

Crossplane is difficult to match, and it has used its expe-

rience and knowledge of complex distributed systems to

build a platform for customizable control planes.

Learn more about Upbound
To learn more about Crossplane and how Upbound’s

managed control plane services can help you real-

ize more efficient and reliable service delivery, see

Upbound’s documentation for details on Universal

Crossplane, Upbound Cloud, Upbound Marketplace,

and Upbound Enterprise. Also, see the Upbound blog

for details about new functionality and ways of using

control plane technologies and join the Upbound Slack

channel to learn more about how Upbound is being used

in enterprises like yours.

Why Upbound is the key
to taking control planes
to production
Crossplane enables enterprises to manage their infra-

structure the way hyperscaling cloud providers do. If you

don’t want to manage your own Crossplane clusters and

expend time and staff on learning to optimize control

planes, Upbound’s fully managed control planes will

enable you to scale your infrastructure while minimizing

system administration overhead (see Figure 4).

Upbound offers a turnkey experience. Control planes pro-

vided by Upbound are designed for high performance and

security, while still supporting multi-tenancy. Upbound

also provides access to a component marketplace for rap-

idly integrating additional tools into your control plane.

Customers future-proof their infrastructure because

Crossplane can be adapted to support new types of infra-

structure. Since Upbound is designed around Crossplane,

it provides a control plane-driven approach for custom-

ers to build internal cloud platforms on top of the services

Figure 4: Upbound brings fully managed control plane services to the enterprise

Internal Cloud Platform

App App App App

DEVELOPER

OPERATOR

CROSSPLANE

App

INTERNAL CLOUD API

Identity, policy,
monitoring

Cost controls,
alerting, security

Upbound powered by
Crossplane

App App App App

https://blog.upbound.io/
http://slack.crossplane.io/
http://slack.crossplane.io/

	The way we utilize infrastructure is increasingly similar to the way large cloud providers manage their infrastructure businesses
	The future of IaC and how control planes are the new solution
	Common problems with using IaC as a one-time blueprint
	Open source Crossplane provides a universal control plane based on Kubernetes
	Why Upbound is the key to taking control planes to production
	Learn more about Upbound

