
1The Future of Infrastructure as Code

The Future of
Infrastructure as Code
Dan Sullivan

1

CONTENTS
The future of IaC lies with control
planes � 2

Common problems with using IaC as
a one-time blueprint� 3

Crossplane: an open source
universal control plane � 4

IN THIS PAPER
Infrastructure as Code (IaC) is an essential feature of modern infra-

structure management that enables organizations to treat deploying

infrastructure a lot like deploying. There are two primary approaches to

using IaC: Using it as a blueprint for resource deployment, or using it to

specify a full deployment and what should persist over time. The former

suffers from uncontrolled changes to configurations and collaboration

challenges while the latter minimizes the need for human intervention

to detect and address changes. Control planes, and Crossplane in partic-

ular, are the foundation for deploying the latter model.

Highlights include:

•	 IaC can be used as a guide for setting up infrastructure that’s then

manually managed

•	 A better approach is to adopt techniques used in Kubernetes

to monitor state and apply changes as needed to maintain the

desired state

•	 Crossplane extends Kubernetes to allow for declarative, adaptive

management of IaC

2The Future of Infrastructure as Code

The entire specification is just about what the VM should

be, but no instructions about how to actually implement

what we want. IaC enables automatic implementation of

your configuration, sidestepping a manual approach. This

is the essence of IaC (see Figure 1).

There are two primary approaches to using IaC: Using it as

a blueprint for resource deployment, or using it to specify

a full deployment and what should persist over time.

The first option is like an architectural drawing for build-

ing a house. It lays out the initial setup of the building,

but once the house is built, owners may make changes as

they see fit. Over time, those first blueprints will no longer

accurately describe the state of the house—e.g., walls have

been added and removed, carpet has been replaced with

hardwood, and so on. This method of using infrastructure

as code lets organizations deploy an initial infrastructure

state efficiently, while still allowing you to alter it at will

moving forward.

Infrastructure as Code (IaC) is an essential feature of

modern infrastructure management. It allows admins to

focus on the “what” instead of worrying about the “how.”

A key advantage of this is that IaC lets organizations treat

deploying infrastructure a lot like deploying software, and

enterprises have become quite good at deploying software.

So we can see the broad similarities between software

engineering practices and infrastructure management,

but what does this mean for enterprises looking to adopt

these technologies and practices?

The future of IaC lies with
control planes
IaC has a lot of promise, at first glance it sounds like it

lets us describe what we want in our infrastructure and

then we get it. Of course, it isn’t that simple. Some IaC

approaches are very good at standing up infrastructure

according to our specifications; however, things change.

We work in organizations that have constantly changing

priorities and we live in a universe subject to entropy.

What we deploy today as infrastructure may not be func-

tioning as we expect tomorrow. Not only do we need a

way to deploy infrastructure, but we need a self-correct-

ing mechanism to address unexpected and unwanted

changes to our infrastructure.

IaC is a declarative specification for what infrastructure

to deploy. For example, we can declare that we want to

deploy a VM in a cloud with 4 CPUs, 256GB of memory, 2

local SSD drives with 500GB of storage each, and that that

VM should have access to a particular subnet in our virtual

private cloud.

Not only do we need a way
to deploy infrastructure, but
we need a self-correcting
mechanism to address
unexpected and unwanted
changes to our infrastructure.

Figure 1: IT resources become something that can be
configured in software with IaC

Infrastructure Specification

CLUSTER 1

Node 1
 cpu: 4
 memory: 256 GB

Node 2
 cpu: 8
 memory: 512 GB
 SSD: 1 TB

Object Storage
 bucket 1:
 region: east
 lifecycle policy: policy1

3The Future of Infrastructure as Code

or create a Kubernetes cluster. This may be acceptable in

development environments, but in most enterprises, we

need to have more control over our infrastructure.

COLLABORATION CHALLENGES
A hallmark of modern software engineering is collabora-

tion. We build and work with complex systems that can

entail an array of technologies, including custom software

applications, databases, and networks.

Creating a production environment can require contri-

butions from a team of engineers with different areas of

expertise. One person might know the details of deploying

an application, while another member of the team knows

how to configure data pipelines to send data from the

application to a data warehouse. A network engineer knows

how to configure virtual private clouds, set up subnets, and

control traffic between subnets using firewall rules.

Like other areas of software development, modularization

is used to manage complexity. The problem, though, is

that modularization of IaC is difficult to get right. There

may be subtle dependencies between modules that are

difficult to discern.

As a result, engineers may have to spend a lot of time

refactoring their IaC modules. This in turn can be disrup-

tive on development teams if they cannot count on hav-

ing stable development environments. It can also lead to

delays in deploying production environments where it’s

important to get things right the first time.

When we do use modules, which are like software librar-

ies, developers may have to learn a new configuration lan-

guage. The effort can be worth it because using modules

raises the level of abstraction for application developers.

Unfortunately, it doesn’t necessarily raise the level of

control abstraction.

EXAMPLE DEPLOYMENT
Let’s consider how we would deploy three VM instances in

a public cloud using a tool like HashiCorp’s Terraform.

We start with creating a file that specifies the resources

we want to deploy. This requires that we tell Terraform

what cloud provider we’re working with, as well as the

region or other location information that may be required.

The second approach is to use IaC as both an initial blue-

print, and a method of managing infrastructure config-

urations over time. This option is more analogous to a

flight path. It describes a course the plane will fly, and

can be used during the flight to adjust course as needed.

It’s an extended use of IaC to help manage infrastructure,

instead of just a starting point. This option works well in

dynamic environments where changes are likely to occur,

like environments where resources like VMs or containers

might fail and must be replaced automatically.

Common problems with using
IaC as a one-time blueprint

UNCONTROLLED CHANGES TO
CONFIGURATIONS

IaC has many advantages over manually managing infra-

structure or using imperative scripts to create infrastruc-

ture by executing a fixed set of steps. Manual changes to

infrastructure are error-prone and difficult to scale, which

is why many system administrators have opted to write

scripts that execute specific steps to deploy infrastructure.

While an improvement over manually changing your

infrastructure, these scripts tend to be brittle because they

typically assume a known starting state. For example, a

script might deploy a set of VMs using a particular operat-

ing system, and assign specific IP addresses to those VMs.

This works well when all the VMs have to be deployed at

once, and none of the VMs are currently deployed.

But consider the problem of a single VM becoming

unhealthy. The script is designed to deploy all the VMs,

not detect when one has failed. In this case, a system

administrator could manually deploy a new VM or copy

and edit the script to deploy just a single instance. There’s

no way to automatically detect the changes in the state

of your infrastructure and correct for that change. This

is known as “configuration drift,” and is a significant

obstacle to smooth-running infrastructure.

Configuration drift isn’t just the result of unhealthy VMs or

containers. DevOps engineers and developers may decide

they need additional infrastructure and deploy a new VM

4The Future of Infrastructure as Code

differences, Kubernetes executes actions to bring the

existing state back to the desired state. Ideally, we would

have a similar tool for managing IaC.

Crossplane: an open source
universal control plane
Crossplane is an open source framework for building

control planes. Crossplane extends the capabilities of

Kubernetes and combines the power of IaC with the

built-in monitoring and state enforcement capabilities

of a control plane. With Crossplane installed, platform

teams enable their Kubernetes clusters to manage infra-

structure resources which exist outside of their clusters,

constantly reconciling resource state based on the defini-

tions in the cluster.

Crossplane connects to resources outside of a Kubernetes

cluster via “providers,”, which are essentially plugins.

Providers install custom resource definitions, or CRDs, for

infrastructure to be managed. These CRDs are deployed

into the cluster Crossplane is installed into, enabling

Kubernetes tools and functions to operate on any piece of

infrastructure or cloud resource, from Amazon S3 buckets

and networking to bare metal servers hosted on-prem-

ises. Providers bridge the gap between Kubernetes APIs

and operations and any third-party resource creating an

end-to-end, API-first infrastructure.

A MORE ADAPTIVE AND DYNAMIC IAC
IaC brings new levels of flexibility, controls, and repro-

ducibility to enterprises deploying infrastructure

on-premises and in the cloud. IaC systems alone are not

enough, though. IT environments are dynamic, and we

need automated tools to maintain those environments.

Control planes are the key to implementing a more adap-

tive and dynamic form of IaC.

To learn more about IaC, control planes, and how they

can help manage increasingly complex infrastructure,

schedule a demo with Upound today.

We then list our resources we want. In the case of VMs, we

can specify the machine type, operating system, and other

specifications.

Next, we use the command line or a CI/CD pipeline to

have the infrastructure deployed by Terraform. The IaC

tool will inspect that state of infrastructure and build

an execution plan that details the steps needed to have

the deployed infrastructure match the description in the

Terraform specification file. After the execution plan runs,

the infrastructure will be in the desired state.

A significant shortcoming of this approach is that some-

thing about the state of infrastructure can change without

someone detecting it. Our resources could be misconfig-

ured for an extended period of time until someone notices

the difference between the actual state of infrastructure

and the desired state (see Figure 2). In a worst-case sce-

nario, a service or application can be down, and the infra-

structure problem is discovered only after users complain

about a service outage.

This is a similar problem to one we find in container

orchestration, where a container may fail or there’s some

other change to the deployed state of a service. Kubernetes

addresses this problem by monitoring the state of ser-

vices and compares it to the desired state: If there are

Figure 2: Control planes are used to maintain the desired state
of infrastructure

CONTROL PLANE CONTROL PLANE

IaC brings new levels of
flexibility, controls, and
reproducibility to enterprises
deploying infrastructure on-
premises and in the cloud.

https://www.upbound.io/products/universal-crossplane

	The future of IaC lies with control planes
	Common problems with using IaC as a one-time blueprint
	Crossplane: an open source universal control plane

