
GETTING STARTED

VIKTOR
FARCIC

WITH
CROSSPLANE

COMPOSITIONS

Compositions
This paper is the second chapter in the larger book, Crossplane: the Cloud Native Control Plane1.
It is part of a series of papers that break down the book.

If you’re curious to see some of the things Crossplane can do, check out this blog2 or the intro of
the paper. This is the second of the series, of which we covered Providers and Managed Resources
in the first3. I recommend seeing all resources beforehand to give context to what we will cover in
this paper.

Let’s explore Crossplane compositions. We won’t be talking about theory without touching the
keyboard, so I’ll keep this introduction short and jump straight into Crossplane compositions...
right after we set up the environment we’ll use in this paper. If you prefer a video version of this
paper, view my YouTube tutorial here4.

1https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
2https://blog.upbound.io/why-choose-crossplane
3https://www.upbound.io/resources/lp/whitepaper-b/crossplane-providers-and-managed-resources-getting-started
4https://youtu.be/X7E6YfXWgvE?si=2lfYnPp3b9WAHEK2

https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
https://blog.upbound.io/why-choose-crossplane
https://www.upbound.io/resources/lp/whitepaper-b/crossplane-providers-and-managed-resources-getting-started
https://youtu.be/X7E6YfXWgvE?si=2lfYnPp3b9WAHEK2

We saw how we can manage individual resources with Crossplane. If, for example, we want a VM
in AWS, Azure, or Google Cloud, all we have to do is define a Kubernetes resource that represents
it, apply it to the control plane cluster running Crossplane, and… that’s it. Crossplane takes care
of everything else.

The problem with that approach is that it is often very low-level. For example, creating and
managing a production-ready database can consist of quite a few low-level resources that require a
certain level of expertise that not everyone in an organization might have.

Most of the resources we are managing today are low-level. There is no such thing as a database in
AWS. Instead, we need to combine RDS, with a VPC, with subnets, with a gateway, and so on and
so forth. Even when we do that, we still need at least one database inside the database server, a user,
and a schema. Similarly, there is no such thing as an application in Kubernetes. We need to combine
a Deployment with an Ingress, with a Service, with Secrets, and quite a few other resources. The
same can be said for almost anything else. Software, services, and infrastructure are complex and
providers we are using are intentionally focusing on low-level services so that they can cater wide
audience. Resources are more like building blocks than final solutions.

On the other hand, we are all trying to shift left. We are trying to enable our colleagues to be
autonomous instead of waiting for someone else to assemble those building blocks for them.

As a result, we need to use experts in certain fields to create services that can be consumed by
others. A database expert can create services that will enable others to manage databases in a
way appropriate for production. A Kubernetes expert can create abstractions that define what an
application is. A security expert can bake security and policies into those services. There are many
other examples and it all boils down to experts in certain fields using their experience to create and
manage services that can be consumed by others.

The end result is an Internal Developer Platform that exposes services that simplify workflow for
developers and other software engineers.

That’s where Crossplane Compositions come in. They enable us to define what something is. They
enable us to codify our expertise and expose services as higher-level abstractions.

In this chapter, we’ll explore how to leverage Crossplane’s ability to create Custom Resource
Definitions and Controllers that will act as such services.

Chapter Setup

The setup in this chapter continues using the pattern from the previous one.

Compositions

All the commands user in this chapter are in the Gist5.

We’ll enter into the directory of the forked repository…

1 cd crossplane-tutorial

…and start Nix shell that brings all the tools we’ll need.

1 nix-shell --run $SHELL

Next, we’ll make the setup script executable,…

1 chmod +x setup/02-compositions.sh

…and execute it.

1 ./setup/02-compositions.sh

The only thing left is to source the environment variables in case we need them later.

1 source .env

Now we can explore Composite Resource Definitions.

Composite Resource Definitions

Crossplane Compositions consist of a few components. There are Composite Resource Definitions,
Compositions, and Composite Resources.

Right now, we’ll focus on the first of those. We’ll create a Composite Resource Definition.

For now, the only important thing to know about Composite Resource Definitions is that they
extend Kubernetes API by creating Custom Resource Definitions. They enable us to define what
something is.

I’ll explain everything else you need to know about them in a moment. For now, let’s take a look at
a simple example, which we’ll improve as we’re progressing through this chapter.

1 cat compositions/sql-v1/definition.yaml

The output is as follows.
5https://gist.github.com/vfarcic/08162d1f3f4954c1f420fae59704b629

https://gist.github.com/vfarcic/08162d1f3f4954c1f420fae59704b629
https://gist.github.com/vfarcic/08162d1f3f4954c1f420fae59704b629

Compositions

1 apiVersion: apiextensions.crossplane.io/v1

2 kind: CompositeResourceDefinition

3 metadata:

4 name: sqls.devopstoolkitseries.com

5 spec:

6 group: devopstoolkitseries.com

7 names:

8 kind: SQL

9 plural: sqls

10 claimNames:

11 kind: SQLClaim

12 plural: sqlclaims

13 versions:

14 - name: v1alpha1

15 served: true

16 referenceable: true

17 schema:

18 openAPIV3Schema: {}

Everything we do with Crossplane is defined as Kubernetes resources, and Composite Resource
Definitions are no exception.

The apiVersion, kind, and metadata should be self-explanatory if you have at least a basic
understanding of Kubernetes. If you don’t, I’m surprised you got this far without giving up.

The “magic” is in the spec.

The first in line is the spec.group field that defines the API group that will be created in the
Kubernetes API. That follows the rules that any Kubernetes resource definition must follow.
Deployment, for example, is in the group apps/v1. By defining groups, we are making sure that
resources are uniquely identified even if some of them have the same kind.

Further on, there is spec.names that defines the names of that resource definition, both in singular
and plural.

You can probably guess what the goal of that definition is by looking at the spec.names.kind value.
We’ll use it to define SQL (database) servers and everything they need.

I’ll leave the spec.claimNames fields a mystery for now. We’ll explore them later.

Finally, there is spec.versions that, as the name suggests, defines the versions of that resource.
It can be anything, but my recommendation is to follow Kubernetes versioning guidelines with
v1alpha1, v1beta2, v1, and so on.

Further on, there is spec.served which, essentially, tells Crossplane whether that specific version is
served to users (enabled).

Compositions

Then there is spec.referenceable which indicates which specific version is currently active or, to
use Crossplane terminology, which one can be referenced. A Composite Resource Definition can
have any number of versions, but only one can be referenceable.

Finally, there is, arguably, the most important field spec.schema which is based on Open API. I
intentionally left it blank in an attempt to create the simplest possible definition which we’ll expand
later.

Before we proceed, please bookmark the Crossplane API6 page. You’ll find the complete schema
for CompositeResourceDefinition or any other Crossplane API over there. By doing that, by
redirecting you to the docs, I can avoid going through every single API in detail and risk repeating
details written over there.

Let’s apply the definition,…

1 kubectl apply --filename compositions/sql-v1/definition.yaml

…and retrieve it from the control plane cluster.

1 kubectl get compositeresourcedefinitions

Over time, you will probably get tired from typing long resource kinds like
compositeresourcedefinition so you can also use short names like, in this case, xrd to get
the same outcome.

1 kubectl get xrds

I will continue using long names most of the time because I believe they are easier to understand,
even though they are harder to type.

For now, the main takeaway you should get from Composite Resource Definitions is that they create
and manage Kubernetes Custom Resource Definitions which is a way to extend Kubernetes API.

As proof that’s what they do, we can list all crds.

1 kubectl get crds | grep sql

The output is as follows.

1 sqlclaims.devopstoolkitseries.com 2024-01-03T16:04:16Z

2 sqls.devopstoolkitseries.com 2024-01-03T16:04:16Z

We can see that a specific Composite Resource Definition created two CRDs. We’ll ignore the first
one (sqlclaims) for now, and focus on the second (sqls).

One nice thing about Kubernetes CRDs and, through them, about Crossplane Composite Resource
Definitions, is that they are discoverable. We can, for example, ask Kubernetes to explain sqls.

6https://docs.crossplane.io/latest/api

https://docs.crossplane.io/latest/api
https://docs.crossplane.io/latest/api

Compositions

1 kubectl explain sqls.devopstoolkitseries.com --recursive

The output is as follows (truncated for brevity).

1 GROUP: devopstoolkitseries.com

2 KIND: SQL

3 VERSION: v1alpha1

4

5 DESCRIPTION:

6 <empty>

7 FIELDS:

8 apiVersion <string>

9 kind <string>

10 metadata <ObjectMeta>

11 ...

12 spec <Object> -required-

13 claimRef <Object>

14 apiVersion <string> -required-

15 kind <string> -required-

16 name <string> -required-

17 namespace <string> -required-

18 compositionRef <Object>

19 name <string> -required-

20 compositionRevisionRef <Object>

21 name <string> -required-

22 ...

23 status <Object>

24 ...

The ability to retrieve a schema or, as in this case, to explain it, might not sound very exciting but,
if that’s what you think, I will have to strongly disagree. Kubernetes’ API allows us to discover
the type of resources we can use and their schemas and that means that attempts to visualize them
through UIs, CLIs, or any other means is trivial. It would be trivial to build a “dumb” front-end that
would be able to discover what is what, to help us define resources, and to operate those resources.
With a standard, but extensible API like the one Kubernetes offers, we can easily build the tools
we need for an Internal Developer Platform. We’ll explore that in more detail in one of the next
chapters. For now, the key takeaway is that everything in Kubernetes is discoverable and since
Crossplane is Kubernetes-native, everything we do with Crossplane is discoverable as well.

From now on, we can create any number of resources based on that definition. We are yet to discover
whether that also means that we can create any number of database servers (SQLs).

Here’s one example.

Compositions

1 cat examples/sql-v1.yaml

The output is as follows.

1 apiVersion: devopstoolkitseries.com/v1alpha1

2 kind: SQL

3 metadata:

4 name: my-db

5 spec: {}

That manifest is a resource based on that definition. Values of the apiVersion and kind fields match
those of the definition. metadata contains an arbitrary name that can be anything, as long as it is
unique.

Finally, we did not set any spec fields in the definition, so that one is empty (for now).

All that’s left is to apply that SQL,…

1 kubectl apply --filename examples/sql-v1.yaml

…and celebrate.

We got our first SQL server! Our first database was born!

Let’s take a look at it by listing all sqls.

1 kubectl get sqls

The output is as follows.

1 NAME SYNCED READY COMPOSITION AGE

2 my-db False 2m41s

That does not look right. my-db is not synced. Crossplane could not even start working on it.

We can confirm that nothing really happened by outputting managed resources.

1 kubectl get managed

The output is as follows.

Compositions

1 error: the server doesn't have a resource type "managed"

There are no managed resources. Crossplane did nothing, and that was to be expected.

All we did, so far, was to define a Composite Resource Definition or XRD (1) which, essentially,
created a Kubernetes Custom Resource Definition or CRD which extended Kubernetes API with
a new resource type called SQL (2). There is no controller that would detect Composite Resources
or, in Kubernetes terminology, Custom Resources. Simply put, we extended Kubernetes API (3) but
we did not tell it what to do when resources based on that API are created.

We are missing Crossplane Compositions. Right now, we have none, and we can confirm that by
retrieving all compositions.

1 kubectl get compositions

So, for now, we can create as many SQL resources (4, 5) as we want, but there are no controllers so
there is no process that will do anything with those resources. They are just entries in etcd.

The output shows No resources found. Let’s fix that. Let’s tell Crossplane what to do when a
resource based on our definition is created.

Compositions

Defining Compositions

Before we proceed, let me state that I chose to use Google Cloud in this chapter. The first chapter
used AWS, and the second used Azure, so now it is time for Google Cloud.

That being said, just as in previous chapters, you can use any of the “big three” hyperscalers.
Explanations in this chapter will be based on examples for Google Cloud, but the logic is the same
no matter which one you chose so you should not have any trouble following along even if what
you see in your terminal is different from what you see here.

With that out of the way, let’s take a look at a Composition I prepared in advance.

1 cat compositions/sql-v1/$HYPERSCALER.yaml

The output is as follows.

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 metadata:

5 name: google-postgresql

6 labels:

7 provider: google

8 db: postgresql

9 spec:

10 compositeTypeRef:

11 apiVersion: devopstoolkitseries.com/v1alpha1

12 kind: SQL

13 resources:

14 - name: sql

15 base:

16 apiVersion: sql.gcp.upbound.io/v1beta1

17 kind: DatabaseInstance

18 spec:

19 forProvider:

20 region: us-east1

21 rootPasswordSecretRef:

22 namespace: crossplane-system

23 key: password

24 name: my-db-password

25 databaseVersion: "POSTGRES_13"

26 settings:

27 - availabilityType: REGIONAL

Compositions

28 tier: db-custom-1-3840

29 backupConfiguration:

30 - enabled: true

31 binaryLogEnabled: false

32 ipConfiguration:

33 - ipv4Enabled: true

34 authorizedNetworks:

35 - name: all

36 value: 0.0.0.0/0

37 deletionProtection: false

38 - name: user

39 base:

40 apiVersion: sql.gcp.upbound.io/v1beta1

41 kind: User

42 spec:

43 forProvider:

44 passwordSecretRef:

45 key: password

46 name: my-db-password

47 namespace: crossplane-system

48 instanceSelector:

49 matchLabels:

50 crossplane.io/composite: my-db

That is a definition of a Composition. Think of it as one of the implementations of the definition we
applied earlier.

We have metadata with a name and labels. Those are important since, as we’ll see later, they will
allow us to choose which implementation we want to use when we declare a Composite Resource.
You’ll see those in action later. For now, remember that this Composition can be identified through
a name or labels which, in my case, are set to provider: google and db: postgresql.

Next, there is spec.compositeTypeRef which tells Crossplane what the associated Composite
Resource Definition this Composition is associated with. In other words, this Composition (this
implementation) will be used whenever someone defines an SQL that has matching name or labels.
We’ll see how that works soon. For now, let’s take a look at the second component of the spec.

spec.resources array contains the list of resources that should be managed whenever someone
defines the SQL resource. In the case of Google Cloud, there are only two resources. If you’re using
AWS, you’ll notice that there are many more since AWS often forces us to combine more resources
to get something meaningful.

Each resource has a name and a base. The name is a unique identifier within a Composition, while
the base defines all the details of a resource that should be managed by that Composition. In the
case of Google Cloud, we are defining a DatabaseInstance and a User. Those two are, essentially,

Compositions

Managed Resources just like those we used in the previous chapter. The major difference is that we
are not defining those resources every single time but, instead, grouping them all together and, by
doing that, creating a new service and exposing it to others.

You’ll notice selectors like, in the case of Google Cloud, instanceSelector. Selectors deserve special
attention so we’ll go through them separately. For now, think of them as Crossplane’s way of saying:
“Let this resource get some information from this other resource or a group of resources”.

The important part is that, among other things, we are defining
spec.resources[0].base.spec.forProvider.rootPasswordSecretRef that references a Kubernetes
secret that will contain the initial password for the database. In the case of AWS, that would
be spec.resources[14].base.spec.forProvider.passwordSecretRef and, in the case of Azure it’s
spec.resources[1].base.spec.forProvider.administratorLoginPasswordSecretRef. For now,
remember that a secret with the password is required. We’ll need that knowledge later.

The rest is following the logic we explored in the previous chapter. Each resource defines specific
parameters like the region, databaseVersion, and so on and so forth.

As a result, we should have a database server with everything it needs.

Actually, that’s wrong. That database server will not have everything we need but, rather, it is a
start that leads us towards the path that ends with everything we might need.

Even though my examples are based on Google Cloud, that is only one of the three Compositions
we are defining and relating to the Composite Resource Definition. We can see that all three of them
are in the compositions directory.

1 ls -1 compositions/sql-v1

The output is as follows.

1 aws.yaml

2 azure.yaml

3 definition.yaml

4 google.yaml

We are about to apply all the manifests in that directory and, as a result, we’ll get the definition that
we already applied, and three Compositions, one for each of the major hyperscalers.

1 kubectl apply --filename compositions/sql-v1

The output is as follows (truncated for brevity).

Compositions

1 Warning: ... "VPC.ec2.aws.upbound.io" not found

2 Warning: ... "Subnet.ec2.aws.upbound.io" not found

3 Warning: ... "SubnetGroup.rds.aws.upbound.io" not found

4 Warning: ... "InternetGateway.ec2.aws.upbound.io" not found

5 Warning: ... "RouteTable.ec2.aws.upbound.io" not found

6 Warning: ... "Route.ec2.aws.upbound.io" not found

7 Warning: ... "MainRouteTableAssociation.ec2.aws.upbound.io" not found

8 Warning: ... "RouteTableAssociation.ec2.aws.upbound.io" not found

9 Warning: ... "SecurityGroup.ec2.aws.upbound.io" not found

10 Warning: ... "SecurityGroupRule.ec2.aws.upbound.io" not found

11 Warning: ... "Instance.rds.aws.upbound.io" not found

12 composition.apiextensions.../aws-postgresql created

13 Warning: ... "ResourceGroup.azure.upbound.io" not found

14 Warning: ... "Server.dbforpostgresql.azure.upbound.io" not found

15 Warning: ... "FirewallRule.dbforpostgresql.azure.upbound.io" not found

16 composition.apiextensions.../azure-postgresql created

17 compositeresourcedefinition.apiextensions.../sqls.devopstoolkitseries.com unchanged

18 Warning: ... "DatabaseInstance.sql.gcp.upbound.io" not found

19 Warning: ... "User.sql.gcp.upbound.io" not found

20 composition.apiextensions.../google-postgresql created

We can see that three Compositions (aws-postgresql, azure-postgresql, and google-postgresql)
were created. As a result, Crossplane spun up a controller that will manage resources based on that
definition. We’ll see the controller in action in a moment.

We can also notice from that output that that we got quite a few warnings.

The definitions of individual resources that constitute Compositions are not available. Just as we did
in the previous chapter, we need to apply Providers that contain definitions behind those resources.

Later on, we’ll see how we can package Compositions into Configurations that will auto-install the
required providers. But that’s the story for later so, for now, we’ll apply the providers manually.
They are defined in providers/sql-v1.yaml, so let’s take a look at it.

1 cat providers/sql-v1.yaml

The output is as follows.

Compositions

1 ---

2 apiVersion: pkg.crossplane.io/v1

3 kind: Provider

4 metadata:

5 name: provider-aws-ec2

6 spec:

7 package: xpkg.upbound.io/upbound/provider-aws-ec2:v0.47.1

8 ---

9 apiVersion: pkg.crossplane.io/v1

10 kind: Provider

11 metadata:

12 name: provider-aws-rds

13 spec:

14 package: xpkg.upbound.io/upbound/provider-aws-rds:v0.47.1

15 ---

16 apiVersion: pkg.crossplane.io/v1

17 kind: Provider

18 metadata:

19 name: provider-gcp-sql

20 spec:

21 package: xpkg.upbound.io/upbound/provider-gcp-sql:v0.41.0

22 ---

23 apiVersion: pkg.crossplane.io/v1

24 kind: Provider

25 metadata:

26 name: provider-azure-dbforpostgresql

27 spec:

28 package: xpkg.upbound.io/upbound/provider-azure-dbforpostgresql:v0.40.0

Over there, just as we did in the previous chapter, we have a few providers. There are ec2 and rds

providers from the AWS family. We need both since RDS (SQL) in AWS requires some EC2 resources
as well. Then there is sql provider from GCP (Google Cloud Platform), and dbforpostgresql from
Azure.

Let’s apply those,…

1 kubectl apply --filename providers/sql-v1.yaml

…and take a look at package revisions.

1 kubectl get pkgrev

The output is as follows (truncated for brevity).

Compositions

1 NAME HEALTHY REVISION IMAGE ...

2 .../provider-aws-rds-... 1 .../provider...

3 .../provider-azure-dbforpostgresql-... False 1 .../provider...

4 .../provider-gcp-sql-... Unknown 1 .../provider...

As we saw earlier, each of the providers can have any number of resource definitions so we might
end up with hundreds of CRDs. As a result, it might take a while until they are all loaded and ready
to go. So, we might need to wait for a bit until we see the status of all of the Providers as HEALTHY.

After a while, once all the Providers are healthy, we can re-run kubectl get pkgrev.

1 kubectl get pkgrev

The output is as follows (truncated for brevity).

1 NAME HEALTHY REVISION IMAGE ...

2 .../provider-aws-ec2-bc4e31f08ec6 True 1 .../provider...

3 .../provider-aws-rds-410139ed4243 True 1 .../provider...

4 .../provider-azure-dbforpostgresql-7905967328cb True 1 .../provider...

5 .../provider-gcp-sql-ac45452bc4d2 True 1 .../provider...

6 .../upbound-provider-family-aws-461aea25f5b4 True 1 .../provider...

7 .../upbound-provider-family-azure-f70e43ba7cb1 True 1 .../provider...

8 .../upbound-provider-family-gcp-d0f27e03505b True 1 .../provider...

Now that all the providers are HEALTHY, we can proceed to configure them.

Here’s the configuration for the provider that matches your choice of the hyperscaler.

1 cat providers/$HYPERSCALER-config.yaml

The output is as follows.

1 ---

2 apiVersion: gcp.upbound.io/v1beta1

3 kind: ProviderConfig

4 metadata:

5 name: default

6 spec:

7 projectID: dot-20231226202303

8 credentials:

9 source: Secret

10 secretRef:

11 namespace: crossplane-system

12 name: gcp-creds

13 key: creds

Compositions

We already learned how to work with providers so there’s probably no need to explain that Provider
Configuration. The only important note is that, even though we are creating Compositions for all
three hyperscalers, we’ll configure only one of them since that should be sufficient for what we are
about to explore next.

So, let’s apply the provider config,…

1 kubectl apply --filename providers/$HYPERSCALER-config.yaml

…and, retrieve the Compositions we created earlier.

1 kubectl get compositions

1 NAME XR-KIND XR-APIVERSION AGE

2 aws-postgresql SQL devopstoolkitseries.com/v1alpha1 6m55s

3 azure-postgresql SQL devopstoolkitseries.com/v1alpha1 6m55s

4 google-postgresql SQL devopstoolkitseries.com/v1alpha1 6m55s

All three Compositions associated with the SQL kind are up and running and we can, finally, start
managing database servers. To do that, we’ll have tomodify the Composite Resource we used before.
Here’s the updated version.

1 cat examples/$HYPERSCALER-sql-v1.yaml

The output is as follows.

1 ---

2 apiVersion: v1

3 kind: Secret

4 metadata:

5 name: my-db-password

6 namespace: crossplane-system

7 data:

8 password: cG9zdGdyZXM=

9 ---

10 apiVersion: devopstoolkitseries.com/v1alpha1

11 kind: SQL

12 metadata:

13 name: my-db

14 spec:

15 compositionSelector:

16 matchLabels:

17 provider: google

18 db: postgresql

Compositions

To begin with, we’re defining a “standard” Kubernetes Secret that contains the password that will
be used as the initial password for the database server. We already saw the reference to that Secret
when we explored the Composition itself.

Besides the Secret, there’s a modified version of the SQL definition we created earlier. While the
spec field was empty before, now it contains spec.compositionSelector. That’s one of the ways
to select which variation, which implementation of the SQL one wants to use. In this case, it’s clear
that it is Google Cloud, but it could be AWS, or Azure as well.

The interesting thing about that SQL definition is that we are letting consumers of the service choose
what they want without having to deal with all the implementation details. A user could choose
to run a database in any of the major hyperscalers with a change to the provider label. What will
happen in the background is completely different since each hyperscaler works differently yet, to a
user of the SQL service it is all the same. Those differences are becoming implementation details he
or she does not care about.

If we created additional Compositions, we could have enabled people to choose between, let’s say,
PostgreSQL and MySQL, or anything else we want. Still, for the sake of keeping this chapter
relatively short, I did not include additional Compositions. PostgreSQL running in AWS, Azure,
and Google Cloud should be more than enough, for now.

Another thing you’ll notice is that we are not letting users choose anything but the provider. We
could create a better experience by, for example, letting people choose the size of the database server
or the version of PostgreSQL. We might do that later. For now, we’re keeping it simple. The only
choice that can be made is the provider.

Let’s apply the Secret and SQL Composite Resource,…

1 kubectl apply --filename examples/$HYPERSCALER-sql-v1.yaml

…and execute crossplane trace (we explored it in the first chapter) to see the SQL and all the child
resources it might create.

1 crossplane beta trace sql my-db

The output is as follows.

1 NAME SYNCED READY STATUS \

2

3 SQL/my-db True False Creating...

4 ├─ DatabaseInstance/my-db-schrw True False Creating \

5

6 └─ User/my-db-mdmsv True False Creating

Compositions

In the case of Google Cloud, we can see that SQL/my-db created two resources; DatabaseInstance
and User. Both are not READY and the status says that it is Creating them. As a result, the parent
resource SQL/my-db is also not READY.

It will take a while for all the resources spun up from the SQL Composite Resource to be ready.
How much it takes varies from one hyperscaler to another as well as the number of resources that
should be created. Take a break. Get some coffee. When you’re back, the process should finish, and
we can execute the crossplane trace command again.

1 crossplane beta trace sql my-db

The STATUS of all the resources is now Available.

We did it. We managed to create a service that enables everyone to create and manage PostgreSQL
in any of the three major hyperscalers and we made it as easy for them as it can get.

If you are a skeptic and do not take my word for granted, you can open the console of your favorite
hyperscaler and see that the database server and all the related resources are indeed up and running.

So, what did we build?

We created Compositions for SQL database servers in AWS, Google Cloud, and Azure (1). Cross-
plane, in turn, created a Controller that watches for Composite Resources (2). From now on, when
someone applies a Composite Resource to the control plane cluster, the controller will “expand” it
into all the Managed Resources required to run the PostgreSQL server in the selected hyperscaler. If,
for example, the matchLabels.provider is set to google (3), the Crossplane controller will expand
the Composite Resource into Managed Resources required to run the database server in Google
Cloud (4). Similarly, if someone applies a Composite Resource that sets the matchLabels.provider
to aws (5), the controller will expand it into Managed Resources required to run the database server
in AWS.

Compositions

Now, to be honest, what we have done so far is far from perfect. Consumers of the SQL service have
no influence over the outcome, all Crossplane resources are cluster-scoped, which is far from
perfect and potentially insecure, database servers we are creating have no databases inside them,
and quite a few other things. We’ll fix or implement all of those, and quite a few others. We just
started. From now on, we’ll be improving those compositions until we reach perfection.

The first thing we should fix is the selectors we used.

Compositions

Resource References and Selectors

Let’s get back for a moment and take a look at one of the definitions we used in the previous chapter.

1 cat examples/$HYPERSCALER-vm.yaml

The output is as follows (truncated for brevity).

1 ---

2 apiVersion: compute.gcp.upbound.io/v1beta1

3 kind: Instance

4 metadata:

5 name: my-vm

6 spec:

7 forProvider:

8 ...

9 networkInterface:

10 - networkRef:

11 name: dot-network

12 ...

13 ---

14 apiVersion: compute.gcp.upbound.io/v1beta1

15 kind: Network

16 metadata:

17 name: dot-network

18 ...

The Instance resource is referencing the Network through the
spec.forProvider.networkInterface.networkRef set to hard-coded dot-network. Essentially, we
told Crossplane that it can take the information it needs for Instance from the Network resource
named dot-network.

That worked, but that wasn’t necessarily the best way to reference a resource.

We used a better approach earlier in this chapter when we defined the Compositions, so let’s take
another look at what we did (and what I did not yet explain).

1 cat compositions/sql-v1/$HYPERSCALER.yaml

The output is as follows (truncated for brevity).

Compositions

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 metadata:

5 name: google-postgresql

6 ...

7 spec:

8 ...

9 resources:

10 - name: sql

11 base:

12 apiVersion: sql.gcp.upbound.io/v1beta1

13 kind: DatabaseInstance

14 spec:

15 ...

16 - name: user

17 base:

18 apiVersion: sql.gcp.upbound.io/v1beta1

19 kind: User

20 spec:

21 forProvider:

22 ...

23 instanceSelector:

24 matchLabels:

25 crossplane.io/composite: my-db

In this case, the User resource needs information about the DatabaseInstancewhere the user should
reside. Since, among other things, Crossplane automatically injects labels crossplane.io/composite
into all resources managed by a Composition, we used that one to tell the User how to find the
DatabaseInstance. That, however, is a bad solution. It contains the hard-coded value my-db. If
we created a Composite Resource named anything else, the User would either fail to find the
DatabaseInstance or it would find a wrong one (the one from some other Composition).

Fortunately, there is a much better and easier way to reference resources within a Composition.

Let’s take a look at an updated version of the Composition.

1 cat compositions/sql-v2/$HYPERSCALER.yaml

The output is as follows (truncated for brevity).

Compositions

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 metadata:

5 name: google-postgresql

6 ...

7 spec:

8 ..

9 resources:

10 - name: sql

11 base:

12 apiVersion: sql.gcp.upbound.io/v1beta1

13 kind: DatabaseInstance

14 spec:

15 forProvider:

16 ...

17 - name: user

18 base:

19 apiVersion: sql.gcp.upbound.io/v1beta1

20 kind: User

21 spec:

22 forProvider:

23 ...

24 instanceSelector:

25 matchControllerRef: true

This time, instead of referencing (selecting) resources using names or labels we are setting
matchControllerRef to true. That can be translated to: “If you need information from the
DatabaseInstance, find it yourself. It’s somewhere in the Composition. Don’t ask me how to find
it. Figure it out.”

More often than not, matchControllerRef will be the main, if not the only way you’ll reference
managed resources within a Composition. Nevertheless, that’s not the only way to select resources.
We’ll explore others later and, if you are impatient, you can consult the documentation.

All that’s left is to apply modified Compositions.

1 kubectl apply --filename compositions/sql-v1

You will not notice any tangible change to managed resources since the change we just applied is
only a better way to accomplish the same result as what we had before. If we created a Composite
Resource that was not named my-db, then we would see a different outcome since the previous
version would fail due to the hard-coded my-db selector.

Compositions

Next, we’ll explore patchingwhich is probably one of the most important features of Compositions.
Patching enables us to customize the experience. But, before we dive into it, we’ll delete the
Composition and, through it, all the child resources it manages.

1 kubectl delete --filename examples/$HYPERSCALER-sql-v1.yaml

There’s one more thing I want to show by listing all the Managed Resources. We need to do that
before all the resources are removed.

1 kubectl get managed

The output is as follows (truncated for brevity).

1 NAME READY SYNCED EXTERNAL-NAME AGE

2 databaseinstance.../my-db-schrw False True my-db-schrw 17m

Take a look at the names of the resources. My databaseinstance is called my-db-schrw. That’s
bad. A small annoyance is that we might want to have predictable names for Kubernetes resources.
Maybe we would prefer it to be called my-db (without the randomized suffix). More importantly,
that is the name of the database server that was created in Google Cloud. You can observe that
through the EXTERNAL-NAME column in that output. We should be able to name resources any way
we want. Right? As a matter of fact, that will be a good example we can use next when we explore
patching.

Wait until all the resources are deleted before moving to patching.

Patching

The time has come to extend our Composite Resource Definition.

Let’s say that wewould like to enable users of our Database-as-a-Service solution to be able to specify
the version of the database and the size. Tomake it more interesting, we’ll try to avoid people having
to know what are all the available sizes in AWS, Azure, and Google Cloud by allowing them to
choose from three sizes; small, medium, and large. We’ll figure out how to map those sizes to the
correct values in the hyperscaler they choose.

How does that sound?

A potential solution is in the updated version of the definition so let’s take a look at it.

1 cat compositions/sql-v3/definition.yaml

The output is as follows (truncated for brevity).

Compositions

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: CompositeResourceDefinition

4 metadata:

5 name: sqls.devopstoolkitseries.com

6 spec:

7 ...

8 versions:

9 - name: v1alpha1

10 ...

11 schema:

12 openAPIV3Schema:

13 type: object

14 properties:

15 spec:

16 type: object

17 properties:

18 id:

19 type: string

20 description: Database ID

21 parameters:

22 type: object

23 properties:

24 version:

25 description: The DB version depends...

26 type: string

27 size:

28 description: "Supported sizes: small, medium, large"

29 type: string

30 default: small

31 required:

32 - version

33 required:

34 - parameters

The previous version had the openAPIV3Schema empty. Now it defines two fields; id and parameters.
While id is a string, parameters is an object meaning that it contains additional fields version
and size.

Besides definitions of the fields that form the schema, version, and parameters fields are set as
required.

Everything we defined in spec.versions[].schema.openAPIV3Schema follows the same rules as
those we’d follow when defining Kubernetes CustomResourceDefinition. So, the experience

Compositions

required to write CompositeResourceDefinition is the same as creating CustomResourceDefinition
(plus a few additional fields which we might comment on later).

That’s it. That’s all there is to it (for now), so let’s apply the modified version of the definition.

1 kubectl apply --filename compositions/sql-v3/definition.yaml

Now that we introduced a few additional fields in the Composite Resource Definition, we should
modify our Compositions to take advantage of those changes.

Let’s take a look at a modified version of the Composition.

1 cat compositions/sql-v3/$HYPERSCALER.yaml

There are a few changes we should discuss, so I’ll break the output into smaller pieces.

A part of the output is as follows.

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 ...

5 spec:

6 ...

7 patchSets:

8 - name: metadata

9 patches:

10 - fromFieldPath: metadata.annotations

11 toFieldPath: metadata.annotations

12 - fromFieldPath: spec.id

13 toFieldPath: metadata.name

14 ...

To begin with, there is spec.patchSets with a name and a list of patches. Those happen to
be using the most common pattern for patching with fromFieldPath and toFieldPath. We can
translate them as take metadata.annotations value from the Composite Resource and put it into
metadata.annotations of a Managed Resource. So, whichever annotations we define in the
Composite Resource will be the annotations propagated to the Managed Resource. As you already
know, metadata.annotations are “standard” Kubernetes fields available in any resource.

A more interesting patch is the one that takes spec.id and puts it into metadata.name. Actually,
there is nothing special about it from the patching perspective. “Take the value from the parent
resource and put it to a resource managed by that Composition”. What makes it interesting, rather
than special, is that spec.id is a custom field. That’s one of the fields we added to the new definition
as a way to enable users to specify a unique identifier for database resources.

Compositions

I mentioned that a patch like the one we’re discussing (there are other types) takes values from the
Composition Resources and puts them into a resource managed by that Composition. However, that
patchSet does not specify which resources will be patched. We’ll see how to tell Crossplane which
resources to patch soon. Right now we’ll move to the next change.

Not only that parts of that Composition were added or updated, but some were removed.

For example, spec.resources[0].base.spec.forProvider.rootPasswordSecretRef.name from the
Google Composition is now gone completely. In the previous iteration, it contained the hard-coded
value my-db-password and we already established that hard-coded values are not a good idea if they
vary from one resource to another. The name of the secret that contains the password should not
be my-db-password but the name of the Composite Resource (whichever one chooses) with a suffix
-password. So, I removed the hard-coded value, and we’ll see soon what we’ll use instead.

Similarly, spec.resources[0].base.spec.forProvider.databaseVersion that was set to hard-
coded value POSTGRES_13 is gone as well. The value of that field should be replaced by whatever
someone chooses to put as the value of the version field we added to the definition. The same is
true for the tier. It’s gone as well and it should be replaced with the size.

Another snippet of the output is as follows.

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 ...

5 spec:

6 ...

7 resources:

8 - name: sql

9 ...

10 patches:

11 - type: PatchSet

12 patchSetName: metadata

13 - fromFieldPath: spec.parameters.version

14 toFieldPath: spec.forProvider.databaseVersion

15 transforms:

16 - type: string

17 string:

18 fmt: POSTGRES_%s

19 - fromFieldPath: spec.parameters.size

20 toFieldPath: spec.forProvider.settings[0].tier

21 transforms:

22 - type: map

23 map:

24 small: db-custom-1-3840

Compositions

25 medium: db-custom-16-61440

26 large: db-custom-64-245760

27 ...

This is the part where we patch specific resources. The first one in the Google Composition (sql) got
the patches section that has the type set to PatchSet followed by the patchSetName set to metadata.
That’s where the patchSetswe commented on earlier are used. Instead of defining repetitive patches
over and over again, we defined them as patchSets and now we’re telling Crossplane to apply them
to the sql resource. As a result, the annotations and the name will be patched with values from the
Composite Resource.

The next patch contains the fromFieldPath and toFieldPath just as those we saw in patchSets. Its
goal is to replace the databaseVersion in Google Cloud managed database with whatever someone
chooses to be the version. But there is a problem.

While we expect users to specify something like 13 as the PostgreSQL version, Google Cloud expects
it to be something like POSTGRES_13.

I do not want to force users to deal with the intricacies of specific hyperscalers. Instead, I consider it
my job to translate expected input (e.g., 13) into input required by a hyperscaler (POSTGRES_13). To
mitigate that, the second patch adds transforms to the mix. In this specific case, it can be translated
to “transform the input value defined as a string into this format (fmt): POSTGRES_%s. As a result,
%s will be replaced with whichever value is retrieved from spec.parameters.version. So, apart
from retrieving the value from one resource and using it to patch another, we are also applying a
transformation which, in this case, is to format a string.

The next one is also using a transformation but in a very different way. It takes the
spec.parameters.size value and uses it to patch the spec.forProvider.settings[0].tier

field. That’s the size field we added to the definition and, as you probably remember, the goal of
the size field is to allow users to specify whether they want a small, a medium, or a large database
server. Now, as you can probably imagine, hyperscalers have a large variety of sizes we can choose
from, and none of them is small, medium, or large. So, we have to do the translation and that’s
why this patch has type set to map. It allows us to map an input value into something else. It acts
as a map in any programming language.

In this case, we are telling Crossplane that it should convert small to db-custom-1-3840, medium to
db-custom-16-61440, and large to db-custom-64-245760. If you’re looking at AWS or Azure, you’ll
see a similar mapping but with different values. They are based on the sizes those hyperscalers offer.

There are a few other patches but they all follow the same pattern so there’s probably no need to go
through them. Instead, we’ll apply modified Compositions before we see them in action.

1 kubectl apply --filename compositions/sql-v3

Finally, we can incorporate those new “capabilities” into the Composite Resource we used so far.
Here’s the updated version.

Compositions

1 cat examples/$HYPERSCALER-sql-v3.yaml

The output is as follows.

1 ...

2 apiVersion: devopstoolkitseries.com/v1alpha1

3 kind: SQL

4 metadata:

5 name: my-db

6 annotations:

7 organization: DevOps Toolkit

8 author: Viktor Farcic <viktor@farcic.com>

9 spec:

10 id: my-db

11 compositionSelector:

12 matchLabels:

13 provider: google

14 db: postgresql

15 parameters:

16 version: "13"

17 size: small

We added a few metadata.annotations so that we can test that one of the patches we defined works.
Further on, spec.id, spec.parameters.version, and spec.parameters.size fields were added as
well.

That manifest can be translated to “give me a postgresql server in google, make sure that the
version is 13, and make it small without making me learn which nodes in Google classify as small.”
The user, the person who defined that manifest, gained more freedom to specify what matters while
still not having to deal with low-level details and intricacies of the hyperscaler of choice.

If you are using Azure, you’ll notice that we changed the name from my-db to my-db-2. Azure does
not allow repeated names for some of its resources like SQL, even if those resources were deleted. So,
the spec.id changed to my-db-2. Otherwise, since we already have my-db and deleted it, it would fail
to create a new one with the same name.

Let’s apply the Composite Resource…

1 kubectl apply --filename examples/$HYPERSCALER-sql-v3.yaml

…and trace the progress.

Compositions

1 crossplane beta trace sql my-db

The output is as follows (truncated for brevity).

1 NAME SYNCED READY STATUS

2 SQL/my-db True False Creating...

3 ├─ DatabaseInstance/my-db True False Creating

4 └─ User/my-db False False ReconcileError:...

Those resources will eventually be ready and, while waiting for that to happen, we can make a few
observations.

To begin with, the names of managed resources are now my-db. There is no auto-generated suffix
anymore. We got that change because one of the patches made sure that the name of a resource is
the same as the value of the new spec.id field we added to the definition. Using auto-generated
suffixes is a good practice that helps us avoid conflicts, but I like my resources to have “proper”
names so we ignored the “best practice”.

Next, we’ll check whether the annotations we added to the Composite Resource were indeed added
to Managed Resources. To do that, we’ll create an environment variable XR with the full name of
any of the Managed Resources we created…

1 # Replace `[...]` with the full name of the one the Managed Resources.

2 export XR=[...]

…and output that resource as YAML.

1 kubectl get $XR --output yaml

The output is as follows (truncated for brevity).

1 apiVersion: sql.gcp.upbound.io/v1beta1

2 kind: DatabaseInstance

3 metadata:

4 annotations:

5 author: Viktor Farcic <viktor@farcic.com>

6 ...

7 organization: DevOps Toolkit

8 ...

We can see that the Managed Resource was indeed patched with annotations from the Composite
Resource.

Feel free to confirm that other patches were applied as well, or simply trust me when I say that they
all did. The size and the version we specified were applied to the relevant resources.

Now that the PostgreSQL server is up and running, we need to figure out how to connect to it.
Otherwise, what’s the point of having a database that cannot be used?

Compositions

Managing Connection Secrets

We have a PostgreSQL database but, right now, it is just sitting there not being used by anyone or
anything. We need a way to connect to it. Fortunately, Crossplane can combine all the secrets
generated by the Managed Resources into a single Kubernetes Secret. All we have to do is tell it
where to put that secret.

Let’s take a look at a modified version of the Composition.

1 cat compositions/sql-v4/$HYPERSCALER.yaml

The output is as follows (truncated for brevity).

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 ...

5 spec:

6 writeConnectionSecretsToNamespace: crossplane-system

7 ...

8 resources:

9 - name: sql

10 base:

11 apiVersion: sql.gcp.upbound.io/v1beta1

12 kind: DatabaseInstance

13 spec:

14 ...

15 writeConnectionSecretToRef:

16 namespace: crossplane-system

17 patches:

18 ...

19 - fromFieldPath: spec.id

20 toFieldPath: spec.writeConnectionSecretToRef.name

21 ...

To begin with, we’re telling Crossplane through spec.writeConnectionSecretsToNamespace to store
the secret that contains all the confidential and connection information generated through Managed
Resources in the crossplane-system Namespace. Think of that field as being the default location
for the Secret which can be overwritten for specific resources.

Further down, we are overwriting the Namespace where the secret will be stored through the
spec.resources[0].base.spec.writeConnectionSecretToRef.namespace value. That wasn’t
really necessary since the value (crossplane-system) is the same as what we set through

Compositions

spec.writeConnectionSecretsToNamespace but I wanted to show that we can overwrite the
Namespace for the Secret from that specific resource. That capability will become important later
when we switch to Namespace-scoped resources.

Finally, since it would be silly to have all SQL Secrets with the same name, we are using patching to
set the value of spec.writeConnectionSecretToRef.name of that resource to whatever the spec.id
is in the Composite Resource.

That’s it, for now, so let’s apply the Compositions…

1 kubectl apply --filename compositions/sql-v4

…and output the Secrets in the crossplane-system Namespace.

1 kubectl --namespace crossplane-system get secrets

The output is as follows (truncated for brevity).

1 NAME TYPE DATA AGE

2 ...

3 my-db connection.crossplane.io/v1alpha1 10 13s

4 my-db-password Opaque 1 8m24s

5 ...

We can see that, besides the my-db-password secret we created as a way to provide the initial
password, there is now my-db that should contain all the information on how to connect to the
database server.

We have a slight complication with the demo since the database and the secret are called my-db if
you’re using AWS or Google Cloud, or my-db- with a timestamp suffix if it’s Azure. To mitigate
that discrepancy, we’ll store the name of the database to an environment variable.

Locate the secret with the name that starts with my-db- and has a timestamp suffix if you are using
Azure, copy it, and use it as the value in the command that follows.

1 export DB=my-db

Now we can retrieve the Secret and output it to YAML to get a sneak peak into the data it contains.

1 kubectl --namespace crossplane-system get secret $DB \

2 --output yaml

The output is as follows (truncated for brevity).

Compositions

1 apiVersion: v1

2 data:

3 attribute.root_password: cG9zdGdyZXM=

4 connectionName: ZG90LTIwMjQwMTAzMTk0MDU2OnVzLWVhc3QxOm15LWRi

5 password: cG9zdGdyZXM=

6 privateIP: ""

7 publicIP: MzUuMTk2LjQ3LjEwNQ==

8 serverCACertificateCert: LS0tLS1CRUd...

9 serverCACertificateCommonName: Qz1VUyxP...=

10 serverCACertificateCreateTime: MjAyNC0wMS0wM1QxOT...

11 serverCACertificateExpirationTime: MjAzMy0xMi0zMV...

12 serverCACertificateSha1Fingerprint: OWMyNzVjNjB...

13 kind: Secret

14 ...

The output will differ from one hyperscaler to another since the information each provides and the
keys used to represent that information might be different. We’ll see, later on, how we can unify
that. For now, what matters, is that all the information is available. In the case of Google Cloud,
we can see that, among other information, the password and the publicIP are available.

As you probably already know, data in Kubernetes Secrets is base64 encoded so we need to decode
the data if we would like to use it to connect to the database server.

We’ll do that soon.

Combining Providers in Compositions

We created a database server so the next logical step would be to try to connect to it and confirm
that it works as expected.

We’ll get the information like the user, the password, and the host from the Secret Crossplane
provided.

Since we have not yet unified the format of that Secret, the commands might differ from one
hyperscaler to another.

Let’s start with the user.

Execute the command that follows only if you are using Azure or AWS.

1 export PGUSER=$(kubectl --namespace crossplane-system \

2 get secret $DB --output jsonpath="{.data.username}" \

3 | base64 -d)

Execute the command that follows only if you are using Google Cloud.

Compositions

1 export PGUSER=postgres

Next, we’ll retrieve the password.

1 export PGPASSWORD=$(kubectl --namespace crossplane-system \

2 get secret $DB --output jsonpath="{.data.password}" \

3 | base64 -d)

Then we’ll get the key that holds the host in the Secret.

Execute the command that follows only if you are using Azure.

1 export HOST_KEY=endpoint

Execute the command that follows only if you are using AWS.

1 export HOST_KEY=host

Execute the command that follows only if you are using Google Cloud.

1 export HOST_KEY=publicIP

Finally, we’ll use that key to retrieve the host itself.

1 export PGHOST=$(kubectl --namespace crossplane-system \

2 get secret $DB --output jsonpath="{.data.$HOST_KEY}" \

3 | base64 -d)

Now we’re ready to connect to the database.

Since I did not want to assume that you have psql on your laptop, and since I was too lazy to add
it to shell.nix, we’ll run it inside a container based on the bitnami/postgresql image.

1 kubectl run postgresql-client --rm -ti --restart='Never' \

2 --image docker.io/bitnami/postgresql:16 \

3 --env PGPASSWORD=$PGPASSWORD --env PGHOST=$PGHOST \

4 --env PGUSER=$PGUSER --command -- sh

Once inside the container with psql, we can execute the command that connects to the remote
PostgreSQL server…

Compositions

1 psql --host $PGHOST -U $PGUSER -d postgres -p 5432

…and list all the databases.

1 \l

We have a problem though. We can see system-level databases inside that server, but not one that
we would use from, let’s say an application.

We should try to extend our Compositions to add a database to the PostgreSQL server. While we’re
at it, we might just as well extend them to provide a unified format for the Secret we’re generating.

So, let’s get out of the psql shell…

1 exit

…and out of the container.

1 exit

Right now, we are missing a way to generate a database inside the server and to create a uniform
Secret with the information on how to connect to the database. We cannot do either of those tasks
with the providers we’re currently using. AWS, Azure, and Google Cloud providers do not have
resource definitions for those types of operations. Fortunately, other providers can do just what we
need and there is no limit to which resources we can include in Compositions. The fact that, let’s
say, one of the compositions manages PostgreSQL in Google, does not mean that we are limited only
to what we can do through the Google Cloud API. We can, for example, include the SQL provider
to manage databases inside database servers and we can add theKubernetes provider to create any
Kubernetes resource, including the Secret we discussed.

Let’s take a look at yet another version of the Composition.

1 cat compositions/sql-v5/$HYPERSCALER.yaml

There are four new resources in that Composition, so I’ll break the output into smaller pieces; one
for each of the new resources.

A part of the output is as follows (truncated for brevity).

Compositions

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 metadata:

5 name: google-postgresql

6 ...

7 spec:

8 ...

9 resources:

10 ...

11 - name: sql-config

12 base:

13 apiVersion: postgresql.sql.crossplane.io/v1alpha1

14 kind: ProviderConfig

15 metadata:

16 name: default

17 spec:

18 credentials:

19 source: PostgreSQLConnectionSecret

20 connectionSecretRef:

21 namespace: crossplane-system

22 sslMode: require

23 patches:

24 - type: PatchSet

25 patchSetName: metadata

26 - fromFieldPath: spec.id

27 toFieldPath: spec.credentials.connectionSecretRef.name

28 ...

We can add a database through the SQL Provider7. For it to work correctly, it needs to be configured
so that it can authenticate to the PostgreSQL server. Hence, we are doing the ProviderConfig as a
new resource to the Composition. That config will use credentials from the Secret we’re gener-
ating. Since the Secret name is the same as the value of the spec.id field in Composite Resources,
we’re patching the ProviderConfig so that spec.credentials.connectionSecretRef.name field of
the Managed Resource has the value taken from the spec.id field of the Composite Resource.

There’s one important thing to note here. The SQL ProviderConfig expects a Secret with credentials
in a specific format. Hence, besides the need to have secrets with credentials in the same format
no matter which hyperscaler provider we’re using, this ProviderConfig forces us to use the specific
format.

Please note that Azure PostgreSQL Server already stores the credentials in the Secret with exactly
the same format, so there’s no need to create it separately. Hence, if you are using Azure, you’ll

7https://github.com/crossplane-contrib/provider-sql

https://github.com/crossplane-contrib/provider-sql
https://github.com/crossplane-contrib/provider-sql

Compositions

notice that the third and the fourth new resources we’ll explore are missing.

Now that we saw that we added ProviderConfig which will enable the SQL provider to talk to the
PostgreSQL database server we are managing, we can move on to the next new resource.

The snippet with the second new resource is as follows.

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 metadata:

5 name: google-postgresql

6 ...

7 spec:

8 ...

9 resources:

10 ...

11 - name: sql-db

12 base:

13 apiVersion: postgresql.sql.crossplane.io/v1alpha1

14 kind: Database

15 spec:

16 forProvider: {}

17 patches:

18 - type: PatchSet

19 patchSetName: metadata

20 - fromFieldPath: spec.id

21 toFieldPath: spec.providerConfigRef.name

22 ...

This is a simple one. We’re adding Database Managed Resource, from the SQL provider we
configured earlier, and making sure that it is using the correct configuration by patching
spec.providerConfigRef.name with the value from spec.id. That resource will create and manage
a database with the same name as the name of the resource itself, so there’s nothing special to do
given the metadata.name field is patched through the metadata PatchSet.

Let’s move to the third new resource.

The snippet with the third new resource is as follows.

Compositions

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 metadata:

5 name: google-postgresql

6 ...

7 spec:

8 ...

9 resources:

10 ...

11 - name: kubernetes

12 base:

13 apiVersion: kubernetes.crossplane.io/v1alpha1

14 kind: ProviderConfig

15 spec:

16 credentials:

17 source: InjectedIdentity

18 patches:

19 - fromFieldPath: metadata.annotations

20 toFieldPath: metadata.annotations

21 - fromFieldPath: spec.id

22 toFieldPath: metadata.name

23 transforms:

24 - type: string

25 string:

26 fmt: "%s-sql"

27 ...

We can use object resources from the Kubernetes provider8 to create any Kubernetes resource,
including Secrets. But, just as with the SQL provider, first, we need to apply ProviderConfig which
will tell the Kubernetes provider how to find the cluster where it should create the secret. We’re
doing that by saying that the source of the credentials is InjectedIdentity which, essentially,
means that it should manage resources in the cluster where it’s running. It could be a different
cluster and we’ll explore that option in one of the upcoming chapters.

Now we can explore the last resource we added to the Composition.

The snippet with the fourth new resource is as follows.

8https://marketplace.upbound.io/providers/crossplane-contrib/provider-kubernetes

https://marketplace.upbound.io/providers/crossplane-contrib/provider-kubernetes
https://marketplace.upbound.io/providers/crossplane-contrib/provider-kubernetes

Compositions

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 metadata:

5 name: google-postgresql

6 ...

7 spec:

8 ...

9 resources:

10 ...

11 - name: sql-secret

12 base:

13 apiVersion: kubernetes.crossplane.io/v1alpha1

14 kind: Object

15 metadata:

16 name: sql-secret

17 spec:

18 forProvider:

19 manifest:

20 apiVersion: v1

21 kind: Secret

22 metadata:

23 namespace: crossplane-system

24 data:

25 port: NTQzMg==

26 references:

27 - patchesFrom:

28 apiVersion: sql.gcp.upbound.io/v1beta1

29 kind: User

30 namespace: crossplane-system

31 fieldPath: metadata.name

32 toFieldPath: stringData.username

33 - patchesFrom:

34 apiVersion: v1

35 kind: Secret

36 namespace: crossplane-system

37 fieldPath: data.password

38 toFieldPath: data.password

39 - patchesFrom:

40 apiVersion: v1

41 kind: Secret

42 namespace: crossplane-system

43 fieldPath: data.publicIP

Compositions

44 toFieldPath: data.endpoint

45 patches:

46 - type: PatchSet

47 patchSetName: metadata

48 - fromFieldPath: spec.id

49 toFieldPath: spec.references[0].patchesFrom.name

50 - fromFieldPath: spec.id

51 toFieldPath: spec.references[1].patchesFrom.name

52 transforms:

53 - type: string

54 string:

55 fmt: "%s-password"

56 - fromFieldPath: spec.id

57 toFieldPath: spec.references[2].patchesFrom.name

58 - fromFieldPath: spec.id

59 toFieldPath: spec.forProvider.manifest.metadata.name

60 - fromFieldPath: spec.id

61 toFieldPath: spec.providerConfigRef.name

62 transforms:

63 - type: string

64 string:

65 fmt: "%s-sql"

That’s a long one.

We are creating an Object which can be any Kubernetes resource. In this case, we’re creating a
Secret with a hard-coded port set to encoded value NTQzMg== which, in its decoded form is 5432.
There’s no reason not to have it hard-coded since it is always that port.

The interesting part is the references section with a few patchesFrom. Those allow us to get
information from any resources in a Kubernetes cluster, nomatter whether that resource was created
by Crossplane or any other process. The first one is getting a value from the User resource and
adding it to the secret as the username. The second takes the value from one Secret and puts it into
the password, and the third one from a different Secret which will end up being the endpoint. All
that might not be obvious just by looking at the patchesFrom sections. Parts of that puzzle are in
the patches which, in this case, are patching patchesFrom.

We’re still missing something. We introduced two new Providers into our Compositions and we
need to deploy them as well, at least until we figure out how to automate that part. This time,
however, one of the providers will require a bit of extra work.

Let’s take a look at the updated version of the providers.

1 cat providers/sql-v5.yaml

The output is as follows (truncated for brevity).

Compositions

1 ...

2 apiVersion: pkg.crossplane.io/v1

3 kind: Provider

4 metadata:

5 name: provider-sql

6 spec:

7 package: crossplane/provider-sql:v0.7.0

8 ---

9 apiVersion: v1

10 kind: ServiceAccount

11 metadata:

12 name: crossplane-provider-kubernetes

13 namespace: crossplane-system

14 ---

15 apiVersion: rbac.authorization.k8s.io/v1

16 kind: ClusterRoleBinding

17 metadata:

18 name: crossplane-provider-kubernetes

19 subjects:

20 - kind: ServiceAccount

21 name: crossplane-provider-kubernetes

22 namespace: crossplane-system

23 roleRef:

24 kind: ClusterRole

25 name: cluster-admin

26 apiGroup: rbac.authorization.k8s.io

27 ---

28 apiVersion: pkg.crossplane.io/v1alpha1

29 kind: ControllerConfig

30 metadata:

31 name: crossplane-provider-kubernetes

32 spec:

33 serviceAccountName: crossplane-provider-kubernetes

34 ---

35 apiVersion: pkg.crossplane.io/v1

36 kind: Provider

37 metadata:

38 name: crossplane-provider-kubernetes

39 spec:

40 package: xpkg.upbound.io/crossplane-contrib/provider-kubernetes:v0.9.0

41 controllerConfigRef:

42 name: crossplane-provider-kubernetes

Compositions

The first resource is easy to explain. It is the crossplane/provider-sql Provider. The Kubernetes
provider is a bit trickier since we need to make sure that it has permissions to create additional re-
sources through the Kubernetes API. So, we are creating a ServiceAccount and ClusterRoleBinding
that gives that ServiceAccount permissions. Further on, there is ControllerConfigwhich references
that ServiceAccount. Finally, the Kubernetes Provider is configured through controllerConfigRef

to use that ControllerConfig. It’s a handful, but it works and is pretty much how you would
create ServiceAccount and ClusterRoleBinding for any other non-Crossplane process that needs
to perform some operations through the Kubernetes API inside the same cluster.

Let’s apply those providers,…

1 kubectl apply --filename providers/sql-v5.yaml

…output all package revisions,…

1 kubectl get pkgrev

…and wait until they are all HEALTHY.

Once all package revisions are HEALTHY, we can go ahead and apply modified Compositions.

1 kubectl apply --filename compositions/sql-v5

Now we can go back to the container with psql,…

1 kubectl run postgresql-client --rm -ti --restart='Never' \

2 --image docker.io/bitnami/postgresql:16 \

3 --env PGPASSWORD=$PGPASSWORD --env PGHOST=$PGHOST \

4 --env PGUSER=$PGUSER --command -- sh

…enter the client,…

1 psql --host $PGHOST -U $PGUSER -d postgres -p 5432

…and list all databases.

1 \l

The output is as follows (truncated for brevity).

Compositions

1 ...

2 Name | Owner |...

3 ---------------+-------------------+...

4 cloudsqladmin | cloudsqladmin |...

5 my-db | my-db |...

6 postgres | cloudsqlsuperuser |...

7 template0 | cloudsqladmin |...

8 | |...

9 template1 | cloudsqlsuperuser |...

10 | |...

11 (5 rows)

We can see that this time, there is a new database my-db. The mission was successful. From now on,
every time someone chooses to create a PostgreSQL server in any of the hyperscalers, a database
and a Secret with a uniform format will be created as well.

Here’s the summary of what we did.

We created a Composite Resource (XR) (1, 2) which created Managed Resources (MR) (3). Some
of those Managed Resources (MR) created a database server and networking (4, 5) through the
hyperscaler API. We had that before. What’s new is that one of those Managed Resources (MR)
created a database directly inside the database server (6) and the other collected information from
other resources (7) and generated the Kubernetes Secret inside the same cluster (8).

Compositions

Compositions

This is still not a good solution though. We need to switch fromCluster-scoped Composite Resources
to Namespace-scoped Composite Claims. But, before we do that, we’ll remove the Composite
Resource so that we can start over.

Let’s exit the psql client,…

1 exit

…and the container,…

1 exit

…delete the Composite Resource,…

1 kubectl delete --filename examples/$HYPERSCALER-sql-v3.yaml

…and list all Managed Resources.

1 kubectl get managed

It might take a while until all the Managed Resources are deleted. So, repeat the kubectl get

managed command until you see that everything is gone.

*The database might not be deleted if the database server it was created in ends up being deleted
first. That issue will be fixed later when we explore Crossplane Usage. Execute the command that
follows only if the database resource is left.

1 kubectl patch database.postgresql.sql.crossplane.io $DB \

2 --patch '{"metadata":{"finalizers":[]}}' --type=merge

Now we can discuss Composite Claims.

Defining Composite Claims

All the resources we created so far are cluster-scoped. That means that they are managed on the
cluster level and not inside Namespaces. That is potentially problematic since Namespaces are
typically used to separate teams or types of resources, apply RBAC and policies, and quite a few
other things we normally do in Kubernetes, and that we will explore later. The bad news is that we
cannot change the scope of Composite and Managed Resources. They are always cluster-scoped.
However, we can add new types of Crossplane resources to the mix. We can use Composite Claims
which are Namespace-scoped and which can be used to create Composite Resources. Not only
that, but with Claims we can also have more control over the location of Secrets, Objects, and other
Namespace-scoped resources. As a matter of fact, we already defined everything we need to use
Claims but I sneakily avoided mentioning those parts.

Let’s take another look at the Composite Resource Definition we applied earlier.

Compositions

1 cat compositions/sql-v5/definition.yaml

The output is as follows (truncated for brevity).

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: CompositeResourceDefinition

4 metadata:

5 name: sqls.devopstoolkitseries.com

6 spec:

7 ...

8 names:

9 kind: SQL

10 plural: sqls

11 claimNames:

12 kind: SQLClaim

13 plural: sqlclaims

14 ...

The spec.names field is the one we used as the kind of Composite Resources. Just below it is
spec.claimNames which does the same but for Composite Claims.

That’s it. There is nothing “special” we have to do. With spec.claimNames we can create
Namespace-scoped Claims instead of going directly for cluster-scoped Compositions. All we have
to do, in this case, is set kind to SQLClaim instead of SQL. Hence, we could create a Claim right
away, but we won’t do that just yet. Instead, we’ll make a few modifications to our Compositions.
Specifically, we’ll change Compositions so that the Secret with database authentication is created
in the same Namespace where we’ll apply the Claim.

Let’s take a look at a modified version of the Composition.

1 cat compositions/sql-v6/$HYPERSCALER.yaml

The output is as follows (truncated for brevity).

Compositions

1 ---

2 apiVersion: apiextensions.crossplane.io/v1

3 kind: Composition

4 metadata:

5 name: google-postgresql

6 ...

7 spec:

8 ...

9 resources:

10 - name: sql

11 ...

12 patches:

13 ...

14 - fromFieldPath: spec.claimRef.namespace

15 toFieldPath: spec.forProvider.rootPasswordSecretRef.namespace

16 - name: user

17 ...

18 patches:

19 ...

20 - fromFieldPath: spec.claimRef.namespace

21 toFieldPath: spec.forProvider.passwordSecretRef.namespace

22 - name: sql-config

23 ...

24 patches:

25 ...

26 - fromFieldPath: spec.claimRef.namespace

27 toFieldPath: spec.credentials.connectionSecretRef.namespace

28 ...

29 - name: sql-secret

30 ...

31 patches:

32 ...

33 - fromFieldPath: spec.claimRef.namespace

34 toFieldPath: spec.references[1].patchesFrom.namespace

35 ...

36 - fromFieldPath: spec.claimRef.namespace

37 toFieldPath: spec.forProvider.manifest.metadata.namespace

That is a very straightforward change. The spec.writeConnectionSecretsToNamespace entry that
was previously set to hard-coded crossplane-system is now gone. Similarly, all the places where
we had namespace set to crossplane-system are gone as well. We don’t want Secrets to be created
in the crossplane-system Namespace anymore. We want them to be in the same Namespace where
Claims are created so we replaced those hard-coded namespace values with patches. Crossplane

Compositions

will automatically add spec.claimRef.namespace to all Composite Resources created by Claims so
we’re using those in patches to populate namespace fields.

That’s it, for now. We can proceed and apply changes to the Compositions.

1 kubectl apply --filename compositions/sql-v6

Next, we’ll make two tiny modifications to the Composite Resource we used so far, so let’s take a
look at a modified version.

1 cat examples/$HYPERSCALER-sql-v6.yaml

The output is as follows (truncated for brevity).

1 apiVersion: devopstoolkitseries.com/v1alpha1

2 kind: SQLClaim

3 ...

The first thing you’ll notice, even though it’s not in the output, is that the metadata.namespace entry
in the Secret is now gone. That’s the Secret we’re using to define the initial password (the one we’ll
get rid of later). From now on, that Secret will be created in whichever Namespace we choose to run
the Claim instead of the crossplane-system Namespace. We already modified the Composition to
know how to fetch it through patches that retrieve the value from the spec.claimRef.namespace

field in Compositions.

The second change is that the kind is now SQLClaim (it was SQL before). We specified in the
Composite Resource Definition that Composite Resources (cluster-scoped) have kind SQL and Claims
have it set to SQLClaim. Those can be any names and you do not have to add Claim as a suffix, but
you do need to make them unique (within the API group).

Now we can apply the Claim by executing kubectl apply. What makes the command different is
that this time, we’re specifying --namespace so that the Secret and the Claim are created in a specific
Namespace.

1 kubectl --namespace a-team apply \

2 --filename examples/$HYPERSCALER-sql-v6.yaml

As a result, we can retrieve all the sqlclaims.

1 kubectl --namespace a-team get sqlclaims

The output is as follows.

Compositions

1 NAME SYNCED READY CONNECTION-SECRET AGE

2 my-db True False 15s

If we try to create some kind of a developer portal (which we will do later), users would be working
exclusively with Claims and we could hide access to Compositions and Managed resources with
RBAC. That’s not mandatory but, if we do something like that, we will have a clear separation
between resources end-users create and manage (Claims) and resources administrators can see
(everything). Those rules can be easily enforced through policies, RBAC, and quite a few other
means.

Hence, end-users would only see the resources in specific Namespaces, which, in this case, would
be the SQLClaim in the a-team Namespace.

Administrators, on the other hand, could still see everything through, among other means,
crossplane trace commands.

1 crossplane beta trace sqlclaim my-db --namespace a-team

The output is as follows (truncated for brevity).

1 NAME SYNCED READY STATUS

2 SQLClaim/my-db (a-team) True False Waiting...

3 └─ SQL/my-db-tzvhj True False Creating...

4 ├─ DatabaseInstance/my-db True False Creating

5 ├─ User/my-db False False ReconcileError:...

6 ├─ ProviderConfig/my-db - -

7 ├─ Database/my-db False - ReconcileError:...

8 ├─ ProviderConfig/my-db-sql - -

9 └─ Object/my-db True True Available

We can see that the SQLClaim created Composition SQL which, in turn, created several Managed
Resources. The Claim is in the a-team Namespace while all other resources are cluster-scoped.

It’ll take a while until all the hyperscaler resources are created.

Once all the resources are Available, we can confirm that the my-db Secret with the authentication
is, this time, created in the a-team Namespace (the same one where the Claim is running) instead of
the crossplane-system Namespace we hard-coded in previous iterations of the Compositions.

1 kubectl --namespace a-team get secrets

The output is as follows.

Compositions

1 NAME TYPE DATA AGE

2 my-db Opaque 4 2m18s

3 my-db-password Opaque 1 2m18s

The my-db Secret is there.

Everything seems to be working correctly and the exploration of Crossplane Compositions con-
cluded, for now. Compositions are probably the most important feature of Crossplane and we
will continue improving them as we progress exploring other features of Crossplane as well as the
Kubernetes ecosystem as a whole.

Nevertheless, we are done with this chapter and we can proceed towards destruction.

Destroy Everything

Please execute the commands that follow to destroy everything we did in this chapter. The next
chapter will start with a fresh setup.

1 chmod +x destroy/02-compositions.sh

2

3 ./destroy/02-compositions.sh

4

5 exit

Conclusion
To take the next step in your Crossplane journey to learn about Configuration Packages and
Composition Functions, check out my full book, Crossplane: the Cloud Native Control Plane9.
It’ll give you the whole picture on how to implement Crossplane and more!

9https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane

https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane

	Table of Contents
	Introduction
	Chapter Setup
	A Glimpse Into the Future
	Destroy Everything

	Providers and Managed Resources
	Chapter Setup
	Crossplane Providers
	Create Managed Resources
	Continuous Drift-Detection and Reconciliation
	Update Managed Resources
	Delete Managed Resources
	Destroy Everything

	Compositions
	Chapter Setup
	Composite Resource Definitions
	Defining Compositions
	Resource References and Selectors
	Patching
	Managing Connection Secrets
	Combining Providers in Compositions
	Defining Composite Claims
	Destroy Everything

	Configuration Packages
	Chapter Setup
	Building Configuration Packages
	Installing Configuration Packages
	Destroy Everything

	Composition Functions
	Chapter Setup
	What's Missing?
	Patch and Transform Function
	Go Templating Function
	Auto-Ready Function
	Building and Pushing Configuration Package
	Destroy Everything

	The End?
	Blank Page

