
GETTING STARTED

VIKTOR
FARCIC

WITH
CROSSPLANE

CONFIGURATION
PACKAGES

Configuration Packages
This paper is the third chapter in the larger book, Crossplane: the Cloud Native Control Plane1. It
is part of a series of papers that break down the book.

If you’re curious to see some of the things Crossplane can do, check out this blog2 or the intro of
the paper. This is the third of the series, of which we covered Providers and Managed Resources3
and Compositions4 in the previous two. I recommend seeing all resources (or the full book)
beforehand to give context to what we will cover in this paper.

Let’s explore Crossplane Configuration Packages. We won’t be talking about theory without
touching the keyboard, so I’ll keep this introduction short and jump straight into Crossplane
Configuration Packages... right after we set up the environment we’ll use in this paper. If you
prefer a video version of this paper, view my YouTube tutorial here5.

In the previous paper, we built Compositions that encapsulate managed PostgreSQL databases in
AWS, Azure, and Google Cloud. Those enabled us to provide a simple service that allows anyone
to create a database and everything required for it to run successfully, while, at the same time,
converting the complexity into an implementation detail.

1https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
2https://blog.upbound.io/why-choose-crossplane
3https://www.upbound.io/resources/lp/whitepaper-b/crossplane-providers-and-managed-resources-getting-started
4https://www.upbound.io/resources/lp/whitepaper-b/crossplane-compositions-getting-started
5https://youtu.be/ompdPvaHn0U?si=5HlQhqsoVaMLigZz

https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
https://blog.upbound.io/why-choose-crossplane
https://www.upbound.io/resources/lp/whitepaper-b/crossplane-providers-and-managed-resources-getting-started
https://www.upbound.io/resources/lp/whitepaper-b/crossplane-compositions-getting-started
https://youtu.be/ompdPvaHn0U?si=5HlQhqsoVaMLigZz

In the previous chapter, we built Compositions that encapsulate managed PostgreSQL databases in
AWS, Azure, and Google Cloud. Those enabled us to provide a simple service that allows anyone
to create a database and everything required for it to run successfully, while, at the same time,
converting the complexity into an implementation detail.

We still have a distribution problem though. We would need to instruct people managing the
control plane to apply the Providers, Composite Resource Definitions, and Compositions. We
would need to distribute all those manifests we wrote. While that is not necessarily a bad idea,
especially if we are using GitOps tools like Argo CD and Flux, there might be a better way to
distribute all that.

We can build OCI (what you might call Docker) images that package everything Crossplane needs
to run a set of Compositions. We call them Configuration Packages which, just like Providers
and, as you will discover later, Functions, are all variations of Crossplane Packages. Those are the
ones we saw when we were retrieving Package Revisions with the kubectl get pkgrev command.

Hence, this chapter is dedicated to Crossplane Configuration Packages which provide a mecha-
nism to distribute Composite Resource Definitions, Compositions, and Providers they depend on.

Let’s start by setting up everything we’ll need for the hands-on part of this chapter.

Chapter Setup

You already know what to do.

All the commands user in this chapter are in the Gist6.

We’ll enter the directory with the crossplane-tutorial fork unless you’re already there,…

1 cd crossplane-tutorial

…run Nix Shell,…

1 nix-shell --run $SHELL

…make the setup script executable,…

6https://gist.github.com/vfarcic/3f4f9bf05c937b9f12e6bcb43f3c0bc7

Configuration Packages

https://gist.github.com/vfarcic/3f4f9bf05c937b9f12e6bcb43f3c0bc7
https://gist.github.com/vfarcic/3f4f9bf05c937b9f12e6bcb43f3c0bc7

Configuration Packages

1 chmod +x setup/03-configurations.sh

…and run it.

1 ./setup/03-configurations.sh

The only thing left is to source the environment variables.

1 source .env

Building Configuration Packages

I have a feeling that you might think that I am trying to trick you by hiding something so let’s start
by showing that there is (almost) nothing in the control plane cluster we’re currently using.

Are there any Compositions?

1 kubectl get compositions

Nope. The output says No resources found.

How about Packages?

1 kubectl get pkgrev

It’s still no resources found.

I’ll leave it to you to discover that there is indeed nothing in the cluster except Crossplane itself and
a Secret with the credentials for whichever hyperscaler you chose.

Unlike in the previous chapters, we did not apply Packages, Compositions, Composite Resource
Definitions, or any other type of resources we used so far. I wanted to ensure that we can package
all of those into a container image and apply it to a “virgin” control plane.

Actually, that’s not really true, but we’ll get to the exceptions later.

Now, let’s take a look at a directory that contains a new version of the Compositions by entering
into the directory,…

1 cd compositions/sql-v7

…and listing everything inside.

Configuration Packages

1 ls -1

The output is as follows.

1 aws.yaml

2 azure.yaml

3 crossplane.yaml

4 definition.yaml

5 google.yaml

That whole directory is a copy of the last one we used in the previous chapter. I did not modify
Compositions or the Composite Resource Definition. Those are exactly the same. But there is a new
file over there. A Configuration was added to the crossplane.yaml file. That’s the new addition
to the mix, so let’s take a look at it.

1 cat crossplane.yaml

The output is as follows (truncated for brevity).

1 apiVersion: meta.pkg.crossplane.io/v1

2 kind: Configuration

3 metadata:

4 name: dot-sql

5 annotations:

6 meta.crossplane.io/maintainer: Viktor Farcic (@vfarcic)

7 meta.crossplane.io/source: github.com/vfarcic/crossplane-tutorial

8 meta.crossplane.io/license: MIT

9 meta.crossplane.io/description: Fully operational PostgreSQL...

10 meta.crossplane.io/readme: A Configuration package that defines...

11 spec:

12 crossplane:

13 version: ">=v1.14.0"

14 dependsOn:

15 - provider: xpkg.upbound.io/upbound/provider-aws-ec2

16 version: ">=v0.36.0"

17 - provider: xpkg.upbound.io/upbound/provider-aws-rds

18 version: ">=v0.36.0"

19 - provider: xpkg.upbound.io/upbound/provider-azure-dbforpostgresql

20 version: ">=v0.33.0"

21 - provider: xpkg.upbound.io/upbound/provider-gcp-sql

22 version: ">=v0.33.0"

23 - provider: crossplane/provider-sql

Configuration Packages

24 version: ">=v0.5.0"

25 # - provider: xpkg.upbound.io/crossplane-contrib/provider-kubernetes

26 # version: ">=v0.10.0"

That Configuration is a Kubernetes resource like anything else related to Crossplane. It contains a
few informative annotations unless we publish the Configuration to Upbound Marketplace7.

The “real” action is in the spec section.

Over the, we are specifying that the minimum crossplane version is v1.14.0. That one is important
if we use features in Compositions that were added to a specific Crossplane version. We’ll see one
of those that became available in Crossplane 1.14 in one of the upcoming chapters.

Finally, there is the spec.dependsOn array with a list of Providers and their versions. Since our
Compositions use AWS ec2 and rds, Azure dbforpostgresql, Google Cloud’s sql, and sql Providers,
those are the ones we specified here. As you’ll see soon, all of those Providers will be installed
automatically when we apply the Configuration.

We also used the kubernetes Provider, but that one is commented on in the Configuration. If
you remember from the previous chapter, the Kubernetes Provider needs “extra” resources like the
ServiceAccount, ClusterRoleBinding, and ControllerConfig. Also, the Kubernetes Provider needs
to be modified to use that ControllerConfig. Otherwise, if we do not apply all those, the Kubernetes
Provider would not have permissions to create resources through the Kubernetes API, just as AWS,
Azure, and Google Cloud Providers need configurations with authentication. Unfortunately, those
cannot be put into the Configuration Package. I should have removed it from the Configuration but
I thought to leave it there commented as a reminder that it needs to be applied separately.

Now that we have seen the Configuration, we can build a Configuration Package that will contain
that Configuration together with all Compositions and Composite Resource Definitions from that
directory.

All we have to do is execute crossplane xpkg build,…

1 crossplane xpkg build

…and take another look at the files in that directory.

1 ls -1

The output is as follows.

7https://marketplace.upbound.io/

https://marketplace.upbound.io/
https://marketplace.upbound.io/

Configuration Packages

1 aws.yaml

2 azure.yaml

3 crossplane.yaml

4 definition.yaml

5 dot-sql-b1062aa3bfc8.xpkg

6 google.yaml

We can see that dot-sql-*.xpkg file was added. That’s the file that we’ll push to a container image
registry. That’s the OCI image that contains a Configuration Package with (almost) everything
needed to run Composite Resources and Composite Resource Claims.

Next, we’ll push that package to a container image registry.

We could use any registry. It could be Docker Hub, GitHub Registry, Harbor, or whatever you
might be using to store your container images. But, to keep it simple and the same for all following
this book, we’ll use Upbound Registry. It’s free and it is the home to most, if not all public
Configuration Packages, Providers, and most of the other resources we are or will be using in this
book.

First, we need to create an Upbound account, so please open accounts.upbound.io8, and create an
account if you do not have it already.

Since I prefer a terminal over a console in a browser, at least when there are some actions to be
performed, we’ll do the rest of the steps through the Up CLI9, even though we could perform some
of them through the GUI as well.

Let’s log in…

1 up login

…and create a new repository.

1 up repository create dot-sql

For those who do prefer “pretty colors”, we can see the newly created repository by opening the
marketplace10 in a browser.

From there on, open the user in the top-right corner of the screen, and choose which account you’d
like to manage. If you just registered, you have only one.

8https://accounts.upbound.io
9https://docs.upbound.io/reference/cli
10https://marketplace.upbound.io

https://accounts.upbound.io
https://docs.upbound.io/reference/cli
https://marketplace.upbound.io
https://accounts.upbound.io
https://docs.upbound.io/reference/cli
https://marketplace.upbound.io

C o nfi g ur ati o n P a c k a g es

We c a n s e e t h e n e wl y cr e at e d r e p osit or y.

C o nfi g ur ati o n P a c k a g es

If we e nt er i nt o it, w e g et t h e d e pr essi n g m ess a g e t h at t h er e ar e n o p a c k a g es i nsi d e it. We’ll c h a n g e
t h at s o o n.

We ’r e d o n e wit h t h e M ar k et pl a c e R e p osit or y, a n d n o w w e c a n t ur n o ur att e nti o n t o w ar d p us hi n g
t h e p a c k a g e w e b uilt e arli er. B ut, b ef or e w e d o t h at, w e n e e d t o a ut h e nti c at e c r o s s p l a n e C LI wit h
t h e r e p osit or y w e j ust cr e at e d.

C o nfi g ur ati o n P a c k a g es

First, w e’ll st or e t h e us er n a m e i n t h e U P _ U S E R v ari a bl e, …

1 # R e p l a c e ` [. . .] ` w i t h t h e u s e r n a m e

2 e x p o r t U P _ U S E R = [. . .]

… a n d l o gi n.

1 c r o s s p l a n e x p k g l o g i n - - u s e r n a m e $ U P _ U S E R

N o w w e ar e r e a d y t o p us h t h e p a c k a g e.

1 c r o s s p l a n e x p k g p u s h x p k g . u p b o u n d . i o / $ U P _ U S E R / d o t - s q l : v 0 . 0 . 7

T h at’s it. T h e C o nfi g ur ati o n P a c k a g e w as p us h e d a n d n o w it is a v ail a bl e t o a n y o n e w h o h as
p er missi o ns t o us e it w hi c h, i n t his c as e, is a n y o n e si n c e w e cr e at e d a p u bli c r e p osit or y.

We c a n r efr es h t h e r e p osit or y i n t h e br o ws er t o c o nfir m t h at t h e p a c k a g e is t h er e.

A p art fr o m t h e f a ct t h at t h e C o nfi g ur ati o n P a c k a g e is n o w st or e d i n t h e U p b o u n d M ar k et pl a c e
R e gistr y, it c o ul d b e a n y ot h er c o nt ai n er i m a g e r e gistr y, w e c a n als o s e e t h at it is n ot y et p u blis h e d.
T h at m e a ns t h at t h e P a c k a g e is n ot list e d i n t h e M ar k et pl a c e. We’ll k e e p it li k e t h at, m ai nl y t o a v oi d
h u n dr e ds of d o t - s q l p a c k a g es a p p e ari n g i n t h e M ar k et pl a c e. Aft er all, t his is a d e m o a n d n ot a
“r e al” P a c k a g e t h at y o u w o ul d li k e t o s h ar e wit h t h e w orl d. T h e i nstr u cti o ns ar e str ai g htf or w ar d
a n d I’ll ass u m e t h at, if y o u d o d e ci d e t o s h ar e y o ur cr e ati o n, y o u will h a v e n o tr o u bl e f oll o wi n g
t h e m.

We’ll d el et e t h e p a c k a g e si n c e w e d o n ot n e e d it a n y m or e o n o ur l o c al fil e s yst e m, …

Configuration Packages

1 rm dot-sql-*.xpkg

…and we’ll get back to the root of the directory with the fork.

1 cd ../..

Here’s what we did.

We took our Compositions, Composite Resource Definition, and Configuration and packaged it all
into an OCI image. We pushed that image to the container image registry, and now it is available
to be deployed to any cluster that contains Crossplane.

Configuration Packages

Configuration Packages

Now we are ready to explore how we, and others, can consume the Configuration Package we just
built and stored in the registry.

Installing Configuration Packages

Let’s get back to our unexciting cluster. The one that only has Crossplane installed. The one
without Packages, Compositions, Composite Resource Definitions, or any other type of resources
we explored in previous chapters.

Let’s transform that uninspiring empty cluster into a control plane that can manage the PostgreSQL
database in hyperscalers. We should be able to manage anything else, but PostgreSQL should be a
good start.

Everything we need is, probably, in this Configuration.

1 cat providers/dot-sql-v7.yaml

The output is as follows.

1 ---

2 apiVersion: pkg.crossplane.io/v1

3 kind: Configuration

4 metadata:

5 name: crossplane-sql

6 spec:

7 package: xpkg.upbound.io/vfarcic/dot-sql:v0.0.7

That’s all there is to it (probably). It’s a Configuration that references a package we just built and
pushed to the registry.

Actually, that’s not the one you pushed to the registry, so let’s tweak it a bit by replacing vfarcic

with whichever user you used.

1 yq --inplace \

2 ".spec.package = \"xpkg.upbound.io/$UP_USER/dot-sql:v0.0.7\"" \

3 providers/dot-sql-v7.yaml

Now we can apply it,…

1 kubectl apply --filename providers/dot-sql-v7.yaml

…and now is the time to take a break for a few minutes since, as you already know, it takes a while
until all the packages are deployed and all the CRDs are created. Get some coffee.

Once you’re back, we can take a look at the Package revisions.

Configuration Packages

1 kubectl get pkgrev

The output is as follows (truncated for brevity).

1 NAME HEALTHY REVISION IMAGE ...

2 .../crossplane-sql-... True 1 xpkg.upbound.io/vfarcic/dot-sql:v0.0.7...

3

4 NAME HEALTHY REVISION...

5 .../crossplane-provider-sql-... True 1 ...

6 .../upbound-provider-aws-ec2-... True 1 ...

7 .../upbound-provider-aws-rds-... True 1 ...

8 .../upbound-provider-azure-dbforpostgresql-... True 1 ...

9 .../upbound-provider-family-aws-... True 1 ...

10 .../upbound-provider-family-azure-... True 1 ...

11 .../upbound-provider-family-gcp-... True 1 ...

12 .../upbound-provider-gcp-sql-... True 1 ...

We can see two types of Packages.

At the top, there is the Configuration. That’s the crossplane-sql Configuration we just applied.

Below are all the Providers we specified in the crossplane.yaml file.

Two things are missing though. The Kubernetes Provider is not there. We already established that
one is “complicated” and that we’ll have to apply it outside the Configuration Package. Provider
Configs, those that contain credentials for hyperscalers, are also missing. We’ll get to them in a
moment. For now, let’s confirm that the Compositions are there as well.

1 kubectl get compositions

The output is as follows.

1 NAME XR-KIND XR-APIVERSION AGE

2 aws-postgresql SQL devopstoolkitseries.com/v1alpha1 8m28s

3 azure-postgresql SQL devopstoolkitseries.com/v1alpha1 8m28s

4 google-postgresql SQL devopstoolkitseries.com/v1alpha1 8m28s

All three Compositions we defined in the previous chapter are available, and we can get back to the
things we’re missing.

It would be unreasonable to add Provider Configs into Configuration Packages. They contain
credentials or, to be more precise, references to Secrets with credentials for, in this case, operating
hyperscalers. We would not get far if we added those to container images. So, we need to apply
them separately, just as we did before.

Here’s the one we used in previous chapters.

Configuration Packages

1 cat providers/$HYPERSCALER-config.yaml

The output is as follows.

1 ---

2 apiVersion: aws.upbound.io/v1beta1

3 kind: ProviderConfig

4 metadata:

5 name: default

6 spec:

7 credentials:

8 source: Secret

9 secretRef:

10 namespace: crossplane-system

11 name: aws-creds

12 key: creds

You already saw ProviderConfig manifests, including that one, in previous chapters, so I won’t
repeat what they do and how they work. The only note I have is that, in this chapter, I am using
AWS, so the config references a Secret with AWS credentials. You’ll see in your terminal the config
that matches whichever hyperscaler you chose.

That’s it. Let’s apply it.

1 kubectl apply --filename providers/$HYPERSCALER-config.yaml

Finally, the last piece of the puzzle is the “unfortunate” Kubernetes Provider which requires “extra
care”. We discussed it in the previous chapter, so let’s just apply it.

1 kubectl apply \

2 --filename providers/provider-kubernetes-incluster.yaml

Here’s what we did.

We applied Configuration (1) which downloaded the image (2) which Crossplane used to install the
Providers, Compositions, and Composite Resource Definitions (3). The only thing missing was to
apply Provider Configs with credentials (4) those Providers can use to authenticate with APIs like
AWS, Azure, and Google Cloud (5).

Configuration Packages

Configuration Packages

Now we’re done. From now on, anyone can apply Composite Claims. Everything we did
in this chapter is related to how we manage Compositions, Composite Resource Definitions,
and Providers. Managing Composite Claims which manage Composite Resource which manage
Managed Resources stays the same. As proof, we can just apply the same Claim manifest we used
in the previous chapter, without even explaining it or showing it since… You already know what it
looks like and what it does.

1 kubectl --namespace a-team apply \

2 --filename examples/$HYPERSCALER-sql-v6.yaml

To confirm that everything works as expected, we can execute crossplane trace.

1 crossplane beta trace sqlclaim my-db --namespace a-team

The output is as follows (truncated for brevity).

1 NAME SYNCED READY STATUS

2 SQLClaim/my-db (a-team) True False Waiting: ...resource claim...

3 └─ SQL/my-db-2zlwb True False Creating: ...ce,...

4 ├─ VPC/my-db True True Available

5 ├─ Subnet/my-db-a True True Available

6 ├─ Subnet/my-db-b True True Available

7 ├─ Subnet/my-db-c True True Available

8 ├─ SubnetGroup/my-db True True Available

9 ├─ InternetGateway/my-db True True Available

10 ├─ RouteTable/my-db True True Available

11 ├─ Route/my-db True True Available

12 ├─ MainRouteTableAssociation/my-db True True Available

13 ├─ RouteTableAssociation/my-db-1a False - ReconcileError:...

14 ├─ RouteTableAssociation/my-db-1b False - ReconcileError:...

15 ├─ RouteTableAssociation/my-db-1c False - ReconcileError:...

16 ├─ SecurityGroup/my-db True True Available

17 ├─ SecurityGroupRule/my-db True True Available

18 ├─ Instance/my-db True False Creating

19 ├─ ProviderConfig/my-db - -

20 ├─ Database/my-db False - ReconcileError:...

21 ├─ ProviderConfig/my-db-sql - -

22 └─ Object/my-db False - ReconcileError:...

The Claim created the Composite Resource which created Managed Resources. Everything works
as expected or, to be more precise, everything will be available eventually.

Configuration Packages

You can wait until all the resources are Available, or move on. You already saw the end result. We
just changed the path how to get to it.

From now on, you can keep updating Compositions and, once a new release is ready, build a new
version of the Configuration, package it, push it to the registry. As a result, whichever changes
you made to Compositions or the dependencies like Providers, will be applied whenever you apply
the new Configuration to your control plane cluster(s).

There are still some things missing though. We shouldn’t release new Configuration Packages
without testing them and we should automate the process of testing, building, and pushing packages
through pipelines (what you might call CI). We’ll get to that in one of the upcoming chapters.

We are finished, for now, so let’s destroy everything.

Destroy Everything

You know the drill.

Make the “destroy” script executable,…

1 chmod +x destroy/03-configurations.sh

…run the script,…

1 ./destroy/03-configurations.sh

…exit Nix Shell,…

1 exit

…and take a break. You deserve it.

Conclusion

To take the next step in your Crossplane journey to learn about Composition Functions, check
out my full book, Crossplane: the Cloud Native Control Plane11. It’ll give you the whole picture on
how to implement Crossplane and more!

11https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane

https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane

	Table of Contents
	Introduction
	Chapter Setup
	A Glimpse Into the Future
	Destroy Everything

	Providers and Managed Resources
	Chapter Setup
	Crossplane Providers
	Create Managed Resources
	Continuous Drift-Detection and Reconciliation
	Update Managed Resources
	Delete Managed Resources
	Destroy Everything

	Compositions
	Chapter Setup
	Composite Resource Definitions
	Defining Compositions
	Resource References and Selectors
	Patching
	Managing Connection Secrets
	Combining Providers in Compositions
	Defining Composite Claims
	Destroy Everything

	Configuration Packages
	Chapter Setup
	Building Configuration Packages
	Installing Configuration Packages
	Destroy Everything

	Composition Functions
	Chapter Setup
	What's Missing?
	Patch and Transform Function
	Go Templating Function
	Auto-Ready Function
	Building and Pushing Configuration Package
	Destroy Everything

	The End?
	Blank Page

