
GETTING STARTED
WITH

CROSSPLANE
PROVIDERS

AND
MANAGED

RESOURCES

VIKTOR FARCIC

Providers and Managed Resources
This paper is the first chapter in the larger book, Crossplane: the Cloud Native Control Plane1. It
is part of a series of papers that break down the book.

If you’re curious to see some of the things Crossplane can do, check out this blog2 or the intro of
the paper. Either will give context to what we will cover in this paper. Now, let’s dive into
Crossplane implementation by going back to the very beginning and exploring some of the basics.

Let’s explore Crossplane providers and managed resources. We won’t be talking about theory
without touching the keyboard, so I’ll keep this introduction short and jump straight into
Crossplane providers... right after we set up the environment we’ll use in this paper. If you prefer a
video version of this paper, view my YouTube tutorial here3. Otherwise, let’s get started.

Chapter Setup

To run setup scripts as well as the instructions that follow in the hands-on parts of this paper,
we’ll need tools. We’ll need quite a few CLIs like, for example, kubectl, crossplane, gum, gh,
hyperscaler-specific CLIs, and so on and so forth.

One option would be for me to give you the instructions on how to install all the CLIs we’ll need.
That, however, might result in you spending considerable time reading those instructions and
installing those CLIs. We’ll do something else. We’ll run everything in Nix. Apart from Nix, we’ll
need to install one more thing. I don’t think we should run Docker in Nix, so we’ll need it on the
host machine. You probably already have it. If you don’t, please install it by following the install
instructions4.

1https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
2https://blog.upbound.io/why-choose-crossplane
3https://www.youtube.com/watch?v=o53_7vuWjw4
4https://docs.docker.com/engine/install/

https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
https://blog.upbound.io/crossplane-the-cloud-native-control-plane
https://www.youtube.com/watch?v=o53_7vuWjw4
https://docs.docker.com/engine/install/
https://blog.upbound.io/why-choose-crossplane

1 cd crossplane-tutorial

2

3 nix-shell --run $SHELL

4

5 chmod +x setup/01-managed-resources.sh

6

7 ./setup/01-managed-resources.sh

8

9 source .env

Finally, we’ll install Crossplane itself. In the subsequent chapters, Crossplane installation will be
part of setup scripts but, since this is the first time we’re doing a “real” hands-on, I thought it would
be beneficial to see how it’s done.

There’s not much to do though.

It’s a single helm command.

1 helm upgrade --install crossplane crossplane \

2 --repo https://charts.crossplane.io/stable \

3 --namespace crossplane-system --create-namespace --wait

With that out of the way, we’re ready to dive into Crossplane Providers.

4https://github.com/cli/cli?tab=readme-ov-file#installation
5https://www.youtube.com/watchv=BII6ZY2Rnlc&feature=youtu.be
6https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
7https://gist.github.com/vfarcic/aa5ecfa315608d1257ba56df18088f2f

Providers and Managed Resources

Finally, we’ll need gh (GitHub CLI) to fork the repository with examples we’ll use throughout this
book, including the shell.nix file that will bring in all the tools we’ll need. Please install it4 if you
do not have it already.

You can find additional information about GitHub CLI in the GitHub CLI (gh) - How to manage
repositories5 more efficiently video.

Finally, each paper has an associated Gist that contains all the commands we’ll execute.

To see the full instructions on the full setup for each paper in this series, check out the full version
of this paper, my book, Crossplane: the Cloud Native Control Plane6.

Back to exploring Crossplane providers and managed resources. All the commands used in this
chapter are available in the Gist7. Run the associated script there.

https://gist.github.com/vfarcic/aa5ecfa315608d1257ba56df18088f2f
https://github.com/cli/cli?tab=readme-ov-file#installation
https://www.youtube.com/watch?v=BII6ZY2Rnlc&feature=youtu.be
https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
https://gist.github.com/vfarcic/aa5ecfa315608d1257ba56df18088f2f

Providers and Managed Resources

Crossplane Providers

Providers are a way to extend Crossplane capabilities through custom resource definitions
(CRDs) and controllers.

A provider is typically associated with a set of APIs. We have, for example, AWS, Google Cloud,
and Azure providers. Installing any of them extends Kubernetes API with hundreds of CRDs. Most
of the time, each of those corresponds with an API endpoint.

Now, the important note is that providers can be anything. Besides those I mentioned, there is a
Kubernetes provider, SQL provider, Helm provider, and many others.

We’ll see what providers do soon. For now, let’s take a quick look at the Upbound marketplace8

which serves as a place where providers are collected and catalogued.

Over there we can search for providers or simply Browse. The latter is probably a good start if we’re
new to them.

On the left side, we can switch to Configurations or Functions which we’ll explore later.

Inside the providers screen, there is a list of all those currently available. Feel free to spend a few
moments taking a look at what’s available. Once you’re done, we’ll install specific providers we’ll
use in this chapter.

8https://marketplace.upbound.io

https://marketplace.upbound.io
https://marketplace.upbound.io

Pr o vi d ers a n d M a n a g e d R es o ur c es

N o w t h at w e h a d a gli m ps e of t h e pr o vi d ers, a n d b ef or e w e di v e i nt o t h e m, l et’s m a k e a d e cisi o n
o n w h at w e’ll b uil d i n t his c h a pt er. Si n c e w e’r e j ust st arti n g, w e’ll m a k e s o m et hi n g si m pl e. A g o o d
c a n di d at e f or s o m et hi n g “si m pl e” is a V M i n y o ur f a v orit e h y p ers c al er.

T o cr e at e a n d m a n a g e virt u al m a c hi n es, w e n e e d t o k n o w t h e A PI gr o u p. We c o ul d fi n d it b y
br o wsi n g t h e m ar k et pl a c e, b ut t h at w o ul d pr o b a bl y t a k e t o o m u c h ti m e, s o l et’s s e ar c h f or it i nst e a d.

S e ar c h f or A W S, A z ur e, or G C P (G o o gl e Cl o u d) d e p e n di n g o n w hi c h pr o vi d er y o u c h os e. S el e ct t h e
pr o vi d er t h at c o nt ai ns f a m i l y i n t h e n a m e, s el e ct P r o v i d e r s , a n d s e ar c h f or c o m p u t e if usi n g A z ur e
or G C P or e c 2 if usi n g A W S.

I n t his c h a pt er I’ll us e A z ur e, s o m y e x a m pl es mi g ht b e sli g htl y diff er e nt fr o m y o urs.

Pr o vi d ers a n d M a n a g e d R es o ur c es

Cli c k o n t h e pr o vi d er of c h oi c e (e. g. p r o v i d e r - a w s - e c 2 , p r o v i d e r - g c p - c o m p u t e , or
p r o v i d e r - a z u r e - c o m p u t e). O v er t h er e, o n t h e p a g e of a s p e cifi c pr o vi d er, w e c a n s e e q uit e a
f e w t hi n gs w hi c h w e’ll e x pl or e l at er. F or n o w, w h at m att ers is t h e I n s t a l l M a n i f e s t b utt o n t h at
gi v es us i nstr u cti o ns o n h o w t o d efi n e t h e r es o ur c e t h at r e pr es e nts t h e pr o vi d er of c h oi c e.

Pr o vi d ers a n d M a n a g e d R es o ur c es

We c o ul d c o p y t h at m a nif est a n d p ast e it i nt o a Y A M L fil e, b ut w e w o n’t d o t h at si n c e I alr e a d y
pr e p ar e d it i n a d v a n c e. L et’s t a k e a l o o k at it.

1 c a t p r o v i d e r s / $ H Y P E R S C A L E R - v m . y a m l

T h e o ut p ut is as f oll o ws.

1 - - -

2 a p i V e r s i o n : p k g . c r o s s p l a n e . i o / v 1

3 k i n d : P r o v i d e r

4 m e t a d a t a :

5 n a m e : p r o v i d e r - a z u r e - c o m p u t e

6 s p e c :

7 p a c k a g e : x p k g . u p b o u n d . i o / u p b o u n d / p r o v i d e r - a z u r e - c o m p u t e : v 0 . 3 9 . 0

8 - - -

9 a p i V e r s i o n : p k g . c r o s s p l a n e . i o / v 1

1 0 k i n d : P r o v i d e r

Providers and Managed Resources

11 metadata:

12 name: provider-azure-network

13 spec:

14 package: xpkg.upbound.io/upbound/provider-azure-network:v0.39.0

In this case, since I’m using Azure in this chapter (and you can be using any of the “big three”),
there is a definition of the provider-azure-compute that contains the managed resource definitions
related to computing in Azure. There is also the provider-azure-network provider since we’ll need
to define networking for our VM.

If you chose AWS or Google Cloud, you’ll see only one provider.

Let’s install it by executing kubectl apply….

1 kubectl apply --filename providers/$HYPERSCALER-vm.yaml

… and list all available package versions.

1 kubectl get pkgrev

The output is as follows (truncated for brevity).

1 NAME HEALTHY REVISION IMAGE ...

2 .../provider-azure-compute-... 1 .../provider...

3 .../provider-azure-network-... 1 .../provider...

This might be confusing.

We installed a provider, or two, but then we listed something called package versions.

Let me explain…

Packages allow Crossplane to be extended to include new functionality. This typically looks like
bundling a set of Kubernetes CRDs and controllers that represent some API endpoints. There are
three types of packages; providers, configurations, and functions.

In other words, providers, together with configurations and functions, are a type of package so by
listing all package versions we got all packages. If we had configurations or functions, we would
see them as well.

Let’s get back to the output of the previous commands.

We can see that the provider(s) we defined were applied, but they did not yet report as HEALTHY.
That might take a few moments since a provider can, sometimes, contain tens of even hundreds of
CRDs.

As a side note, we could have listed only providers, instead of packages that include providers, with
kubectl get providers. Most of the time, I’m interested in all types of packages and not only
providers so we’ll probably use kubectl get pkgrev throughout the rest of this book.

Let’s retrieve packages again.

Providers and Managed Resources

1 kubectl get pkgrev

The output is as follows (truncated for brevity).

1 NAME HEALTHY REVISION IMAGE ...

2 .../provider-azure-compute-... True 1 .../provider...

3 .../provider-azure-network-... True 1 .../provider...

4 .../upbound-provider-family-azure-... True 1 .../provider...

You’ll notice two things. First, after a while, all the providers became HEALTHY. That’s good news.

Second, a new provider appeared. In my case, that’s provider-family-azure.

Let me give you a short background of provider families.

In the beginning, there was a single provider for each Hyperscaler. Since a provider creates a CRD
for each API endpoint, and hyperscalers tend to have hundreds of endpoints, installing a provider
like, for example, AWS, could end up creating close to a thousand CRDs. If providers for all three
hyperscalers are installed, a cluster can easily end up having thousands of CRDs. That can result in
performance issues or even cluster crashes on smaller control plane clusters.

Issues with too many CRDs are directly related to Kubernetes itself and the situation is improving
with each new Kubernetes release.

Nevertheless, apart from working with the Kubernetes community to resolve those issues, the
Crossplane team decided to split big providers into provider families. As a result, instead of having
a single provider for AWS, Google Cloud, or Azure, they are split into smaller providers like the one
we just defined and applied.

Now, let’s get back to the mysterious family provider that appeared out of nowhere.

That’s the “parent” provider that is installed automatically whenever we apply one of the providers
from a family. It contains additional Managed Resource Definitions that are mandatory no matter
which of the Providers from a family we install.

I mentioned a few times CRDs and controllers and managed resource definitions and now that we
installed a few providers, we can see what those are by listing all CRDs.

1 kubectl get crds

The output is as follows (truncated for brevity).

Providers and Managed Resources

1 NAME CREATED AT

2 ...

3 linuxvirtualmachines... 2023-12-24T23:00:53Z

4 linuxvirtualmachinescalesets... 2023-12-24T23:00:53Z

5 loadbalancerbackendaddresspooladdresses... 2023-12-24T23:01:24Z

6 loadbalancerbackendaddresspools... 2023-12-24T23:01:24Z

7 loadbalancernatpools... 2023-12-24T23:01:24Z

8 ...

The output should show tens or even hundreds of CRDs. Each of those represents a hyperscaler
resource we can define. For example, since I’m using Azure right now, and I want to create and
manage a virtual machine, there is the linuxvirtualmachines.compute.azure.upbound.io CRD
that contains the extended Kubernetes API endpoint with a schema we can use to define a VM.
That’s exactly what we’ll do soon, right after we finish configuring the providers.

As you can probably imagine, Crossplane cannot manage AWS, Azure, or Google Cloud resources
without being able to authenticate to an account. We need to give it credentials with sufficient
permissions to manage the resources we’re planning to define.

We can provide that through a ProviderConfig that will reference a Secret with credentials. The
setup script we executed earlier already created the credentials file, and we can jump directly into
creating the secret.

Execute the command that follows only if you are using AWS.

1 kubectl --namespace crossplane-system \

2 create secret generic aws-creds \

3 --from-file creds=./aws-creds.conf

Execute the command that follows only if you are using Google Cloud.

1 kubectl --namespace crossplane-system \

2 create secret generic gcp-creds \

3 --from-file creds=./gcp-creds.json

Execute the command that follows only if you are using Google Cloud.

1 kubectl --namespace crossplane-system \

2 create secret generic azure-creds \

3 --from-file creds=./azure-creds.json

Next, we need to tell Crossplane where to find the secret we just created. We do that through a
ProviderConfig associated with the providers we installed.

I prepared that one as well, so let’s take a look.

Providers and Managed Resources

1 cat providers/$HYPERSCALER-config.yaml

The output is as follows.

1 ---

2 apiVersion: azure.upbound.io/v1beta1

3 kind: ProviderConfig

4 metadata:

5 name: default

6 spec:

7 credentials:

8 source: Secret

9 secretRef:

10 namespace: crossplane-system

11 name: azure-creds

12 key: creds

There’s nothing special there apart from the apiVersion that is specific to the provider we’re running
and the secretRef that tells it where the secret is.

We’re almost done with the providers. All that’s left is to apply the ProviderConfig.

1 kubectl apply --filename providers/$HYPERSCALER-config.yaml

Crossplane is now ready to manage resources in whichever hyperscaler you chose to use and we
can jump into the more interesting part of this chapter.

Create Managed Resources

A CrossplaneManaged Resource represents a resource managed by Crossplane. That resource can
be anything. It can be anAWS EC2 instance, amanaged PostgreSQL database in Azure, aGoogle
Cloud Run instance, a Kubernetes object, aHelm release, aGitHub repository, or any other type
of resource. As long as the Managed Resource Definition exists in the control plane cluster, we can
create Managed Resources based on it.

Managed Resource Definitions and their corresponding controllers are installed through providers
like the one we applied in the previous section. So, installing a provider results in the installation
of a number of Managed Resource Definitions which come with Kubernetes Custom Definitions
and Controllers.

If we go back to the Marketplace screen, we can see the list of Managed Resources we can create.
That way we can deduce whether the provider we’re interested in contains the resource definition
we’re interested in.

Pr o vi d ers a n d M a n a g e d R es o ur c es

Pl e as e s el e ct I n s t a n c e if y o u ar e usi n g A W S or G o o gl e Cl o u d, or L i n u x V i r t u a l M a c h i n e if y o u pr ef er
A z ur e.

O n c e w e s el e ct t h e r es o ur c e w e’ d li k e t o m a n a g e, w e c a n s e e t h e A PI d o c u m e nt ati o n t h at c o nt ai ns
t h e f ull s c h e m a wit h all t h e fi el ds w e mi g ht n e e d t o m a n a g e t h at r es o ur c e.

Pr o vi d ers a n d M a n a g e d R es o ur c es

I alr e a d y pre p ar e d a n e x a m pl e t h at w e’ll us e t o cr e at e a n d m a n a g e a V M i n t h e h y p ers c al er of c h oi c e.

1 c a t e x a m p l e s / $ H Y P E R S C A L E R - v m . y a m l

T h e o ut p ut of t h e first m a nif est is as f oll o ws (tr u n c at e d f or br e vit y).

1 - - -

2 a p i V e r s i o n : c o m p u t e . a z u r e . u p b o u n d . i o / v 1 b e t a 1

3 k i n d : L i n u x V i r t u a l M a c h i n e

4 m e t a d a t a :

5 n a m e : m y - v m

6 s p e c :

7 f o r P r o v i d e r :

8 l o c a t i o n : e a s t u s

9 r e s o u r c e G r o u p N a m e R e f :

1 0 n a m e : d o t - g r o u p

1 1 s i z e : S t a n d a r d _ A 1 _ v 2

1 2 s o u r c e I m a g e R e f e r e n c e :

Providers and Managed Resources

13 - offer: UbuntuServer

14 publisher: Canonical

15 sku: 16.04-LTS

16 version: latest

17 adminSshKey:

18 - publicKey: ssh-rsa

19 AAAAB3NzaC1yc2EAAAADAQABAAABAQC...

20 you@me.com

21 username: adminuser

22 adminUsername: adminuser

23 osDisk:

24 - caching: ReadWrite

25 storageAccountType: Standard_LRS

26 networkInterfaceIdsRefs:

27 - name: dot-interface

As I already mentioned, I’m using Azure in this chapter so, depending on what your choice is, you
might see a different output. Nevertheless, even though the definitions might differ, the logic behind
the explanation that follows is the same.

That is a “standard” Kubernetes manifest with apiVersion, kind, metadata, and spec. Assuming that
you are familiar with Kubernetes, there’s probably no need to explain those. If you are a stranger
to Kubernetes, it’s probably too early for you to adopt Crossplane.

The important part is the spec.forProvider section. Every Crossplane Managed Resource has it.
Typically, the fields inside it map the parameters of the resource it manages.

In this specific case, there are fields like location, size, adminUsername, and others that you should
be familiar with if you are familiar with Azure. They are almost identical mappings to Azure API
for that resource.

There are also “special” fields like resourceGroupNameRef and networkInterfaceIdsRefs.

Instead of specifying the Resource Group and the network interface, we are letting Crossplane
know that it can find the information about those from other resources (from dot-group and
dot-interface). Azure cannot create VMs without the Resource Group and without the network
interface. We could have hardcoded that information into the manifest, but that would not be a
good idea. It’s much better to let Crossplane figure it out dynamically. Instead of hard-coding
information from dependencies, we reference them.

CrossplaneManaged Resources do not have a mechanism, like some other tools, to define dependen-
cies. We cannot orchestrate the order in which resources are defined. Instead, Crossplane follows
Kubernetes logic where everything is eventually consistent. If we decide to apply five resources at
once, Crossplane will start creating all five at once, as long as it has all the information it needs. If
some information is missing, it will wait until the information is provided.

Providers and Managed Resources

All thatmeans that the VMmanifest requires information about the ResourceGroup and the network
interface and, in this specific case, we are referencing them by name. There are other, potentially
better ways to reference resources which we’ll explore later.

As a result, Crossplane might not be able to work on the VM if dot-group and dot-interface are
not ready since it cannot get the information it needs. We’ll see what that looks like in a moment.
For now, let’s move on to the other manifests from the output of the previous command.

The rest of the output is as follows.

1 ---

2 apiVersion: azure.upbound.io/v1beta1

3 kind: ResourceGroup

4 metadata:

5 name: dot-group

6 spec:

7 forProvider:

8 location: eastus

9 ---

10 apiVersion: network.azure.upbound.io/v1beta1

11 kind: NetworkInterface

12 metadata:

13 name: dot-interface

14 spec:

15 forProvider:

16 ipConfiguration:

17 - name: my-vm

18 privateIpAddressAllocation: Dynamic

19 subnetIdRef:

20 name: dot-subnet

21 location: eastus

22 resourceGroupNameRef:

23 name: dot-group

24 ---

25 apiVersion: network.azure.upbound.io/v1beta1

26 kind: Subnet

27 metadata:

28 name: dot-subnet

29 spec:

30 forProvider:

31 addressPrefixes:

32 - 10.0.1.0/24

33 resourceGroupNameRef:

34 name: dot-group

Providers and Managed Resources

35 virtualNetworkNameRef:

36 name: dot-network

37 ---

38 apiVersion: network.azure.upbound.io/v1beta1

39 kind: VirtualNetwork

40 metadata:

41 name: dot-network

42 spec:

43 forProvider:

44 addressSpace:

45 - 10.0.0.0/16

46 location: eastus

47 resourceGroupNameRef:

48 name: dot-group

The second manifest defines the Azure ResourceGroup. That is the dot-group resource that the
LinuxVirtualMachine is referencing through the spec.forProvider.resourceGroupNameRef.name

field.

Then there is the NetworkInterface which is the one LinuxVirtualMachine referenced through
the spec.forProvider.networkInterfaceIdsRefs[].name field. However, NetworkInterface also
needs to be inside a Resource Group, so it contains spec.forProvider.resourceGroupNameRef.name
reference as well. It also requires a subnet so it is referencing it through the
spec.forProvider.ipConfiguration[].subnetIdRef.name.

Then we have a Subnetmanifest referenced by the NetworkInterface which, in turn, references the
VirtualNetwork.

Before we proceed, I will say something that might make you think that I’m wasting your time.

You will probably not defineManaged Resources like that. That would result in a lot of duplication
and a lot of confusion by the end users. We’ll see a much better way to define Managed Resources
when we dive into Crossplane Compositions. More importantly, as you will see later, learning
how to use Managed Resources will be critical even though you will probably not define them as
we’re doing it now, so the time learning them is not a waste. Quite the contrary.

With that “depressing” note out of the way, let’s apply the manifests we explored…

1 kubectl apply --filename examples/$HYPERSCALER-vm.yaml

…and retrieve all managed resources.

1 kubectl get managed

The output is as follows.

Providers and Managed Resources

1 NAME READY SYNCED EXTERNAL-NAME AGE

2 resourcegroup.azure.../dot-group True True dot-group 12s

3

4 NAME READY SYNCED EXTERNAL-NAME AGE

5 linuxvirtualmachine.compute.azure.../my-vm False my-vm 12s

6

7 NAME READY SYNCED EXTERNAL-NAME AGE

8 networkinterface.network.../dot-interface False dot-interface 12s

9

10 NAME READY SYNCED EXTERNAL-NAME AGE

11 subnet.network.azure.../dot-subnet False True dot-subnet 12s

12

13 NAME READY SYNCED EXTERNAL-NAME AGE

14 virtualnetwork.network.azure.../dot-network dot-network 12s

managed is a shortcut, of sorts, that allows us to retrieve all resources managed by Crossplane. It is,
in a way, equivalent to kubectl get all which outputs all “core” Kubernetes resources.

Apart from seeing the APIs and the names of the resources we applied, we can see whether they are
READY and SYNCED. Suspiciously, in my case, only the resourcegroup and the subnet are synced. The
rest is not, and that brings us back to the references we discussed earlier. linuxvirtualmachine, for
example, references the networkinterface. It needs information from it so until that information
is available, Crossplane considers linuxvirtualmachine not synced meaning that it cannot start
working on it. The same can be said for other resources that are not yet synced. Information from
some other referenced resources is missing and that information might be available after Crossplane
obtains it from Azure (or whichever hyperscaler you might be using).

The READY field is easier to explain. It indicates whether the actual state, in this case, Azure resource,
is ready. It shows whether that specific resource is up and running.

After a while, Crossplane will have all the information it needs to create the VM.

We can see the current state through the kubectl describe command or by going to the console of
the hyperscaler of choice.

Please open the hyperscaler console and navigate to the EC2 instance if you’re using AWS or the
virtual machine if you’re using Azure or Google Cloud.

If you are using AWS, resources are being created in the us-east-1 region, so make sure to have
it selected. In the case of Google Cloud, you’ll need to go inside the newly created Project or the
Resource Group in the case of Azure.

Once inside the console page of the VM (or AWS EC2), we can see that it was indeed created, or that
it is in the process of being created, or that it was not yet created, in which case you might need to
wait for a while longer.

Pr o vi d ers a n d M a n a g e d R es o ur c es

D e p e n di n g o n t h e h y p ers c al er y o u c h os e, it mi g ht t a k e a f e w mi n ut es u ntil e v er yt hi n g is r e a d y. As
y o u alr e a d y s a w, w e c a n c h e c k t h e st at e of all M a n a g e d R es o ur c es wit h k u b e c t l g e t m a n a g e d .

1 k u b e c t l g e t m a n a g e d

T h e o ut p ut is as f oll o ws.

1 N A M E R E A D Y S Y N C E D E X T E R N A L - N A M E A G E

2 r e s o u r c e g r o u p . a z u r e . . . / d o t - g r o u p T r u e T r u e d o t - g r o u p 7 m 4 7 s

3

4 N A M E R E A D Y S Y N C E D E X T E R N A L - N A M E A G E

5 l i n u x v i r t u a l m a c h i n e . c o m p u t e . a z u r e . . . / m y - v m T r u e T r u e m y - v m 7 m 4 7 s

6

7 N A M E R E A D Y S Y N C E D E X T E R N A L - N A M E A G E

8 n e t w o r k i n t e r f a c e . n e t w o r k . a z u r e . . . / d o t - i n t e r f a c e T r u e T r u e d o t - i n t e r f a c e 7 m 4 7 s

9

1 0 N A M E R E A D Y S Y N C E D E X T E R N A L - N A M E A G E

1 1 s u b n e t . n e t w o r k . a z u r e . . . / d o t - s u b n e t T r u e T r u e d o t - s u b n e t 7 m 4 7 s

1 2

1 3 N A M E R E A D Y S Y N C E D E X T E R N A L - N A M E A G E

1 4 v i r t u a l n e t w o r k . n e t w o r k . a z u r e . . . / d o t - n e t w o r k T r u e T r u e d o t - n e t w o r k 7 m 4 7 s

Providers and Managed Resources

Here’s what we did so far.

We created a few Custom Resources through Kubernetes API (1, 2). Those Custom Resources are
Crossplane Managed Resources associated with a hyperscaler we chose. Crossplane Controllers
detected those resources (3) and started talking with the hyperscaler API (4) to create some of those
resources, while it was waiting with those that needed data from other resources (5). Once those
other resources were created, it could retrieve the data it needs from them and create the rest of the
resources (6).

Providers and Managed Resources

Providers and Managed Resources

All the resources are fully operational, and we can explore one of the big advantages of Crossplane;
continuous drift-detection and reconciliation.

Continuous Drift-Detection and Reconciliation

One of the things we all love about Kubernetes is continuous drift detection and reconciliation.
If, for example, we create a ReplicaSet (through a Deployment) it creates Pods. But that’s only part
of the story. That ReplicaSet will continuously watch the Pods it is responsible for and, if the state
of those Pods differs from the desired state, it will detect it as a drift and reconcile the states. It will
update the Pods to match the desired state. As a result, if we manually change the specification of
the Pods, those changes will be undone by the ReplicaSet since there is a drift. If we manually delete
one of the Pods, ReplicaSet will create a new one. In that example, the ReplicaSet is ensuring that
the actual state of the Pods it is in charge of is always the same as the desired state.

Crossplane takes those concepts to the next level or, to be more precise, it extends them to…
everything. No matter which type of resources we are managing with Crossplane, it will ensure
that their state always matches the desired state.

Let’s see if we can prove that.

Please go back to the VM in the console of your hyperscaler of choice. Stop the instance if you are
using Google Cloud or AWS or, if you’re using Azure, delete the instance.

Crossplane is limited by the capabilities of the API it talks to. Azure API does not have a mechanism
in its API to start a VM that is stopped, so Crossplane cannot do that either. For that reason, in the
case of Azure, we’ll demonstrate drift-detection and reconciliation by deleting it instead.*

We should be able to see that the VM disappeared in the case of Azure or that it was stopped in the
case of AWS or Google Cloud.

Pr o vi d ers a n d M a n a g e d R es o ur c es

All t h at’s l eft n o w is t o w ait f or a f e w m o m e nts s o t h at Cr oss pl a n e d et e cts t h e drift a n d r e c o n cil es
t h e diff er e n c es of t h e st at es. A f e w m o m e nts l at er, w e s h o ul d s e e t h at t h e V M is b a c k i n t h e c orr e ct
st at e. It is u p a n d r u n ni n g! Cr oss pl a n e di d t h e s a m e wit h t h e V M as w h at a R e pli c a S et w o ul d d o
wit h a P o d it m a n a g es if w e c h a n g e d its st at e.

Providers and Managed Resources

Pr o vi d ers a n d M a n a g e d R es o ur c es

N e xt, w e’ll e x pl or e h o w w e c a n u p d at e M a n a g e d R es o ur c es.

U p d a t e M a n a g e d R e s o u r c e s

U p d ati n g M a n a g e d r es o ur c es f oll o ws t h e s a m e drift- d et e cti o n a n d r e c o n cili ati o n pr o c ess w e j ust
o bs er v e d. If w e c h a n g e t h e d esir e d st at e b y m o dif yi n g a n d a p pl yi n g t h e m a nif ests, Cr oss pl a n e will
d et e ct it as a drift a n d r e c o n cil e it.

L et’s t a k e a l o o k at a n e x a m pl e b y o ut p utti n g a diff er e n c e b et w e e n t h e m a nif ests w e h a v e r u n ni n g
i n t h e c o ntr ol pl a n e ri g ht n o w a n d a m o difi e d v ersi o n.

1 d i f f e x a m p l e s / $ H Y P E R S C A L E R - v m . y a m l \

2 e x a m p l e s / $ H Y P E R S C A L E R - v m - b i g g e r . y a m l

T h e o ut p ut is as f oll o ws.

1 < s i z e : S t a n d a r d _ A 1 _ v 2

2 - - -

3 > s i z e : S t a n d a r d _ A 2 _ v 2

We c a n s e e t h at, i n t h e c as e of A z u r e , t h e si z e of t h e n o d e c h a n g e d fr o m S t a n d a r d _ A 1 _ v 2 t o
S t a n d a r d _ A 2 _ v 2 .

L et’s a p pl y t h e m o difi e d m a nif est, …

1 k u b e c t l a p p l y - - f i l e n a m e e x a m p l e s / $ H Y P E R S C A L E R - v m - b i g g e r . y a m l

… w ait f or a f e w m o m e nts f or Cr oss pl a n e t o d et e ct t h e drift a n d r e c o n cil e t h e st at es, a n d t a k e a n ot h er
l o o k at t h e c o ns ol e.

Pr o vi d ers a n d M a n a g e d R es o ur c es

We c a n s e e t h at, i n m y c as e, t h e si z e of t h e V M i n d e e d c h a n g e d t o S t a n d a r d _ A 2 _ v 2 .

D el e t e M a n a g e d R e s o u r c e s

As y o u c a n pr o b a bl y g u ess, t h e s a m e l o gi c wit h drift d et e cti o n a n d r e c o n cili ati o n is a p pli e d if w e
d el et e a m a n a g e d r es o ur c e.

If, f or e x a m pl e, w e d el et e t h e m a nif ests w e a p pli e d, …

1 k u b e c t l d e l e t e - - f i l e n a m e e x a m p l e s / $ H Y P E R S C A L E R - v m - b i g g e r . y a m l

… w ait f or a w hil e, a n d g o b a c k t o t h e c o ns ol e, w e c a n s e e t h at t h e V M a n d all ot h er r es o ur c es w e
w er e m a n a gi n g ar e n o w g o n e.

Cr oss pl a n e d et e ct e d t h e drift b et w e e n t h e d esir e d a n d t h e a ct u al st at e a n d d e d u c e d t h at o ur d esir e d
st at e is t o n ot h a v e t h os e r es o ur c es. H e n c e, Cr oss pl a n e r e c o n cil e d t h e drift b y r e m o vi n g t h e m fr o m
t h e h y p ers c al er.

I n s o m e c as es, t h e h y p ersc al er mi g ht c h o os e t o s p a w n a c hil d r es o urc e fr o m t h e r es o urc e m a n a g e d
b y Cr oss pl a n e. I n t h os e c as es, si nc e t h at r es o urc e is n ot m a n a g e d b y Cr oss pl a n e, it mi g ht b e l eft

Providers and Managed Resources

“dangling” after we remove the parent resource by deleting the Crossplane Managed Resource. An
example of that would be an AWS ELB spun as a result of creating an Ingress controller. It will stay
intact even if we remove the Kubernetes cluster through Crossplane since that ELB is not managed
by it. In some cases, Hyperscalers have internal mechanisms to clean up orphaned resources, while
in others they don’t.

Destroy Everything

That’s it. That’s all you should know about Crossplane Managed Resources, for now.

Let’s destroy everything we did before we jump into the next chapter.

1 chmod +x destroy/01-managed-resources.sh

2

3 ./destroy/01-managed-resources.sh

4

5 exit

Conclusion

To take the next step in your Crossplane journey to learn about Compositions, check out my full
book, Crossplane: the Cloud Native Control Plane9. It’ll give you the whole picture on how to
implement Crossplane and more!

9https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane

https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane

Providers and Managed Resources
This paper is the first chapter in the larger book, Crossplane: the Cloud Native Control Plane1. It
is part of a series of papers that break down the book.

If you’re curious to see some of the things Crossplane can do, check out this blog2 or the intro of
the paper. Either will give context to what we will cover in this paper. Now, let’s dive into
Crossplane implementation by going back to the very beginning and exploring some of the basics.

Let’s explore Crossplane providers and managed resources. We won’t be talking about theory
without touching the keyboard, so I’ll keep this introduction short and jump straight into
Crossplane providers... right after we set up the environment we’ll use in this paper. If you prefer a
video version of this paper, view my YouTube tutorial here3. Otherwise, let’s get started.

Chapter Setup

To run setup scripts as well as the instructions that follow in the hands-on parts of this paper,
we’ll need tools. We’ll need quite a few CLIs like, for example, kubectl, crossplane, gum, gh,
hyperscaler-specific CLIs, and so on and so forth.

One option would be for me to give you the instructions on how to install all the CLIs we’ll need.
That, however, might result in you spending considerable time reading those instructions and
installing those CLIs. We’ll do something else. We’ll run everything in Nix. Apart from Nix, we’ll
need to install one more thing. I don’t think we should run Docker in Nix, so we’ll need it on the
host machine. You probably already have it. If you don’t, please install it by following the install
instructions4.

1https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
2https://blog.upbound.io/why-choose-crossplane
3https://www.youtube.com/watch?v=o53_7vuWjw4
4https://docs.docker.com/engine/install/

https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
https://blog.upbound.io/crossplane-the-cloud-native-control-plane
https://www.youtube.com/watch?v=o53_7vuWjw4
https://docs.docker.com/engine/install/
https://blog.upbound.io/why-choose-crossplane

1 cd crossplane-tutorial

2

3 nix-shell --run $SHELL

4

5 chmod +x setup/01-managed-resources.sh

6

7 ./setup/01-managed-resources.sh

8

9 source .env

Finally, we’ll install Crossplane itself. In the subsequent chapters, Crossplane installation will be
part of setup scripts but, since this is the first time we’re doing a “real” hands-on, I thought it would
be beneficial to see how it’s done.

There’s not much to do though.

It’s a single helm command.

1 helm upgrade --install crossplane crossplane \

2 --repo https://charts.crossplane.io/stable \

3 --namespace crossplane-system --create-namespace --wait

With that out of the way, we’re ready to dive into Crossplane Providers.

4https://github.com/cli/cli?tab=readme-ov-file#installation
5https://www.youtube.com/watchv=BII6ZY2Rnlc&feature=youtu.be
6https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
7https://gist.github.com/vfarcic/aa5ecfa315608d1257ba56df18088f2f

Providers and Managed Resources

Finally, we’ll need gh (GitHub CLI) to fork the repository with examples we’ll use throughout this
book, including the shell.nix file that will bring in all the tools we’ll need. Please install it4 if you
do not have it already.

You can find additional information about GitHub CLI in the GitHub CLI (gh) - How to manage
repositories5 more efficiently video.

Finally, each paper has an associated Gist that contains all the commands we’ll execute.

To see the full instructions on the full setup for each paper in this series, check out the full version
of this paper, my book, Crossplane: the Cloud Native Control Plane6.

Back to exploring Crossplane providers and managed resources. All the commands used in this
chapter are available in the Gist7. Run the associated script there.

https://gist.github.com/vfarcic/aa5ecfa315608d1257ba56df18088f2f
https://github.com/cli/cli?tab=readme-ov-file#installation
https://www.youtube.com/watch?v=BII6ZY2Rnlc&feature=youtu.be
https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane
https://gist.github.com/vfarcic/aa5ecfa315608d1257ba56df18088f2f

Providers and Managed Resources

Crossplane Providers

Providers are a way to extend Crossplane capabilities through custom resource definitions
(CRDs) and controllers.

A provider is typically associated with a set of APIs. We have, for example, AWS, Google Cloud,
and Azure providers. Installing any of them extends Kubernetes API with hundreds of CRDs. Most
of the time, each of those corresponds with an API endpoint.

Now, the important note is that providers can be anything. Besides those I mentioned, there is a
Kubernetes provider, SQL provider, Helm provider, and many others.

We’ll see what providers do soon. For now, let’s take a quick look at the Upbound marketplace8

which serves as a place where providers are collected and catalogued.

Over there we can search for providers or simply Browse. The latter is probably a good start if we’re
new to them.

On the left side, we can switch to Configurations or Functions which we’ll explore later.

Inside the providers screen, there is a list of all those currently available. Feel free to spend a few
moments taking a look at what’s available. Once you’re done, we’ll install specific providers we’ll
use in this chapter.

8https://marketplace.upbound.io

https://marketplace.upbound.io
https://marketplace.upbound.io

Pr o vi d ers a n d M a n a g e d R es o ur c es

N o w t h at w e h a d a gli m ps e of t h e pr o vi d ers, a n d b ef or e w e di v e i nt o t h e m, l et’s m a k e a d e cisi o n
o n w h at w e’ll b uil d i n t his c h a pt er. Si n c e w e’r e j ust st arti n g, w e’ll m a k e s o m et hi n g si m pl e. A g o o d
c a n di d at e f or s o m et hi n g “si m pl e” is a V M i n y o ur f a v orit e h y p ers c al er.

T o cr e at e a n d m a n a g e virt u al m a c hi n es, w e n e e d t o k n o w t h e A PI gr o u p. We c o ul d fi n d it b y
br o wsi n g t h e m ar k et pl a c e, b ut t h at w o ul d pr o b a bl y t a k e t o o m u c h ti m e, s o l et’s s e ar c h f or it i nst e a d.

S e ar c h f or A W S, A z ur e, or G C P (G o o gl e Cl o u d) d e p e n di n g o n w hi c h pr o vi d er y o u c h os e. S el e ct t h e
pr o vi d er t h at c o nt ai ns f a m i l y i n t h e n a m e, s el e ct P r o v i d e r s , a n d s e ar c h f or c o m p u t e if usi n g A z ur e
or G C P or e c 2 if usi n g A W S.

I n t his c h a pt er I’ll us e A z ur e, s o m y e x a m pl es mi g ht b e sli g htl y diff er e nt fr o m y o urs.

Pr o vi d ers a n d M a n a g e d R es o ur c es

Cli c k o n t h e pr o vi d er of c h oi c e (e. g. p r o v i d e r - a w s - e c 2 , p r o v i d e r - g c p - c o m p u t e , or
p r o v i d e r - a z u r e - c o m p u t e). O v er t h er e, o n t h e p a g e of a s p e cifi c pr o vi d er, w e c a n s e e q uit e a
f e w t hi n gs w hi c h w e’ll e x pl or e l at er. F or n o w, w h at m att ers is t h e I n s t a l l M a n i f e s t b utt o n t h at
gi v es us i nstr u cti o ns o n h o w t o d efi n e t h e r es o ur c e t h at r e pr es e nts t h e pr o vi d er of c h oi c e.

Pr o vi d ers a n d M a n a g e d R es o ur c es

We c o ul d c o p y t h at m a nif est a n d p ast e it i nt o a Y A M L fil e, b ut w e w o n’t d o t h at si n c e I alr e a d y
pr e p ar e d it i n a d v a n c e. L et’s t a k e a l o o k at it.

1 c a t p r o v i d e r s / $ H Y P E R S C A L E R - v m . y a m l

T h e o ut p ut is as f oll o ws.

1 - - -

2 a p i V e r s i o n : p k g . c r o s s p l a n e . i o / v 1

3 k i n d : P r o v i d e r

4 m e t a d a t a :

5 n a m e : p r o v i d e r - a z u r e - c o m p u t e

6 s p e c :

7 p a c k a g e : x p k g . u p b o u n d . i o / u p b o u n d / p r o v i d e r - a z u r e - c o m p u t e : v 0 . 3 9 . 0

8 - - -

9 a p i V e r s i o n : p k g . c r o s s p l a n e . i o / v 1

1 0 k i n d : P r o v i d e r

Providers and Managed Resources

11 metadata:

12 name: provider-azure-network

13 spec:

14 package: xpkg.upbound.io/upbound/provider-azure-network:v0.39.0

In this case, since I’m using Azure in this chapter (and you can be using any of the “big three”),
there is a definition of the provider-azure-compute that contains the managed resource definitions
related to computing in Azure. There is also the provider-azure-network provider since we’ll need
to define networking for our VM.

If you chose AWS or Google Cloud, you’ll see only one provider.

Let’s install it by executing kubectl apply….

1 kubectl apply --filename providers/$HYPERSCALER-vm.yaml

… and list all available package versions.

1 kubectl get pkgrev

The output is as follows (truncated for brevity).

1 NAME HEALTHY REVISION IMAGE ...

2 .../provider-azure-compute-... 1 .../provider...

3 .../provider-azure-network-... 1 .../provider...

This might be confusing.

We installed a provider, or two, but then we listed something called package versions.

Let me explain…

Packages allow Crossplane to be extended to include new functionality. This typically looks like
bundling a set of Kubernetes CRDs and controllers that represent some API endpoints. There are
three types of packages; providers, configurations, and functions.

In other words, providers, together with configurations and functions, are a type of package so by
listing all package versions we got all packages. If we had configurations or functions, we would
see them as well.

Let’s get back to the output of the previous commands.

We can see that the provider(s) we defined were applied, but they did not yet report as HEALTHY.
That might take a few moments since a provider can, sometimes, contain tens of even hundreds of
CRDs.

As a side note, we could have listed only providers, instead of packages that include providers, with
kubectl get providers. Most of the time, I’m interested in all types of packages and not only
providers so we’ll probably use kubectl get pkgrev throughout the rest of this book.

Let’s retrieve packages again.

Providers and Managed Resources

1 kubectl get pkgrev

The output is as follows (truncated for brevity).

1 NAME HEALTHY REVISION IMAGE ...

2 .../provider-azure-compute-... True 1 .../provider...

3 .../provider-azure-network-... True 1 .../provider...

4 .../upbound-provider-family-azure-... True 1 .../provider...

You’ll notice two things. First, after a while, all the providers became HEALTHY. That’s good news.

Second, a new provider appeared. In my case, that’s provider-family-azure.

Let me give you a short background of provider families.

In the beginning, there was a single provider for each Hyperscaler. Since a provider creates a CRD
for each API endpoint, and hyperscalers tend to have hundreds of endpoints, installing a provider
like, for example, AWS, could end up creating close to a thousand CRDs. If providers for all three
hyperscalers are installed, a cluster can easily end up having thousands of CRDs. That can result in
performance issues or even cluster crashes on smaller control plane clusters.

Issues with too many CRDs are directly related to Kubernetes itself and the situation is improving
with each new Kubernetes release.

Nevertheless, apart from working with the Kubernetes community to resolve those issues, the
Crossplane team decided to split big providers into provider families. As a result, instead of having
a single provider for AWS, Google Cloud, or Azure, they are split into smaller providers like the one
we just defined and applied.

Now, let’s get back to the mysterious family provider that appeared out of nowhere.

That’s the “parent” provider that is installed automatically whenever we apply one of the providers
from a family. It contains additional Managed Resource Definitions that are mandatory no matter
which of the Providers from a family we install.

I mentioned a few times CRDs and controllers and managed resource definitions and now that we
installed a few providers, we can see what those are by listing all CRDs.

1 kubectl get crds

The output is as follows (truncated for brevity).

Providers and Managed Resources

1 NAME CREATED AT

2 ...

3 linuxvirtualmachines... 2023-12-24T23:00:53Z

4 linuxvirtualmachinescalesets... 2023-12-24T23:00:53Z

5 loadbalancerbackendaddresspooladdresses... 2023-12-24T23:01:24Z

6 loadbalancerbackendaddresspools... 2023-12-24T23:01:24Z

7 loadbalancernatpools... 2023-12-24T23:01:24Z

8 ...

The output should show tens or even hundreds of CRDs. Each of those represents a hyperscaler
resource we can define. For example, since I’m using Azure right now, and I want to create and
manage a virtual machine, there is the linuxvirtualmachines.compute.azure.upbound.io CRD
that contains the extended Kubernetes API endpoint with a schema we can use to define a VM.
That’s exactly what we’ll do soon, right after we finish configuring the providers.

As you can probably imagine, Crossplane cannot manage AWS, Azure, or Google Cloud resources
without being able to authenticate to an account. We need to give it credentials with sufficient
permissions to manage the resources we’re planning to define.

We can provide that through a ProviderConfig that will reference a Secret with credentials. The
setup script we executed earlier already created the credentials file, and we can jump directly into
creating the secret.

Execute the command that follows only if you are using AWS.

1 kubectl --namespace crossplane-system \

2 create secret generic aws-creds \

3 --from-file creds=./aws-creds.conf

Execute the command that follows only if you are using Google Cloud.

1 kubectl --namespace crossplane-system \

2 create secret generic gcp-creds \

3 --from-file creds=./gcp-creds.json

Execute the command that follows only if you are using Google Cloud.

1 kubectl --namespace crossplane-system \

2 create secret generic azure-creds \

3 --from-file creds=./azure-creds.json

Next, we need to tell Crossplane where to find the secret we just created. We do that through a
ProviderConfig associated with the providers we installed.

I prepared that one as well, so let’s take a look.

Providers and Managed Resources

1 cat providers/$HYPERSCALER-config.yaml

The output is as follows.

1 ---

2 apiVersion: azure.upbound.io/v1beta1

3 kind: ProviderConfig

4 metadata:

5 name: default

6 spec:

7 credentials:

8 source: Secret

9 secretRef:

10 namespace: crossplane-system

11 name: azure-creds

12 key: creds

There’s nothing special there apart from the apiVersion that is specific to the provider we’re running
and the secretRef that tells it where the secret is.

We’re almost done with the providers. All that’s left is to apply the ProviderConfig.

1 kubectl apply --filename providers/$HYPERSCALER-config.yaml

Crossplane is now ready to manage resources in whichever hyperscaler you chose to use and we
can jump into the more interesting part of this chapter.

Create Managed Resources

A CrossplaneManaged Resource represents a resource managed by Crossplane. That resource can
be anything. It can be anAWS EC2 instance, amanaged PostgreSQL database in Azure, aGoogle
Cloud Run instance, a Kubernetes object, aHelm release, aGitHub repository, or any other type
of resource. As long as the Managed Resource Definition exists in the control plane cluster, we can
create Managed Resources based on it.

Managed Resource Definitions and their corresponding controllers are installed through providers
like the one we applied in the previous section. So, installing a provider results in the installation
of a number of Managed Resource Definitions which come with Kubernetes Custom Definitions
and Controllers.

If we go back to the Marketplace screen, we can see the list of Managed Resources we can create.
That way we can deduce whether the provider we’re interested in contains the resource definition
we’re interested in.

Pr o vi d ers a n d M a n a g e d R es o ur c es

Pl e as e s el e ct I n s t a n c e if y o u ar e usi n g A W S or G o o gl e Cl o u d, or L i n u x V i r t u a l M a c h i n e if y o u pr ef er
A z ur e.

O n c e w e s el e ct t h e r es o ur c e w e’ d li k e t o m a n a g e, w e c a n s e e t h e A PI d o c u m e nt ati o n t h at c o nt ai ns
t h e f ull s c h e m a wit h all t h e fi el ds w e mi g ht n e e d t o m a n a g e t h at r es o ur c e.

Pr o vi d ers a n d M a n a g e d R es o ur c es

I alr e a d y pre p ar e d a n e x a m pl e t h at w e’ll us e t o cr e at e a n d m a n a g e a V M i n t h e h y p ers c al er of c h oi c e.

1 c a t e x a m p l e s / $ H Y P E R S C A L E R - v m . y a m l

T h e o ut p ut of t h e first m a nif est is as f oll o ws (tr u n c at e d f or br e vit y).

1 - - -

2 a p i V e r s i o n : c o m p u t e . a z u r e . u p b o u n d . i o / v 1 b e t a 1

3 k i n d : L i n u x V i r t u a l M a c h i n e

4 m e t a d a t a :

5 n a m e : m y - v m

6 s p e c :

7 f o r P r o v i d e r :

8 l o c a t i o n : e a s t u s

9 r e s o u r c e G r o u p N a m e R e f :

1 0 n a m e : d o t - g r o u p

1 1 s i z e : S t a n d a r d _ A 1 _ v 2

1 2 s o u r c e I m a g e R e f e r e n c e :

Providers and Managed Resources

13 - offer: UbuntuServer

14 publisher: Canonical

15 sku: 16.04-LTS

16 version: latest

17 adminSshKey:

18 - publicKey: ssh-rsa

19 AAAAB3NzaC1yc2EAAAADAQABAAABAQC...

20 you@me.com

21 username: adminuser

22 adminUsername: adminuser

23 osDisk:

24 - caching: ReadWrite

25 storageAccountType: Standard_LRS

26 networkInterfaceIdsRefs:

27 - name: dot-interface

As I already mentioned, I’m using Azure in this chapter so, depending on what your choice is, you
might see a different output. Nevertheless, even though the definitions might differ, the logic behind
the explanation that follows is the same.

That is a “standard” Kubernetes manifest with apiVersion, kind, metadata, and spec. Assuming that
you are familiar with Kubernetes, there’s probably no need to explain those. If you are a stranger
to Kubernetes, it’s probably too early for you to adopt Crossplane.

The important part is the spec.forProvider section. Every Crossplane Managed Resource has it.
Typically, the fields inside it map the parameters of the resource it manages.

In this specific case, there are fields like location, size, adminUsername, and others that you should
be familiar with if you are familiar with Azure. They are almost identical mappings to Azure API
for that resource.

There are also “special” fields like resourceGroupNameRef and networkInterfaceIdsRefs.

Instead of specifying the Resource Group and the network interface, we are letting Crossplane
know that it can find the information about those from other resources (from dot-group and
dot-interface). Azure cannot create VMs without the Resource Group and without the network
interface. We could have hardcoded that information into the manifest, but that would not be a
good idea. It’s much better to let Crossplane figure it out dynamically. Instead of hard-coding
information from dependencies, we reference them.

CrossplaneManaged Resources do not have a mechanism, like some other tools, to define dependen-
cies. We cannot orchestrate the order in which resources are defined. Instead, Crossplane follows
Kubernetes logic where everything is eventually consistent. If we decide to apply five resources at
once, Crossplane will start creating all five at once, as long as it has all the information it needs. If
some information is missing, it will wait until the information is provided.

Providers and Managed Resources

All thatmeans that the VMmanifest requires information about the ResourceGroup and the network
interface and, in this specific case, we are referencing them by name. There are other, potentially
better ways to reference resources which we’ll explore later.

As a result, Crossplane might not be able to work on the VM if dot-group and dot-interface are
not ready since it cannot get the information it needs. We’ll see what that looks like in a moment.
For now, let’s move on to the other manifests from the output of the previous command.

The rest of the output is as follows.

1 ---

2 apiVersion: azure.upbound.io/v1beta1

3 kind: ResourceGroup

4 metadata:

5 name: dot-group

6 spec:

7 forProvider:

8 location: eastus

9 ---

10 apiVersion: network.azure.upbound.io/v1beta1

11 kind: NetworkInterface

12 metadata:

13 name: dot-interface

14 spec:

15 forProvider:

16 ipConfiguration:

17 - name: my-vm

18 privateIpAddressAllocation: Dynamic

19 subnetIdRef:

20 name: dot-subnet

21 location: eastus

22 resourceGroupNameRef:

23 name: dot-group

24 ---

25 apiVersion: network.azure.upbound.io/v1beta1

26 kind: Subnet

27 metadata:

28 name: dot-subnet

29 spec:

30 forProvider:

31 addressPrefixes:

32 - 10.0.1.0/24

33 resourceGroupNameRef:

34 name: dot-group

Providers and Managed Resources

35 virtualNetworkNameRef:

36 name: dot-network

37 ---

38 apiVersion: network.azure.upbound.io/v1beta1

39 kind: VirtualNetwork

40 metadata:

41 name: dot-network

42 spec:

43 forProvider:

44 addressSpace:

45 - 10.0.0.0/16

46 location: eastus

47 resourceGroupNameRef:

48 name: dot-group

The second manifest defines the Azure ResourceGroup. That is the dot-group resource that the
LinuxVirtualMachine is referencing through the spec.forProvider.resourceGroupNameRef.name

field.

Then there is the NetworkInterface which is the one LinuxVirtualMachine referenced through
the spec.forProvider.networkInterfaceIdsRefs[].name field. However, NetworkInterface also
needs to be inside a Resource Group, so it contains spec.forProvider.resourceGroupNameRef.name
reference as well. It also requires a subnet so it is referencing it through the
spec.forProvider.ipConfiguration[].subnetIdRef.name.

Then we have a Subnetmanifest referenced by the NetworkInterface which, in turn, references the
VirtualNetwork.

Before we proceed, I will say something that might make you think that I’m wasting your time.

You will probably not defineManaged Resources like that. That would result in a lot of duplication
and a lot of confusion by the end users. We’ll see a much better way to define Managed Resources
when we dive into Crossplane Compositions. More importantly, as you will see later, learning
how to use Managed Resources will be critical even though you will probably not define them as
we’re doing it now, so the time learning them is not a waste. Quite the contrary.

With that “depressing” note out of the way, let’s apply the manifests we explored…

1 kubectl apply --filename examples/$HYPERSCALER-vm.yaml

…and retrieve all managed resources.

1 kubectl get managed

The output is as follows.

Providers and Managed Resources

1 NAME READY SYNCED EXTERNAL-NAME AGE

2 resourcegroup.azure.../dot-group True True dot-group 12s

3

4 NAME READY SYNCED EXTERNAL-NAME AGE

5 linuxvirtualmachine.compute.azure.../my-vm False my-vm 12s

6

7 NAME READY SYNCED EXTERNAL-NAME AGE

8 networkinterface.network.../dot-interface False dot-interface 12s

9

10 NAME READY SYNCED EXTERNAL-NAME AGE

11 subnet.network.azure.../dot-subnet False True dot-subnet 12s

12

13 NAME READY SYNCED EXTERNAL-NAME AGE

14 virtualnetwork.network.azure.../dot-network dot-network 12s

managed is a shortcut, of sorts, that allows us to retrieve all resources managed by Crossplane. It is,
in a way, equivalent to kubectl get all which outputs all “core” Kubernetes resources.

Apart from seeing the APIs and the names of the resources we applied, we can see whether they are
READY and SYNCED. Suspiciously, in my case, only the resourcegroup and the subnet are synced. The
rest is not, and that brings us back to the references we discussed earlier. linuxvirtualmachine, for
example, references the networkinterface. It needs information from it so until that information
is available, Crossplane considers linuxvirtualmachine not synced meaning that it cannot start
working on it. The same can be said for other resources that are not yet synced. Information from
some other referenced resources is missing and that information might be available after Crossplane
obtains it from Azure (or whichever hyperscaler you might be using).

The READY field is easier to explain. It indicates whether the actual state, in this case, Azure resource,
is ready. It shows whether that specific resource is up and running.

After a while, Crossplane will have all the information it needs to create the VM.

We can see the current state through the kubectl describe command or by going to the console of
the hyperscaler of choice.

Please open the hyperscaler console and navigate to the EC2 instance if you’re using AWS or the
virtual machine if you’re using Azure or Google Cloud.

If you are using AWS, resources are being created in the us-east-1 region, so make sure to have
it selected. In the case of Google Cloud, you’ll need to go inside the newly created Project or the
Resource Group in the case of Azure.

Once inside the console page of the VM (or AWS EC2), we can see that it was indeed created, or that
it is in the process of being created, or that it was not yet created, in which case you might need to
wait for a while longer.

Pr o vi d ers a n d M a n a g e d R es o ur c es

D e p e n di n g o n t h e h y p ers c al er y o u c h os e, it mi g ht t a k e a f e w mi n ut es u ntil e v er yt hi n g is r e a d y. As
y o u alr e a d y s a w, w e c a n c h e c k t h e st at e of all M a n a g e d R es o ur c es wit h k u b e c t l g e t m a n a g e d .

1 k u b e c t l g e t m a n a g e d

T h e o ut p ut is as f oll o ws.

1 N A M E R E A D Y S Y N C E D E X T E R N A L - N A M E A G E

2 r e s o u r c e g r o u p . a z u r e . . . / d o t - g r o u p T r u e T r u e d o t - g r o u p 7 m 4 7 s

3

4 N A M E R E A D Y S Y N C E D E X T E R N A L - N A M E A G E

5 l i n u x v i r t u a l m a c h i n e . c o m p u t e . a z u r e . . . / m y - v m T r u e T r u e m y - v m 7 m 4 7 s

6

7 N A M E R E A D Y S Y N C E D E X T E R N A L - N A M E A G E

8 n e t w o r k i n t e r f a c e . n e t w o r k . a z u r e . . . / d o t - i n t e r f a c e T r u e T r u e d o t - i n t e r f a c e 7 m 4 7 s

9

1 0 N A M E R E A D Y S Y N C E D E X T E R N A L - N A M E A G E

1 1 s u b n e t . n e t w o r k . a z u r e . . . / d o t - s u b n e t T r u e T r u e d o t - s u b n e t 7 m 4 7 s

1 2

1 3 N A M E R E A D Y S Y N C E D E X T E R N A L - N A M E A G E

1 4 v i r t u a l n e t w o r k . n e t w o r k . a z u r e . . . / d o t - n e t w o r k T r u e T r u e d o t - n e t w o r k 7 m 4 7 s

Providers and Managed Resources

Here’s what we did so far.

We created a few Custom Resources through Kubernetes API (1, 2). Those Custom Resources are
Crossplane Managed Resources associated with a hyperscaler we chose. Crossplane Controllers
detected those resources (3) and started talking with the hyperscaler API (4) to create some of those
resources, while it was waiting with those that needed data from other resources (5). Once those
other resources were created, it could retrieve the data it needs from them and create the rest of the
resources (6).

Providers and Managed Resources

Providers and Managed Resources

All the resources are fully operational, and we can explore one of the big advantages of Crossplane;
continuous drift-detection and reconciliation.

Continuous Drift-Detection and Reconciliation

One of the things we all love about Kubernetes is continuous drift detection and reconciliation.
If, for example, we create a ReplicaSet (through a Deployment) it creates Pods. But that’s only part
of the story. That ReplicaSet will continuously watch the Pods it is responsible for and, if the state
of those Pods differs from the desired state, it will detect it as a drift and reconcile the states. It will
update the Pods to match the desired state. As a result, if we manually change the specification of
the Pods, those changes will be undone by the ReplicaSet since there is a drift. If we manually delete
one of the Pods, ReplicaSet will create a new one. In that example, the ReplicaSet is ensuring that
the actual state of the Pods it is in charge of is always the same as the desired state.

Crossplane takes those concepts to the next level or, to be more precise, it extends them to…
everything. No matter which type of resources we are managing with Crossplane, it will ensure
that their state always matches the desired state.

Let’s see if we can prove that.

Please go back to the VM in the console of your hyperscaler of choice. Stop the instance if you are
using Google Cloud or AWS or, if you’re using Azure, delete the instance.

Crossplane is limited by the capabilities of the API it talks to. Azure API does not have a mechanism
in its API to start a VM that is stopped, so Crossplane cannot do that either. For that reason, in the
case of Azure, we’ll demonstrate drift-detection and reconciliation by deleting it instead.*

We should be able to see that the VM disappeared in the case of Azure or that it was stopped in the
case of AWS or Google Cloud.

Pr o vi d ers a n d M a n a g e d R es o ur c es

All t h at’s l eft n o w is t o w ait f or a f e w m o m e nts s o t h at Cr oss pl a n e d et e cts t h e drift a n d r e c o n cil es
t h e diff er e n c es of t h e st at es. A f e w m o m e nts l at er, w e s h o ul d s e e t h at t h e V M is b a c k i n t h e c orr e ct
st at e. It is u p a n d r u n ni n g! Cr oss pl a n e di d t h e s a m e wit h t h e V M as w h at a R e pli c a S et w o ul d d o
wit h a P o d it m a n a g es if w e c h a n g e d its st at e.

Providers and Managed Resources

Pr o vi d ers a n d M a n a g e d R es o ur c es

N e xt, w e’ll e x pl or e h o w w e c a n u p d at e M a n a g e d R es o ur c es.

U p d a t e M a n a g e d R e s o u r c e s

U p d ati n g M a n a g e d r es o ur c es f oll o ws t h e s a m e drift- d et e cti o n a n d r e c o n cili ati o n pr o c ess w e j ust
o bs er v e d. If w e c h a n g e t h e d esir e d st at e b y m o dif yi n g a n d a p pl yi n g t h e m a nif ests, Cr oss pl a n e will
d et e ct it as a drift a n d r e c o n cil e it.

L et’s t a k e a l o o k at a n e x a m pl e b y o ut p utti n g a diff er e n c e b et w e e n t h e m a nif ests w e h a v e r u n ni n g
i n t h e c o ntr ol pl a n e ri g ht n o w a n d a m o difi e d v ersi o n.

1 d i f f e x a m p l e s / $ H Y P E R S C A L E R - v m . y a m l \

2 e x a m p l e s / $ H Y P E R S C A L E R - v m - b i g g e r . y a m l

T h e o ut p ut is as f oll o ws.

1 < s i z e : S t a n d a r d _ A 1 _ v 2

2 - - -

3 > s i z e : S t a n d a r d _ A 2 _ v 2

We c a n s e e t h at, i n t h e c as e of A z u r e , t h e si z e of t h e n o d e c h a n g e d fr o m S t a n d a r d _ A 1 _ v 2 t o
S t a n d a r d _ A 2 _ v 2 .

L et’s a p pl y t h e m o difi e d m a nif est, …

1 k u b e c t l a p p l y - - f i l e n a m e e x a m p l e s / $ H Y P E R S C A L E R - v m - b i g g e r . y a m l

… w ait f or a f e w m o m e nts f or Cr oss pl a n e t o d et e ct t h e drift a n d r e c o n cil e t h e st at es, a n d t a k e a n ot h er
l o o k at t h e c o ns ol e.

Pr o vi d ers a n d M a n a g e d R es o ur c es

We c a n s e e t h at, i n m y c as e, t h e si z e of t h e V M i n d e e d c h a n g e d t o S t a n d a r d _ A 2 _ v 2 .

D el e t e M a n a g e d R e s o u r c e s

As y o u c a n pr o b a bl y g u ess, t h e s a m e l o gi c wit h drift d et e cti o n a n d r e c o n cili ati o n is a p pli e d if w e
d el et e a m a n a g e d r es o ur c e.

If, f or e x a m pl e, w e d el et e t h e m a nif ests w e a p pli e d, …

1 k u b e c t l d e l e t e - - f i l e n a m e e x a m p l e s / $ H Y P E R S C A L E R - v m - b i g g e r . y a m l

… w ait f or a w hil e, a n d g o b a c k t o t h e c o ns ol e, w e c a n s e e t h at t h e V M a n d all ot h er r es o ur c es w e
w er e m a n a gi n g ar e n o w g o n e.

Cr oss pl a n e d et e ct e d t h e drift b et w e e n t h e d esir e d a n d t h e a ct u al st at e a n d d e d u c e d t h at o ur d esir e d
st at e is t o n ot h a v e t h os e r es o ur c es. H e n c e, Cr oss pl a n e r e c o n cil e d t h e drift b y r e m o vi n g t h e m fr o m
t h e h y p ers c al er.

I n s o m e c as es, t h e h y p ersc al er mi g ht c h o os e t o s p a w n a c hil d r es o urc e fr o m t h e r es o urc e m a n a g e d
b y Cr oss pl a n e. I n t h os e c as es, si nc e t h at r es o urc e is n ot m a n a g e d b y Cr oss pl a n e, it mi g ht b e l eft

Providers and Managed Resources

“dangling” after we remove the parent resource by deleting the Crossplane Managed Resource. An
example of that would be an AWS ELB spun as a result of creating an Ingress controller. It will stay
intact even if we remove the Kubernetes cluster through Crossplane since that ELB is not managed
by it. In some cases, Hyperscalers have internal mechanisms to clean up orphaned resources, while
in others they don’t.

Destroy Everything

That’s it. That’s all you should know about Crossplane Managed Resources, for now.

Let’s destroy everything we did before we jump into the next chapter.

1 chmod +x destroy/01-managed-resources.sh

2

3 ./destroy/01-managed-resources.sh

4

5 exit

Conclusion

To take the next step in your Crossplane journey to learn about Compositions, check out my full
book, Crossplane: the Cloud Native Control Plane9. It’ll give you the whole picture on how to
implement Crossplane and more!

9https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane

https://www.upbound.io/resources/lp/book/crossplane-cloud-native-control-plane

	cd424345-7780-4ed3-b234-6ea27d6c39cc.pdf
	Table of Contents
	Introduction
	Chapter Setup
	A Glimpse Into the Future
	Destroy Everything

	Providers and Managed Resources
	Chapter Setup
	Crossplane Providers
	Create Managed Resources
	Continuous Drift-Detection and Reconciliation
	Update Managed Resources
	Delete Managed Resources
	Destroy Everything

	Compositions
	Chapter Setup
	Composite Resource Definitions
	Defining Compositions
	Resource References and Selectors
	Patching
	Managing Connection Secrets
	Combining Providers in Compositions
	Defining Composite Claims
	Destroy Everything

	Configuration Packages
	Chapter Setup
	Building Configuration Packages
	Installing Configuration Packages
	Destroy Everything

	Composition Functions
	Chapter Setup
	What's Missing?
	Patch and Transform Function
	Go Templating Function
	Auto-Ready Function
	Building and Pushing Configuration Package
	Destroy Everything

	The End?

	Blank Page
	getting_started_with_crossplane_providers_managed_resources_final_paper.pdf
	cd424345-7780-4ed3-b234-6ea27d6c39cc.pdf
	Table of Contents
	Introduction
	Chapter Setup
	A Glimpse Into the Future
	Destroy Everything

	Providers and Managed Resources
	Chapter Setup
	Crossplane Providers
	Create Managed Resources
	Continuous Drift-Detection and Reconciliation
	Update Managed Resources
	Delete Managed Resources
	Destroy Everything

	Compositions
	Chapter Setup
	Composite Resource Definitions
	Defining Compositions
	Resource References and Selectors
	Patching
	Managing Connection Secrets
	Combining Providers in Compositions
	Defining Composite Claims
	Destroy Everything

	Configuration Packages
	Chapter Setup
	Building Configuration Packages
	Installing Configuration Packages
	Destroy Everything

	Composition Functions
	Chapter Setup
	What's Missing?
	Patch and Transform Function
	Go Templating Function
	Auto-Ready Function
	Building and Pushing Configuration Package
	Destroy Everything

	The End?

	Blank Page

