
upbound.io 1

What is Crossplane?
Crossplane is a CNCF project that transforms your Kubernetes clusters into universal control planes.
Crossplane enables platform teams to use Providers to install Custom Resource Definitions (CRDs),
extending the Kubernetes API to provision, compose, and consume infrastructure from multiple
vendors, without writing any code.

The building blocks of Crossplane are Providers and Managed Resources.

Providers tell Crossplane how to communicate to API endpoints external to Kubernetes. Though
it is the most common use case, Providers aren’t restricted to managing cloud resources; they can
be written for anything that has an API - for example, to use Crossplane to order Dominos Pizza.
The provider provides the rules that teach Crossplane how to structure API calls, authenticate,
and what API endpoints exist.

Crossplane Managed Resources (MRs) are a kind of Kubernetes Custom Resource. The API server
uses CRDs to learn about new kinds of Custom Resources; CRDs include all the information the
API server needs to expose a new Custom Resource - for example: its type and OpenAPI schema.
Depending on the system it will be communicating with, a single Provider might contain hundreds
of MRs - AWS alone has almost 1000 MR API endpoints, nearly 20 times more than Kubernetes
itself! Every external API needs an associated MR; for example, in the Crossplane AWS Provider,
RDSInstance corresponds to an actual RDS Instance in AWS. The more services a Provider has,
the more MRs need to be installed into Kubernetes.

Scaling Crossplane
to Production

W H I T E PA P E R

apiVersion: crossplanedemo.com/v1alpha1
kind: CompositeKubernetesCluster
metadata:
 name: devops-team
 labels:
 cluster-owner: piotrzan
spec:
 compositionRef:
 # Possible values cluster-google, cluster-azure, cluster-aws
 name: cluster-aws
 parameters:
 # Possible values small, medium, large
 nodeSize: small
 # version: “1.20”
 # minNodeCount: 2
 writeConnectionSecretToRef:
 namespace: devops-team
 name: cluster

kubectl get secrets --namespace devops-team cluster \
 --output jsonpath=”{.data.kubeconfig}” \
 | base64 --decode | tee eks-config.yaml
export KUBECONFIG=$PWD/eks-config.yaml

http://upbound.io
https://crossplane.io/
https://www.cncf.io/
https://crossplane.io/docs/v1.10/concepts/providers.html
https://crossplane.io/docs/v1.10/concepts/managed-resources.html
https://blog.crossplane.io/providers-101-ordering-pizza-with-kubernetes-and-crossplane/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://doc.crds.dev/github.com/crossplane/provider-aws/database.aws.crossplane.io/RDSInstance/v1beta1@v0.31.0

upbound.io 2

What is Upbound?
Upbound is the company that invented the open source Crossplane project. Our mission is to
help customers build Internal Cloud Platforms using control planes. Every Upbound customer
gets access to Upbound Universal Crossplane (UXP) and Official Providers so they can build their
Internal Cloud Platforms with Crossplane confidently. UXP is Upbound’s downstream distribution of
Crossplane, and Official Providers are production ready versions of Providers. Both are maintained,
tested, and supported by Upbound on behalf of our customers and community.

S O M E B A C K G R O U N D

There were only a few API endpoints in the original Kubernetes design. In 2019 when Kubernetes
v1.16 made CRDs Generally Available, the idea of hundreds or thousands of CRDs was unheard of.
With CRDs able to connect Kubernetes to anything, the Crossplane community saw an opportunity
to make Kubernetes the one tool to build and manage infrastructure. To ensure high fidelity with,
and full coverage of, cloud vendor APIs, Crossplane incorporated hundreds of CRDs per Provider.
Need an AWS IAM Group? Crossplane has it. What about a GCP Autoscaler? Crossplane has that
too. When users began managing multiple clouds with Crossplane, the number of CRDs installed
to Kubernetes grew to thousands and tens of thousands.

S O W H AT I S T H E P R O B L E M ?

The problem is Kubernetes doesn’t scale well after you install a few hundred of these CRDs; the
Kubernetes control plane’s memory usage scales linearly with the number of CRDs installed. This
can cause performance degradation and unresponsiveness. A typical Crossplane production
deployment of 2,000-3,000 CRDs can be 2-3 times the number of CRDs present in that AWS
Provider. What happens if you need to install all of the “Big 3” (AWS, GCP, Azure)?

So why does Kuberentes have this problem? Unfortunately, the original Kubernetes API
implementation did a poor job of using system memory. Before Crossplane, when the number
of API endpoints was low (~25-50), no one noticed a problem. For Crossplane users though, this
became a major issue. Users reported unstable API Servers, Kubernetes commands that would take
minutes to return a result or maybe never finish. Entire clusters became unusable, not just for CRDs
but for everything else as well.

In order to support those thousands of CRDs introduced per Provider, Upbound looked at the
entire Kubernetes stack from the Client request to the API Server processing and CRD data
structures, resulting in multiple potential places for improvement across both clients and servers.

Our mission is to help customers
build Internal Cloud Platforms using
control planes.

http://upbound.io
https://www.upbound.io/
https://marketplace.upbound.io/providers/upbound/provider-aws/v0.17.0/resources/iam.aws.upbound.io/Group/v1beta1
https://www.google.com/url?q=https://marketplace.upbound.io/providers/upbound/provider-gcp/v0.15.0/resources/compute.gcp.upbound.io/Autoscaler/v1beta1&sa=D&source=docs&ust=1667253274343319&usg=AOvVaw010LcBapw5ENC0SRMEbepr
https://www.google.com/url?q=https://marketplace.upbound.io/providers/upbound/provider-gcp/v0.15.0/resources/compute.gcp.upbound.io/Autoscaler/v1beta1&sa=D&source=docs&ust=1667253274343319&usg=AOvVaw010LcBapw5ENC0SRMEbepr

3upbound.io

C L I E N T- S I D E I S S U E S

Kubernetes must periodically check for new CRDs you
may have added to the cluster. This “api discovery”
process can take a while because clients like kubectl
and helm are configured to cache and rate limit
queries - ironically, for performance reasons. More
CRDs installed means more queries. Upbound, the
creator of Crossplane and the industry’s first platform
for building internal cloud platforms, maintains a
set of mature, feature-complete, enterprise-level
“Official” Crossplane Providers. With Upbound’s
Official Providers, you get stable, full coverage
parity with cloud vendor APIs. All resource APIs are
production ready, giving platform teams a stable
foundation to build their Internal Cloud Platforms.

Upbound’s Marketplace has the perfect solutions to
build internal cloud platforms. This is where to go to
find Official Providers and featured configurations -
custom blueprints and reference platforms to power
your internal cloud platform. For Upbound’s Official
Providers, there are over 300 API groups. Because the
default api rate limit is 50 queries per second with a
burst of 100 queries per second, if there are more than
100 group versions, we will hit the rate limit during api
discovery, which will slow down the process. We have
seen delays of up to 10 minutes here.

C L I E N T- S I D E S O L U T I O N S

While there are other fixes coming, bumping this
burst from 100 to 300, and flushing the discovery
cache less frequently (every 6 hours instead of every
10 minutes) has already fixed these issues for most
folks on the latest versions of kubectl. I.e., we can
ask the server to do more work before it rate limits
us, and faster: an average kubectl query against 300
API groups now takes one second (a 10x speedup!).
The fix was introduced in kubectl and Kubernetes
v1.25.0, and backported to Kubernetes v1.22.13,
v1.23.20, v1.24.4; as long as you are using one of
those versions, you will automatically take advantage
of these improvements.

But why take your chances? Our advice is to keep
up to date, or tell your cloud vendors to keep up to
date! At the time of writing, AKS and GKE are 1 patch
behind (and GKE’s version requires a 20-node cluster
to keep up), whereas EKS is 13 patches behind!

This is where Upbound Universal Crossplane comes
in. As mentioned above, UXP is Upbound’s official
enterprise-grade distribution of Crossplane. At
Upbound, we have verified that EKS, AKS, and
GKE can handle UXP with Official Providers (~2,200
CRDs) without issue. UXP is hardened and tested
by Upbound so companies can confidently deploy
control plane architectures to production.

Delays caused by default API rate limits

10min

10x

300
Increased burst of queries per second

Increased speed of an average kubectl
queary against 300 API groups

http://upbound.io
https://www.upbound.io/learn/resources/upbound-marketplace-launch-partners
https://marketplace.upbound.io/
https://marketplace.upbound.io/
https://github.com/kubernetes/kubernetes/pull/105520
https://github.com/kubernetes/kubernetes/pull/105520
https://www.upbound.io/products/universal-crossplane

upbound.io

Connecting UXP to Upbound Cloud is enabled with
a free Upbound account for simplified management,
and is the best thing you can do if you have run into
problems running “too many” CRDs. Upbound also
offers support, services and security for customers
looking for help with deployment and scale.

You can gain back even more ground by making sure
your Go client for Kubernetes is up to date. The Go
client added some garbage collection improvements in
v0.25.0, so Kubernetes clients other than kubectl should
be updated to use the latest version of that library.

S E R V E R - S I D E I S S U E S

Server-side issues are principally memory and CPU
bandwidth issues.

For control plane nodes, the control plane’s api-server
service requires about 4MB of memory for each CRD
installed into a Kubernetes cluster. This translates to
8-12GB of memory to support our typical Crossplane
production deployment of 2,000-3,000 CRDs above!

More memory is more expensive - but the bigger issue
is the Kubernetes clusters can become unresponsive.

The OpenAPI controller does a lot of work every time
a CRD is added or updated (builds a new swagger
spec, merges it with the existing specs, and then
serializes that into JSON to be served by the
/openapi/v2 endpoint). Adding many CRDs to the
Kubernetes API server all at once can overwhelm
the CPU’s bandwidth.

S E R V E R - S I D E S O L U T I O N S

Cloud vendors usually deal with this memory
explosion issue through vertical scaling (adding
more memory to existing nodes). The CPU issue was
handled by making the OpenAPI schema computation
lazy - we only do all that work again when someone
asks for it by making a request to that endpoint.

If you want a more in-depth treatment of these
issues, see Nic Cope’s excellent blog post Scaling
Kubernetes to Thousands of CRDs.

35%
Decrease in memory used by CRDs

What’s Next
At Upbound, we continually work with third parties
(e.g. EKS, GKE, ArgoCD, Helm, etc) to ensure their
clients and control planes are running the latest client
and api-server releases. For example, we work closely
with AKS to see if there are any other configuration
changes that can be made - we want to make sure
everything is fully tested and stable, and we want to
continue making everything better for the community.
That’s why we’ve opened a PR in the Kubernetes
project that will cut the memory used by CRDs by
35%, and improved the discovery process for Helm.

Sound interesting? Do you have any of these
problems? Why not visit the Upbound Marketplace
and check out UXP? Or better still, contact Upbound
today - no matter where you are on your journey,
we’ll help you find the perfect solution to build your
internal cloud platform.

Want to learn more
about Upbound?

Contact Us

http://upbound.io
https://www.upbound.io/products/universal-crossplane
https://www.upbound.io/products/universal-crossplane
https://www.upbound.io/products/universal-crossplane
https://blog.upbound.io/scaling-kubernetes-to-thousands-of-crds/
https://blog.upbound.io/scaling-kubernetes-to-thousands-of-crds/
https://github.com/kubernetes/kubernetes/issues/111476
https://github.com/kubernetes/kubernetes/issues/111476
https://www.google.com/url?q=https://github.com/kubernetes/kubernetes/pull/109141&sa=D&source=docs&ust=1667253444583216&usg=AOvVaw3k4qGKjTiv2KWVY8lQ1fJJ
https://marketplace.upbound.io/
https://www.upbound.io/contact

