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Identifying the Effects of SNAP (Food Stamps) on
Child Health Outcomes When Participation Is

Endogenous and Misreported
Brent KREIDER, John V. PEPPER, Craig GUNDERSEN, and Dean JOLLIFFE

The literature assessing the efficacy of the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp Program,
has long puzzled over positive associations between SNAP receipt and various undesirable health outcomes such as food insecurity. Assessing
the causal impacts of SNAP, however, is hampered by two key identification problems: endogenous selection into participation and extensive
systematic underreporting of participation status. Using data from the National Health and Nutrition Examination Survey (NHANES), we
extend partial identification bounding methods to account for these two identification problems in a single unifying framework. Specifically,
we derive informative bounds on the average treatment effect (ATE) of SNAP on child food insecurity, poor general health, obesity, and
anemia across a range of different assumptions used to address the selection and classification error problems. In particular, to address
the selection problem, we apply relatively weak nonparametric assumptions on the latent outcomes, selected treatments, and observed
covariates. To address the classification error problem, we formalize a new approach that uses auxiliary administrative data on the size of the
SNAP caseload to restrict the magnitudes and patterns of SNAP reporting errors. Layering successively stronger assumptions, an objective
of our analysis is to make transparent how the strength of the conclusions varies with the strength of the identifying assumptions. Under the
weakest restrictions, there is substantial ambiguity; we cannot rule out the possibility that SNAP increases or decreases poor health. Under
stronger but plausible assumptions used to address the selection and classification error problems, we find that commonly cited relationships
between SNAP and poor health outcomes provide a misleading picture about the true impacts of the program. Our tightest bounds identify
favorable impacts of SNAP on child health.

KEY WORDS: Food insecurity; Food Stamp Program; Health outcomes; Nonclassical measurement error; Nonparametric bounds; Partial
identification; Supplemental Nutrition Assistance Program; Treatment effect.

1. INTRODUCTION

The Supplemental Nutrition Assistance Program (SNAP),
formerly known as the Food Stamp Program, is by far the
largest food assistance program in the United States and, as
such, constitutes a crucial component of the social safety net
in the United States. In any given month during 2009, SNAP
provided assistance to more than 15 million children (Leftin,
Gothro, and Eslami 2010), and it is estimated that nearly one
in two American children will receive assistance during their
childhood (Rank and Hirschl 2009). As a consequence, policy-
makers expect this program to have major beneficial impacts
on numerous health and nutrition challenges facing the nation,
particularly for low-income children who constitute half of the
recipients. Paradoxically, however, the vast empirical literature
examining the impact of SNAP on health reveals little support-
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ing evidence regarding the efficacy of the program in promoting
food security and alleviating health problems. Children resid-
ing in households receiving food stamps are substantially more
likely to suffer from an array of health-related problems than
observationally similar nonparticipating children (e.g., Currie
2003; Coleman-Jensen et al. 2011).

While SNAP is associated with adverse health- and nutrition-
related outcomes, drawing inferences on the efficacy of the
program is complicated by two fundamental identification prob-
lems. A selection problem arises because the decision to par-
ticipate in SNAP is unlikely to be exogenous. To the contrary,
unobserved factors such as expected future health status, par-
ents’ human capital characteristics, financial stability, and at-
titudes toward work and family are all thought to be jointly
related to participation in the program and health outcomes
(Currie 2003). Families may decide to participate precisely be-
cause they expect to be food insecure or in poor health.

A nonrandom measurement error problem arises because
large fractions of food stamp recipients fail to report their pro-
gram participation in household surveys. Using administrative
data matched with data from the Survey of Income and Pro-
gram Participation (SIPP), for example, Bollinger and David
(1997) find that errors in self-reported receipt of food stamps
exceed 12% and are related to respondents’ characteristics in-
cluding their true participation status, health outcomes, and de-
mographic attributes. Meyer, Mok, and Sullivan (2009) provide
evidence of extensive underreporting in the SIPP, the Current
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Population Survey (CPS), and the Panel Study of Income Dy-
namics (PSID).

While these identification problems have long been known
to confound inferences on the impact of SNAP, credible solu-
tions remain elusive. In reviewing this literature, Currie (2003,
p. 240) asserts that “many studies have [. . .] simply ‘punted’
on the issue of identification.” Most studies treat selection
as exogenous and receipt as accurate. A few recent excep-
tions address the selection problem using instrumental variables
within a linear response model (e.g., Gundersen and Oliveira
2001; DePolt, Moffitt, and Ribar 2009; Hoynes and Schanzen-
bach 2009). Gundersen and Kreider (2008) formally allow for
the possibility of misclassified program participation, but they
focus on identifying descriptive statistics rather than causal
parameters.

In this article, we consider what can be inferred about impacts
of SNAP when formally accounting for the ambiguity created
by the selection and measurement error problems. This study is
the first to simultaneously address both of these treatment effect
identification problems within a single methodological frame-
work. To do so, we extend recently developed partial identifi-
cation methods that allow one to consider weaker assumptions
than required under conventional parametric approaches (e.g.,
Manski 1995; Pepper 2000; Kreider and Pepper 2007, 2008;
Gundersen and Kreider 2008; Molinari 2008, 2010; Kreider
and Hill 2009). Introducing a nonparametric regression discon-
tinuity design, Gundersen, Kreider, and Pepper (2012) apply
some of the methods developed in this article to study effects of
the National School Lunch Program (NSLP). Recent research
in Nicoletti, Peracchi, and Foliano (2011) study identification
of marginal distributions (for poverty rates) using a frame-
work that formally accounts for both classification errors and
missing data.

This partial identification approach is especially well-suited
for studying the impact of SNAP where classical methodolog-
ical prescriptions are often untenable. The literature evaluating
the impact of means-tested assistance programs typically re-
lies on linear response models coupled with an assumption that
some observed instrumental variable (IV), often based on cross-
state and time variation in program rules and regulations, affects
program participation but otherwise has no effect on the poten-
tial outcomes. Yet, SNAP is mostly defined at the federal level
and has not substantively changed since the early 1980s, so
many of the key program rules and regulations are not as useful
as instrumental variables. Moreover, as is now widely recog-
nized, the classical linear response model assumption is diffi-
cult to justify when considering programs that are thought to
have heterogeneous effects (Moffitt 2005). Finally, the implicit
assumption of accurate classification of participation status is
known to be violated, yet addressing the problem of classifica-
tion errors in a binary regressor is difficult. The assumption of
non-mean-reverting errors cannot apply with binary variables,
and the systematic underreporting of SNAP participation vi-
olates the classical assumption that measurement error arises
independently of the true value of the underlying variable (e.g.,
Bollinger 1996).

The methods applied in this article do not require the lin-
ear response model, the classical measurement error model,
or an instrumental variable assumption. Instead, we focus on

weaker models that are straightforward to motivate in practice
and result in informative bounds on the health consequences of
SNAP. In light of the methodological challenges in addressing
these identification problems, deriving informative bounds un-
der assumptions that may share some consensus seems like an
important step.

Using data from the National Health and Nutrition Exami-
nation Survey (NHANES), we assess the impact of SNAP on
the health of children, an important subpopulation that com-
prises half of all recipients and whose well-being is followed
closely by policymakers and program administrators. A primary
strength of the NHANES is the wealth of health-related informa-
tion provided in the survey. We exploit these data by assessing
the impact of SNAP on food insecurity, obesity, poor general
health, and anemia. In what follows, we use the terms “SNAP”
and “food stamps” interchangeably since benefits were called
food stamps during the years the data were collected for our
analysis.

After describing the data in Section 2, we formally define the
empirical questions and the identification problems in Section
3. Our analysis is complicated by two distinct identification
problems: (a) the selection problem that arises because the data
cannot reveal unknown counterfactuals (e.g., the outcomes of
a nonparticipant in an alternate state of the world in which
SNAP benefits are received), and (b) the measurement error
problem that arises because the data cannot reveal respondents
with misclassified participation status.

In Section 4, we focus on the selection problem, abstract-
ing away from classification errors. Following Manski (1995)
and Pepper (2000), we begin by examining what can be learned
without imposing any assumptions on the selection process, and
then consider the identifying power of several alternative as-
sumptions. We first consider the Monotone Treatment Selection
(MTS) restriction (Manski and Pepper 2000) that formalizes the
common assumption that the decision to participate in SNAP is
monotonically related to poor latent health outcomes. We then
consider the Monotone Instrumental Variable (MIV) assump-
tion that the latent probability of a poor health outcome is nonin-
creasing in household income (adjusted for family composition).
Requiring no a priori exclusion restriction, the MIV assumption
can be plausible in many applications where the standard inde-
pendence assumption is a matter of considerable controversy.
Finally, in parts of the analysis, we consider a Monotone Treat-
ment Response (MTR) assumption that participation in SNAP
does not worsen health status. While recipients appear to be
worse off on average than eligible nonrecipients, many have
argued that participating in SNAP would not cause health or
food security to deteriorate (e.g., Currie 2003). Section 4 con-
cludes with a brief analysis of data from the 2003 CPS to assess
whether the results are consistent across the surveys and to con-
sider standard instrumental variables made available in the rich
CPS covariate data.

In Section 5, we introduce classification errors in the model.
In doing so, we make two notable contributions to the litera-
ture. First, departing from the usual treatment effects literature
that formally acknowledges ambiguity associated with coun-
terfactuals but not ambiguity associated with misreporting, our
methods simultaneously account for both problems. Second, we
develop new methods that use administrative information on the
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size of the SNAP caseload to derive informative constraints on
the classification error problem.

We draw conclusions in Section 6 and emphasize three find-
ings. First, the ambiguity associated with the selection and
classification error problems can be substantially mitigated by
applying some basic restrictions including MTS and no-false
positive reports of participation (as discussed below, the empir-
ical literature on SNAP suggests that errors of commission are
negligible). Second, under the joint MIV–MTS assumption, we
find that SNAP reduces food insecurity rates. This result holds
even for modest degrees of misclassification error. Finally, un-
der the joint MIV–MTS–MTR assumption, we find that SNAP
leads to a decline in food insecurity rates and other poor health
outcomes even when allowing for high rates of classification
error.

2. DATA

To study the impact of SNAP on child nutritional health,
we use data from the 2001–2006 NHANES. The NHANES,
conducted by the National Center for Health Statistics, Centers
for Disease Control (NCHS/CDC), is a program of surveys de-
signed to collect information about the health and nutritional
status of adults and children in the United States through inter-
views and direct physical examinations. The survey currently
includes a national sample of about 5,000 persons each year,
about half of whom are children. Vulnerable groups, including
Hispanics and African-Americans, are oversampled. Given the
wealth of health-related information, NHANES has been widely
used in previous research on health- and nutrition-related child
outcomes (recent work includes, e.g., Gundersen et al. 2008).

We focus our analysis on households with children eligible
to receive SNAP. To be eligible for assistance during the time
period of our study, a household’s gross income before taxes in
the previous month cannot exceed 130% of the poverty line, net
monthly income (gross income minus a standard deduction and
expenses for care for disabled dependents, medical expenses,
and excessive shelter costs) cannot exceed the poverty line, and
assets must be less than $2000. Since the NHANES does not
provide sufficient information to measure net income and assets,
we focus on gross income eligibility. Given our focus on chil-
dren, however, this data limitation should not lead to substantial
errors in defining eligibility (Gundersen and Offutt 2005). In
contrast, the asset test could be important for a sample that in-
cludes a high proportion of households headed by an elderly
person (Haider, Jacknowitz, and Schoeni 2003). Virtually, all
gross income eligible households are also net income eligible.

Our preliminary sample comprises 4690 children between the
ages of 2 and 17 who reside in households with income less than
130% of the federal poverty line. Children under the age of two
are not included in the sample because there is no commonly
accepted way to establish body mass index (BMI) percentiles
for children this young. After dropping additional observations
for which information is missing about height and weight, we
obtain our final sample of 4418 income-eligible children.

For each observation, we observe a number of socioeconomic
and demographic characteristics including the ratio of income to
the poverty line. Our sample has an average household income
level equal to 75% of the poverty line. To assess the charac-

teristics of our sample relative to other national estimates, we
examined data from the 2003 CPS, December Supplement (see
Section 4.4 for further details). These data also indicate that
income-eligible children lived in families with an average in-
come equal to 75% of the poverty line.

2.1 Self-Reported SNAP Receipt Indicator

Beyond demographic information, we also observe a self-
reported measure of SNAP receipt over the past year. SNAP
participants receive benefits for the purchase of food in autho-
rized retail food outlets where the benefit amount depends on
net income. Households with a net income of zero receive the
maximum benefit, and benefits decline with income. For every
additional dollar, the amount of SNAP benefits is reduced by 30
cents (except earned income, in which case the reduction is 24
cents). In 2010, the average monthly benefit was $288/month
for a family of four, with a maximum benefit of $668. These
benefits can represent a substantial component of low-income
households’ total income.

In this survey, only 46% of the households classified as el-
igible for benefits claim to be participating in the program. In
part, this might reflect errors in classifying eligibility status.
Some respondents classified as eligible may, in fact, be ineli-
gible (Gundersen, Kreider, and Pepper 2012 address this clas-
sification error problem in their evaluation of the NSLP). Even
with classification errors, however, a large fraction of eligible
households do not participate in SNAP. This nonparticipation is
ascribed to four main factors. First, there may be a stigma asso-
ciated with receiving SNAP. Stigma encompasses a wide variety
of sources, including a person’s own distaste for participation,
fear of disapproval from others when redeeming food stamps,
and the possible negative reaction of caseworkers (Moffitt 1983).
Second, transaction costs can diminish the attractiveness of par-
ticipation. To receive SNAP, households must personally verify
their income and expenses and must visit a caseworker on a
periodic basis to recertify their eligibility. The initial visit and
subsequent recertifications can be time consuming. Third, the
benefit level can be quite small for relatively higher income
families–sometimes as low as $10 a month.

Finally, SNAP receipt is thought to be underreported. Evi-
dence of pervasive underreporting has surfaced in two types of
studies, both of which compare self-reported information with
official records. The first type has compared aggregate statis-
tics obtained from self-reported survey data with those obtained
from administrative data. These studies suggest the presence of
substantial underreporting in many different surveys including
the CPS, the SIPP, the PSID, and the Consumer Expenditure
Survey (CES) (Trippe, Doyle, and Asher 1992; Bitler, Currie,
and Scholz 2003; Meyer, Mok, and Sullivan 2009). Meyer, Mok,
and Sullivan (2009, Table 12), for example, find that self-reports
in the CPS reflect just over half the number of food stamp re-
cipients identified in administrative data. Other studies have
compared individual reports of food stamp participation status
in surveys with matched reports from administrative data. Using
this method, researchers can identify both errors of commission
(reporting benefits not actually received) and errors of omission
(not reporting benefits actually received). As discussed earlier,
Bollinger and David (1997, Table 2) find that 12.0% of responses
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Table 1. Means by reported food stamp program participation

Variable Income-eligible children Recipients (FS = 1) Nonrecipients (FS = 0)

Age in years 9.108 (0.099) 8.607∗∗∗ (0.127) 9.527 (0.132)
Ratio of income to the poverty line 0.754 (0.011) 0.631∗∗∗ (0.016) 0.857 (0.014)
Food stamp recipient 0.456 (0.022)
Food insecure 0.400 (0.015) 0.450∗∗ (0.023) 0.357 (0.024)
Poor or fair health 0.080 (0.005) 0.088 (0.008) 0.073 (0.007)
Obese 0.185 (0.008) 0.191 (0.014) 0.179 (0.012)
Anemiaa 0.012 (0.002) 0.013 (0.003) 0.010 (0.003)

NOTES: Sample estimates are weighted using the medical exam weight. Standard errors in parentheses account for the sample design using the synthetic strata and PSU variables. The
estimated means for the SNAP recipient population are superscripted with ∗, ∗∗, or ∗∗∗ to indicate that they are statistically significantly different from the means for the nonrecipient
population, with p-values less than 0.1, 0.05, 0.01, respectively, based on Wald statistics corrected for the sample design.
aThe sample size for anemia is 3871 (with 1888 food stamp recipients) due to missing observations. The sample size for the other three outcomes is 4418.

in the SIPP involve errors of omission while only 0.3% involve
errors of commission (see also Marquis and Moore 1990).

2.2 Outcomes

A primary strength of the NHANES is the detailed informa-
tion provided on dietary- and health-related outcomes, with dis-
tinct components of the survey providing information from self-
reports, medical examinations, physiological measurements,
and laboratory tests. Since no single measure is thought to com-
pletely capture health and nutritional well-being, the detailed
and varied health measures available in the NHANES make it
a unique and important survey for studying the impact of nutri-
tional programs on well-being.

Because alleviating food insecurity is the central goal of
SNAP (Food and Nutrition Act of 2008, 7 U.S.C. § 2011,
2008), much of our attention focuses on this measure of nu-
tritional health. The extent of food insecurity in the United
States has become a well-publicized issue of concern to poli-
cymakers and program administrators. In 2010, 14.5% of the
U.S. population reported that they suffered from food insecurity
at some time during the previous year (Coleman-Jensen et al.
2011). These households were uncertain of having, or unable
to acquire, enough food for all their members because they had
insufficient money or other resources.

To calculate these official food insecurity rates in the U.S.,
defined over a 12-month-period, a series of 18 questions are
posed in the Core Food Security Module (CFSM) for families
with children. (For families without children, a subset of 10
of these 18 questions is posed.) Each question is designed to
capture some aspect of food insecurity and, for some questions,
the frequency with which it manifests itself. Examples include:
“I worried whether our food would run out before we got money
to buy more” (the least severe outcome); “Did you or the other
adults in your household ever cut the size of your meals or skip
meals because there wasn’t enough money for food?” and “Did
a child in the household ever not eat for a full day because you
couldn’t afford enough food?” (the most severe outcome). A
complete listing of the food insecurity questions is presented
in Appendix A, Table 1. Following official definitions, we use
these 18 questions to construct a comparison of children in food-
secure households (two or fewer affirmative responses) with
children in food-insecure households (three or more affirmative
responses).

In addition to studying the impact of SNAP on food insecurity
rates, we also examine three other outcome variables: obesity,
anemia, and an indicator of fair or poor general health. Based
on guidelines provided by the Centers for Disease Control and
Prevention, a child is classified as obese if his or her BMI
(kg/m2) is at or above the 95th percentile for his or her age and
gender. In the NHANES, heights and weights used to calculate
BMI are obtained by trained personnel (i.e., not self-reported).
A child is classified as having anemia if, based on a blood
test, the child is both iron-deficient and has an abnormally low
hemoglobin level. The indicator of fair or poor general health is
reported by the child’s parent. In this article, we treat these health
outcomes as accurately measured. While errors in measuring
obesity and anemia are likely to be minimal (data on height
and weight were collected by trained personnel and anemia is
measured using a blood test), this assumption may be violated
for the general health and food insecurity outcomes. In general,
measurement error in the outcome variables would widen the
bounds established in this article.

Together, these four measures reflect a wide range of health-
related outcomes that might be impacted by SNAP. All four
outcomes are also known to be associated with a range of nega-
tive physical, psychological, and social consequences that have
current and future implications for health, including reduced
life expectancy. With a maximum pairwise correlation of only
0.12 (between food insecurity and poor general health), these
four outcomes are related but clearly measure different aspects
of well-being. The outcomes have also attracted different levels
of attention in the existing food stamp literature. Food insecu-
rity and obesity are of central concern to policymakers and re-
searchers studying the impact of SNAP on health (e.g., Kaushal
2007; Meyerhoefer and Pylypchuk 2008). To the best of our
knowledge, this article is the first to investigate (using any meth-
ods) the impacts of SNAP on self-reported general health and
anemia.

Table 1 displays means and standard errors for the variables
used in this study. The estimates in this table (and elsewhere
in the article) are weighted to account for the complex survey
design used in the NHANES. Consistent with previous work on
this topic, SNAP recipients tend to have worse health outcomes
than eligible nonparticipants. For example, 45% of children
reported as SNAP recipients are food-insecure, nine percentage
points higher than the 36% food insecurity rate among eligible
nonparticipants (a statistically significant difference at better
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than the 5% level). Compared with eligible nonrecipients, SNAP
recipients are also slightly more likely to be obese, be in fair or
poor general health, and have anemia.

3. IDENTIFYING THE AVERAGE
TREATMENT EFFECT

Our interest is in learning about the average treatment effect
(ATE) of SNAP receipt on each of our health-related outcomes
among food-stamp-eligible households. Focusing on binary out-
comes, the ATE is given by

ATE(1, 0|X ∈ �) = P [H (1) = 1|X ∈ �]

−P [H (0) = 1|X ∈ �] , (1)

where H is the realized health outcome, H(1) denotes the health
of a child if he or she were to receive food stamps, H(0) denotes
the analogous outcome if the child were not to receive food
stamps, and X ∈ � denotes conditioning on observed covariates
whose values lie in the set �. Thus, the ATE reveals how the
mean outcome would differ if all eligible children received food
stamps versus the mean outcome if all eligible children did not
receive food stamps. In our analysis, H = 1 denotes a poor
health outcome with H = 0 otherwise.

In what follows, we simplify the notation by suppressing the
conditioning on subpopulations of interest captured in X. For
this analysis, we focus on eligible children. In much of the liter-
ature examining the impact of SNAP, other observed covariates
are motivated as a means of controlling for factors influenc-
ing a family’s participation decision. In the usual regression
framework, researchers attempt to “correctly” choose a set of
control variables for which the exogenous selection assump-
tion applies. Inevitably, however, there is much debate about
whether the researcher omitted “important” explanatory vari-
ables. In contrast, conditioning on covariates in our approach
serves only to define subpopulations of interest as there are no
regression orthogonality conditions to be satisfied. The prob-
lem is well-defined regardless of how the subpopulations are
specified (Pepper 2000).

As discussed earlier, two identification problems arise when
assessing the impact of SNAP on children’s health outcomes.
First, even if participation were observed for all eligible house-
holds, the potential outcome H(1) is counterfactual for all chil-
dren who did not receive food stamps, while H(0) is counter-
factual for all children who did receive food stamps. This is
referred to as the selection problem. Using the Law of Total
Probability, this identification problem can be highlighted by
writing the first term of Equation (1) as

P [H (1) = 1] = P [H (1) = 1|FS∗ = 1]P (FS∗ = 1)

+P [H (1) = 1|FS∗ = 0]P (FS∗ = 0), (2)

where FS∗ = 1 denotes that a child is in a household that truly
receives food stamps and FS∗ = 0 otherwise. If food stamp
receipt is observed, the sampling process identifies the selec-
tion probability, P (FS∗ = 1), the probability that an eligible
child does not receive food stamps, P (FS∗ = 0), and the ex-
pectation of outcomes, conditional on the outcome being ob-
served, P [H (1) = 1|FS∗ = 1] = P (H = 1|FS∗ = 1). Still, the
sampling process cannot reveal the mean outcome conditional
on the outcome being counterfactual, P [H (1) = 1|FS∗ = 0].

Thus, P [H (1) = 1] is not point-identified by the sampling pro-
cess alone.

Second, true participation status may not be observed for
respondents. This is referred to as the measurement or classi-
fication error problem. Instead of observing FS∗, we observe a
self-reported indicator, FS, where FS = 1 if a child is in a house-
hold that reports receiving food stamps and 0 otherwise. Without
assumptions restricting the nature or degree of classification er-
rors, the sampling process does not reveal useful information on
food stamp receipt, FS∗, and thus all of the probabilities on the
right-hand side of Equation (2) are unknown.

To highlight this measurement problem, let the latent variable
Z∗ indicate whether a report is accurate, where Z∗ = 1 if FS∗ =
FS and Z∗ = 0 otherwise. Using this variable, we can further
decompose the first term of Equation (1) as

P [H (1) = 1] = P [H (1) = 1, FS∗ = 1] − θ+
1 + θ−

1

+P [H (1) = 1|FS∗ = 0][P (FS = 0)

+ (θ+
1 + θ+

0 ) − (θ−
1 + θ−

0 )], (3)

where θ+
j = P (H = j, FS = 1, Z∗ = 0) and θ−

j = P (H = j,

FS = 0, Z∗ = 0) denote the fraction of false positive and false
negative classifications of food stamp recipients, respectively,
for children realizing health outcome j = 1, 0. The first part
of Equation (2), P [H (1) = 1|FS∗ = 1]P (FS∗ = 1), is not iden-
tified because of the classification error problem. The second
part of Equation (2) is not identified because of both the se-
lection and classification error problems. As discussed earlier,
the data cannot reveal the counterfactual outcome distribution,
P [H (1) = 1|FS∗ = 0], regardless of whether participation is
measured accurately, and, in the presence of classification er-
rors, the sampling process does not reveal the proportion of
respondents that received assistance, P (FS∗ = 1).

4. THE SELECTION PROBLEM

The literature evaluating the effect of SNAP on health has im-
plicitly assumed that respondents accurately self-report program
participation. To provide a direct comparison to the existing lit-
erature, we begin by focusing on this special case and study
what can be learned about the ATE using existing methods. In
Section 5 later, we develop new methods for simultaneously
addressing the selection and classification error problems.

A natural starting point is to ask what can be learned in
the absence of any assumptions invoked to address the selection
problem (see Manski 1995; Pepper 2000). Since the latent prob-
ability P [H (1) = 1|FS∗ = 0] must lie within [0,1], it follows
that

P (H = 1, FS∗ = 1) ≤ P [H (1) = 1]

≤ P (H = 1, FS∗ = 1) + P (FS∗ = 0),

(4)

where, in the absence of classification errors, the lower and
upper bounds are identified by the sampling process. An analo-
gous result applies for P [H (0) = 1]. In this worst-case scenario
where there is no additional identifying information, the data
alone cannot reveal whether SNAP leads to better or worse
mean health outcomes (see Manski 1995 for further details).
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4.1 MIV Models

To derive more informative inferences about the impact of
SNAP on health, prior information to address the selection
problem must be brought to bear. While the exogenous selec-
tion assumption P [H (1) = 1] = P [H (1) = 1|FS∗] maintained
in much of the literature seems untenable, there are a num-
ber of middle-ground assumptions that narrow the bounds by
restricting the relationship between SNAP participation, health
outcomes, and observed covariates. In this section, we apply two
MIV assumptions that certain observed covariates are known to
be monotonically related to the latent response variable.

First, we consider the MTS assumption (Manski and Pepper
2000) that children receiving food stamps are likely to have
worse latent health outcomes, on average, than nonparticipants.
MTS is a special case of MIV in which the treatment itself is a
monotone instrument. This selection model formalizes the most
common explanation for the positive association between par-
ticipation and poor health: unobserved factors associated with
poor health are thought to be positively associated with the de-
cision to participate (e.g., Gundersen and Oliveira 2001; Currie
2003). For example, families may participate precisely because
they expect to be food-insecure. Formally, the MTS assumption
is given by

P [H (j ) = 1|FS∗ = 0] ≤ P [H (j ) = 1|FS∗ = 1] for j = 0, 1.

(5)

That is, for latent potential outcomes H(0) and H(1), eligible
households that receive food stamps, FS∗ = 1, have no better
latent health outcomes on average than eligible households that
do not receive food stamps, FS∗ = 0. While the MTS assumption
serves to reduce the upper bound on the ATE, the assumption
alone does not identify the sign of the ATE (see Manski and
Pepper 2000).

Second, we consider the relatively innocuous assumption that
the latent probability of negative health outcomes weakly de-
creases with income adjusted for family composition. A large
body of empirical research supports the idea of a negative gra-
dient between reported income and the health outcomes studied
in this article (e.g., Coleman-Jensen et al. [2011] for food inse-
curity, Case, Lubotsky, and Paxson [2002]; Deaton [2002] for
general health, Newacheck [1994] for anemia, and Shrewsbury
and Wardle [2008] and Jolliffe [2011] for obesity). To formalize
this idea, let v be the MIV such that

u1 < u < u2 implies P [H (t) = 1|v = u2] ≤
P [H (t) = 1|v = u] ≤ P [H (t) = 1|v = u1] for t = 1, 0.

(6)

These conditional probabilities can be bounded using the
various nonparametric models described throughout this article.
Let LB(u) and UB(u) be the known lower and upper bounds,
evaluated at v = u, respectively, given the available information.
Then, the MIV assumption formalized in Manski and Pepper
(2000, Proposition 1) implies that

sup
u2≥u

LB(u2) ≤ P [H (t) = 1|v = u] ≤ inf
u1≤u

UB(u1).

Bounds on the unconditional latent probability, P[H(t) = 1],
can then be obtained using the law of total probability.

Following the approach developed in Kreider and Pepper
(2007), we estimate these MIV bounds by first dividing the
sample into equally sized groups (more than 200 observations
per cell) delineated by an increasing ratio of income to the
poverty line. Then, to find the MIV bounds on the rates of poor
health outcomes, one takes the average of the plug-in estimators
(weighted to account for the survey design) of lower and upper
bounds across the different income groups observed in the data.
We use 20 groups, although the qualitative results in this arti-
cle are unchanged when we use 15 or 25 income groups. Since
this MIV estimator is consistent but biased in finite samples
(see Manski and Pepper 2000, 2009), we employ Kreider and
Pepper’s (2007) modified MIV estimator that accounts for the
finite sample bias using a nonparametric bootstrap correction
method. Chernozhukov, Lee, and Rosen (2011) formalize an
entirely different approach for estimation, inference, and bias
correction that involves applying a precision correction to their
estimated boundary functions before taking the intersections. In
the context of MIVs, their approach is designed to estimate the
expected response functions conditional on a particular value
of the instrumental variable (see Proposition 1 in Manski and
Pepper 2000), but not the unconditional mean response function
(see Corollary 1 in Manski and Pepper 2000) that is the focus
of this article. Recent work by Hirano and Porter (2012) raises
some concerns about applying bias corrections when estimat-
ing intersection bounds, showing that it may be impossible to
completely eliminate bias and that reducing bias too much leads
to large increases in variance. With more than 200 observations
per cell, however, the bias correction in our application plays a
relatively modest role in our estimates (see Table 2 and Figure 2).

4.2 Results for the No Errors Case

For each of the four outcomes, Table 2 presents bias-corrected
bounds, confidence intervals, and estimated finite-sample biases
under a variety of different models for the no errors case. In
the first row, we make no assumptions about how eligible
households select themselves into the program. The width of
the ATE bounds always equals 1, and the bounds on the ATE
always include 0 (see Manski 1995). These wide bounds high-
light a researcher’s inability to make strong inferences about
the efficacy of the food stamps without making assumptions
that address the problem of unknown counterfactuals. In the
absence of restrictions that address the selection problem, we
cannot rule out the possibility that SNAP has a large positive
or negative impact on the likelihood of poor health outcomes.
These bounds can be narrowed substantially, however, under
common monotonic assumptions on treatment selection (MTS)
and relationships between the latent outcome and observed
instrumental variables (MIV).

To narrow the bounds, we apply the MTS and joint MTS–MIV
assumptions. These results are presented in the middle two rows
of Table 2. The MTS assumption alone is not strong enough to
identify the sign of the impact of SNAP on the health outcomes,
but it does dramatically reduce the upper bounds on the ATEs.
For example, the upper bound for food insecurity falls from
0.555 to 0.093 such that ATE ∈ [−0.445, 0.093]. The upper
bounds on the other three outcomes drop even further, falling to
0.015 for poor health, 0.012 for obesity, and 0.003 for anemia.
Thus, under the MTS assumption alone, the estimated bounds
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Table 2. Sharp bounds on the ATE of SNAP participation under no measurement error

NHANES outcomes

Food insecurity Poor health Obesity Anemia

Worst-case
p.e.a [−0.445, 0.555] [−0.455, 0.545] [−0.466, 0.534] [−0.460, 0.540]
CIb [−0.460 0.570] [−0.470 0.559] [−0.482 0.549] [−0.474 0.555]

MTS
p.e. [−0.445, 0.093] [−0.455, 0.015] [−0.466, 0.012] [−0.460, 0.003]
CI [−0.460 0.139] [−0.470 0.048] [−0.482 0.050] [−0.474 0.008]

MTS–MIV
p.e. [−0.366, −0.128] [−0.398, −0.061] [−0.411, −0.033] [−0.391, −0.032]
CI [−0.433 −0.034] [−0.453 −0.005] [−0.474 0.033] [−0.450 0.006]
bias∗ +0.027 −0.039 +0.019 −0.021 +0.022 −0.072 +0.008 −0.006

MTS–MIV–MTR
p.e. [−0.366, −0.149] [−0.398, −0.061] [−0.411, −0.041] [−0.391, −0.034]
CI [−0.433 −0.062] [−0.453 −0.009] [−0.474 0.000] [−0.450 0.000]
bias +0.027 −0.043 +0.019 −0.027 +0.022 −0.073 +0.008 −0.005

Food insecurity in the CPS

Worst-case
p.e. [−0.399, 0.601]
CI [−0.412 0.614]

MTS
p.e. [−0.399, 0.178]
CI [−0.501 0.406]

MTS–MIV
p.e. [−0.376, 0.138]
CI [−0.412 0.205]
bias +0.025 −0.083

MTS–MIV–MTR
p.e. [−0.376, −0.049]
CI [−0.412 0.000]
bias +0.025 −0.039

NOTE: aBias-corrected point estimates (p.e.) and b90% Imbens–Manski confidence intervals (CI) using 1000 pseudosamples.
∗Estimated finite sample bias.

rule out the possibility that SNAP leads to large increases in
poor health, obesity, and anemia. Instead, SNAP may lead to
substantial reductions in these adverse health outcomes and, at
worst, have slightly deleterious effects.

Perhaps the most important results are found when we com-
bine the MTS assumption with the MIV assumption that the
probability of poor health weakly decreases with family re-
sources, as measured by the ratio of income to the poverty line.
The upper bound is negative for all four outcomes in this joint
MTS–MIV model, though the confidence interval includes zero
for obesity and anemia. For example, the estimates suggest that
SNAP reduces the prevalence of food insecurity by at least 12.8
points and poor health by 6.1 points. These numbers suggest that
food stamps have substantial beneficial effects. In the absence of
SNAP, our estimates of P[H(0) = 1] indicate that at least 45.9%
of eligible children would be food-insecure and 11.2% would
be in poor health. Thus, the estimates indicate that the program
has reduced the prevalence of food insecurity by at least 28%
(= 12.8/45.9) and poor health by at least 54% (= 6.1/11.2).

4.3 MTR Model

Despite the observed positive correlations in the data be-
tween SNAP participation and unfavorable outcomes, there is a

general consensus among policymakers and researchers that
SNAP does not increase the rate of food insecurity (Currie
2003). Given this general consensus, we consider the identify-
ing power of the MTR assumption (Manski 1995, 1997; Pepper
2000) that formalizes the common idea that SNAP does not lead
to a reduction in health status: H (1) ≤ H (0). In this case, the
ATE of receiving food stamps must be nonpositive.

Since MTR rules out the possibility of deleterious effects of
food stamps on health by assumption, it is not helpful in resolv-
ing the health outcomes paradox. Nevertheless, for outcomes in
which MTR is thought to be credible, it can help shed light on
the magnitudes of any identified beneficial effects of the pro-
gram. In particular, MTR may interact with the MTS and MIV
assumptions to bound the ATE further away from 0 than can be
attained under the MTS–MIV assumptions alone.

For the food insecurity, general health, and anemia outcomes,
the MTR assumption seems relatively innocuous in that it is
difficult to imagine how receiving food stamps would lead to
worse health outcomes. Previous work has demonstrated that
each additional dollar in benefits leads to marginal increases in
food expenditures (e.g., Breunig and Dasgupta 2002; Levedahl
1995). If food is a normal good, SNAP should weakly increase
the consumption of food and, in turn, decrease the incidence
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of food insecurity, poor or fair health, and anemia. For obesity,
however, the assumption is more tenuous. Better access to nu-
tritious foods through SNAP may lead to healthier eating and
less obesity, but potential increases in caloric intake could result
in weight gains.

The bottom rows of Table 2 present results under the joint
MTS–MIV–MTR assumption. While the MTR assumption is
less credible for obesity than for the other outcomes, we present
MTS–MIV–MTR estimates for each outcome to make transpar-
ent the identifying power of the MTR assumption in each case.
Without measurement error, the MTR assumption does not no-
tably reduce the estimated upper bounds on the ATE relative to
the estimates derived under the MTS–MIV assumptions alone.
With classification errors (see Section 5), however, the MTR
assumption turns out to have substantial identifying power in
this application.

4.4 Sensitivity Analysis Using Data From the CPS

To assess the sensitivity of our findings to the data source, we
estimate these models using analogous data from the December
Supplement of the 2003 CPS. The CPS has been widely applied
to evaluate the association between SNAP and food insecu-
rity (e.g., Jensen 2002; Wilde and Nord 2005; Gundersen and
Kreider 2008) and is used by the U.S. Department of Agricul-
ture (USDA) to establish the official food insecurity rates for
the United States (e.g., Coleman-Jensen et al. 2011).

Using the sampling design in Gundersen and Kreider (2008),
our data for this sensitivity analysis include 2707 households
with children reporting incomes less than 130% of the poverty
line. As with the NHANES, we observe a self-reported mea-
sure of food stamp receipt over the past year, food insecurity
over the past year, and the ratio of income to the poverty line.
The CPS does not include information on the other three out-
comes (poor general health, obesity, and anemia) revealed by
the NHANES data. The summary statistics from the CPS data
are similar to what we find in the NHAMES (see Table 2 in
Gundersen and Kreider 2008): just over 40% of the house-
holds report receiving food stamps, and the food insecurity rate
among self-report recipients is 17.9 percentage points higher
than among eligible nonrecipients (52.3% vs. 34.4%).

The bottom panel of Table 2 presents estimates using the
CPS data. The estimates are similar to what we find using
data from the NHANES, although the estimated upper bound
under the MIV–MTS model is positive. The estimated up-
per bound remains negative, however, when we impose the
MIV–MTS–MTR assumption. In part, differences in estimates
reflect the smaller sample size in the CPS data that leads to
less precise estimates and larger bias corrections in the MIV
models. Differences may also reflect the fact that classification
errors in the CPS have been found to be more extensive than in
the NHANES (Meyer, Mok, and Sullivan 2009).

Although these data have very limited information on health
outcomes compared with the NHANES, they are rich enough to
allow us to construct some standard instrumental variables for
SNAP participation used in the existing literature. In particular,
state identifiers in the CPS allow us to apply a more traditional
instrumental variable (IV) assumption based on cross-state vari-
ation in program eligibility rules. To do so, we merge the Ur-

ban Institute’s database of state program rules (see Finegold,
Margrabe, and Ratcliffe 2006) with the CPS data to create two
instrumental variables: an indicator for whether the state uses a
simplified semiannual reporting requirement for earnings (47%)
and an indicator for whether cars are exempted from the asset
test (30%). Suppose these two variables have no impact on
the expected food insecurity status except indirectly through
SNAP participation. When combined with the traditional lin-
ear response model, the ATE is point-identified and the Wald
estimator of the ATE ranges from −0.23 (when the indicator
for whether cars count in the asset test is used as an IV) to
−0.62 (when the indicator for whether the state uses a simpli-
fied reporting requirement is used as an IV). Notice that the
−0.62 estimate lies outside of the worst-case bounds reported
in Table 2, suggesting that either the IV assumption or the linear
response model assumption is invalid.

If instead of applying the linear response model we estimate
Shaikh and Vytlacil’s (2011) nonparametric threshold-crossing
model, SNAP is found to reduce food insecurity by at least 3
percentage points when using the asset test instrument and at
least 5 points when using the reporting requirement instrument.
The estimate based on the reporting requirement instrument is
significantly different than 0 at the five-percent level, but the
asset test instrument is not statistically significantly different
than 0.

Combining these traditional instruments with sufficiently
strong assumptions reveals consistent evidence that SNAP re-
duces the rate of food insecurity. Yet, while these estimated neg-
ative ATEs are qualitatively similar to our primary results found
using the MIV and MTS assumptions, we caution against draw-
ing strong conclusions on the efficacy of SNAP based on these
findings alone. In particular, there may be good reasons to doubt
the excludability assumption that the instruments are mean-
independent of the latent food insecurity outcome. State-specific
food insecurity rates are well-documented (e.g. Coleman-Jensen
et al. 2011), and states may choose SNAP rules and regulations
within USDA guidelines partially in response to food insecurity
levels. Thus, these state program rules may not be indepen-
dent of the state food insecurity rate. Finally, while the Shaikh
and Vytlacil threshold-crossing model provides a constructive
middle-ground model that allows one to impose some additional
structure, the linear response model imposes the strong homo-
geneity restriction on the response function that seems unlikely
to hold in practice. The finding that one of the linear IV esti-
mates lies outside of the worst-case bounds suggests that this
assumption may be violated.

5. THE SELECTION AND CLASSIFICATION ERROR
MODEL: A UNIFIED APPROACH

While our findings thus far imply that SNAP plays an im-
portant role in improving children’s health, we have not yet
accounted for classification errors. In this section, we intro-
duce new methods that explicitly acknowledge the presence of
SNAP reporting errors and incorporate auxiliary administrative
data on the size of the SNAP caseload to restrict the magnitudes
and patterns of such errors.

With classification errors, FS∗ is not observed and the
Manski (1995) worst-case selection bounds are not identified. In
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particular, defining � ≡ (θ−
1 + θ+

0 ) − (θ−
0 + θ+

1 ), we augment
the Manski bounds as follows:

[−P (H = 1, FS = 0) − P (H = 0, FS = 1)] + �

≤ AT E(1, 0) ≤ [P (H=1, FS=1)

+P (H = 0, FS = 0)] + �. (7)

Thus, without restrictions on the measurement error process,
the false reporting rates, θ , are not identified, and the data are
uninformative about the ATE. We use two sources of informa-
tion to restrict �. First, auxiliary data on size of the SNAP
caseload provides informative restrictions on the classification
error components, θ . Second, the relevant validation literature
provides informative restrictions on the magnitude and patterns
of the classification error problem.

5.1 The Classification Error Model

To draw inferences in light of the classification error prob-
lem, we exploit two sources of additional information. First,
we combine readily available auxiliary data on the size
of the caseload from the administrative data collected by
the USDA with survey data from the NHANES to estimate
the true participation rate, P (FS∗ = 1). In Proposition 1 below,
we show how knowledge of the true and the self-reported rates
implies meaningful restrictions on the classification error prob-
abilities, θ . In particular, knowledge of P ∗ ≡ P (FS∗ = 1) and
P ≡ P (FS = 1) implies the following three restrictions:

(θ−
1 + θ−

0 ) − (θ+
1 + θ+

0 ) = �, (8a)

θ−
i ≤ min{P (H = i, FS = 0), P (FS∗ = 1)} ≡ θUB−

i ,

i = 1, 0 (8b)

θ+
i ≤ min{P (H = i, FS = 1), P (FS∗ = 0)} ≡ θUB+

i ,

i = 1, 0 (8c)

where � ≡ P ∗ − P . Equation (8a) restricts the net fraction of
false negative reports to equal the difference in the true and
self-reported participation rates. Equations (8b) and (8c) place
meaningful upper bounds on the fraction of false negative and
positive reports.

Second, the range of studies examining the validity of self-
reports provides additional information on the degree of misre-
porting. As discussed earlier, evidence from validation studies
finds errors of commission to be negligible, with the overall rate
of misreporting estimated to be no greater than about 25%. To
incorporate information on the overall rate of misreporting, we
consider the identifying power of a restriction on the maximum
amount of data corruption in the spirit of Horowitz and Manski
(1995). That is, let

P (Z∗ = 0) ≤ Qu, (9)

where Qu is a known upper bound on the degree of SNAP mis-
classification. Given knowledge of P∗, this value must logically
lie within the range [|P ∗ − P |, 1]. In the polar case where Qu

is set equal to 1, the researcher is setting no restriction on the
proportion of false reports in the data beyond that implied by
restrictions (8a)–(8c). We refer to this as the “arbitrary errors
model.” In the other polar case where Qu is set equal to |P ∗ − P |,
the researcher is imposing a “no excess errors” restriction that
there are no data errors beyond the proportion necessary to gen-
erate the discrepancy (distance) between the true participation

rate, P∗, and the reported rate, P. For the case of systematic
underreporting in our application, � ≥ 0, setting Qu equal to
its minimum allowed value, |P ∗ − P |, is equivalent to impos-
ing a “no false positives” assumption that respondents do not
falsely claim to participate in the program (and similarly a “no
false negatives” assumption in applications involving � ≤ 0).
The no false positives assumption serves as a useful benchmark
for the receipt of SNAP in our application since validation data
suggest very few instances of households falsely claiming to re-
ceive food stamps (e.g., Bollinger and David 1997; Marquis and
Moore 1990). Middle-ground positions are obtained by setting
Qu between |P ∗ − P | and 1.

The restrictions in Equations (8) and (9) imply informative
bounds on the unknown parameter, �, where the upper bound
is found by maximizing (θ−

1 + θ+
0 ) and minimizing (θ−

0 + θ+
1 ),

and vice versa for the lower bound. In particular, we derive the
following bounds on �:

Proposition 1. Given restrictions (8a)–(8c) and (9),

� ∈ [
max

{−Qu,−2θUB+
1 − �,−2θUB−

0 + �
}
,

min
{
Qu, 2θUB−

1 − �, 2θUB+
0 + �

}]
.

See Appendix B for a proof of this result.
Using this proposition, we can directly bound the ATE when

there are classification errors. In particular, bounds on the ATE
follow directly by combining the Proposition 1 bound on �

with Equation (7). Notice that allowing for ambiguity created
by the reporting error problem (weakly) widens the treatment
effect bounds. At the same time, � might be bounded to lie in a
strictly positive or negative range. Thus, the upper bound on the
ATE can decrease, or the lower bound can increase, even as the
overall width of the ATE bound expands. Applying Proposition 1
above to evaluate the impacts of the NSLP, Gundersen, Kreider,
and Pepper (2012) provide an example in which it is easier to
identify the sign of their ATE of interest in the presence of
classification errors (when the error patterns are constrained as
described above) than under the standard implicit assumption
of perfectly measured data.

Additional analysis is required to address the classification
error problem under the MTS assumption. Under this assump-
tion, the upper bound on the ATE can be written as the difference
of conditional means:

ATE(1, 0) ≤ P (H = 1|FS∗ = 1) − P (H = 1|FS∗ = 0).

In the absence of classification errors, this upper bound is
simply the difference in the observed poor health rate among
recipients and nonrecipients. With classification errors, we can
write

ATE(1, 0) ≤ P (H = 1, FS = 1) + θ−
1 − θ+

1

P (FS∗ = 1)

− P (H = 1, FS = 0) + θ+
1 − θ−

1

P (FS∗ = 0)
, (10)

where information on the true participation rate, P(FS∗ = 1),
implies bounds on these conditional probabilities. In particular,
we can narrow the Proposition 1 bounds as follows:

Proposition 2. Given the MTS assumption in Equation (5)
and the classification error model restrictions in Equations (8)
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and (9), it follows that

ATE(1, 0)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (H = 0)

P (FS∗ = 0)
, if 0 < P (FS∗ = 1)

< P (H = 1, FS = 1),
P (H = 1, FS = 1) + θUB−∗

1

P (FS∗ = 1)
if P (H = 1, FS = 1)

−P (H = 1, FS = 0) − θUB−∗
1

P (FS∗ = 0)
, ≤ P (FS∗ = 1) < 1,

where θUB−∗
1 ≡ min{Qu, P (H = 1, FS = 0), P (FS∗ = 1) −

P (H = 1, FS = 1)}.

See Appendix B for a proof of this result.
Except for the true participation rate, P ∗ = P (FS∗ = 1),

all of the probabilities in Propositions 1 and 2 can be con-
sistently estimated using data from the NHANES. To infer
P (FS∗ = 1), we combine auxiliary data on the size of the
caseload with data from the NHANES on the size of the eli-
gible population. Administrative data from the USDA reveals
that from 2001–2006 there was an average of nearly 11 million
children receiving food stamps per year (calculated using an-
nual reports from Rosso 2002; Genser 2003; Cunnyngham and
Brown 2004; Poikolainen 2005; Barrett 2006; Wolkwitz 2007).
From the NHANES, we estimate that 22 million children were

      P* = P = 0.456             P* = 0.50                     P* = 0.70  

 Arbitrary errors     p.e.†  [-0.855,  0.944]      [-0.900,  0.900]      [-0.900,  0.700]  
                CI‡   [-0.868   0.956]       [-0.912   0.912]       [-0.913   0.712]      

No excess errors    p.e.   [-0.445,  0.555]      [-0.489,  0.599]       [-0.689,  0.700]   
               CI    [-0.460   0.570]       [-0.506   0.619]       [-0.706   0.712]        

 Arbitrary errors     p.e.   [-0.855,  0.877]       [-0.900,  0.799]     [-0.900,  0.571]   
                  CI    [-0.868   0.904]       [-0.912   0.824]      [-0.913   0.589]      

 No excess errors    p.e.   [-0.445,  0.093]      [-0.489,  0.198]     [-0.689,  0.571]  
               CI    [-0.460   0.139]      [-0.506   0.238]        [-0.706   0.589]     

   †
Point estimates (p.e.) and ‡ 90% Imbens-Manski confidence intervals (CI) using 1,000 pseudosamples

ATE

0

Self-reported
       rate  

Administrative  
        rate 

0.456  0.50 P*

no excess errors

arbitrary errors

 0.093 

UB: MTS

UB: Worst-Case

 0.198 

LB: Worst-Case 
(or MTS)

 0.555 
 0.599 

 0.799 

 0.900 

 -0.489 

 -0.900 

MTS:

Worst-Case:

 -0.445 

- 0.855 

 0.877 
 0.944 

Figure 1. Sharp bounds on the ATE for food insecurity as a function of P∗, the unobserved true SNAP participation rate: worst-case and
MTS bounds. The online version of this figure is in color.
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eligible to receive assistance. Thus, the implied participation
rate is about 0.50, 4 points higher than the reported rate of
0.456. We note that a net false negative reporting rate of 4% is
consistent with the results of Meyer, Mok, and Sullivan (2009)
when evaluating misreporting of the SIPP, but much smaller

than found in the CPS and PSID. Using the CPS, for example,
the participation rate is estimated to be around 70% (Cunnyng-
ham 2005). Given this variability in the estimated participation
rates and the possibility that errors in classifying eligible chil-
dren may bias the estimated participation rates, we assess the

P* = P = 0.456           P* = 0.50              P* = 0.70  

   (a)  MTS-MIV,          p.e.   [-0.808,  0.402]   [-0.815,  0.368]   [-0.754,  0.368]  
       arbitrary errors       CI    [-0.874   0.543]   [-0.879   0.509]   [-0.816   0.511] 
                        bias†

+0.032   -0.051 +0.032   -0.046      +0.025    -0.054

   (b)  MTS-MIV,          p.e.   [-0.366, -0.128]   [-0.488, -0.027]   [-0.689,  0.208]  
       no false positives      CI    [-0.433  -0.034]   [-0.553   0.074]   [-0.723   0.353] 
                        bias     +0.027   -0.039 +0.025   -0.039      +0.028    -0.063

   (c)  MTS-MIV-MTR,       p.e.   [-0.808, -0.081]   [-0.815, -0.081]   [-0.754, -0.081]  
       arbitrary errors       CI    [-0.874  -0.015]   [-0.879  -0.015]   [-0.816  -0.014] 
                        bias     +0.032   -0.032 +0.032   -0.032      +0.025    -0.032

   (d)  MTS-MIV-MTR,       p.e.   [-0.366, -0.149]   [-0.488, -0.089]   [-0.689, -0.081]  
       no false positives      CI    [-0.433  -0.062]   [-0.553  -0.013]   [-0.723  -0.013] 
                        bias     +0.027   -0.043   +0.025   -0.042      +0.028    -0.032 

ATE

0

0.208

0.368 

0.700.50 P*
0.600.55 0.65 

 LB: MTS-MIV 
       (or MTS-MIV-MTR) 

no false positives

arbitrary errors

-0.808 
-0.754 

-0.689 

-0.366 

-0.128 

 0.402 

-0.815 

-0.089 

0.368 
UB: MTS-MIV

-0.488 

UB: MTS-MIV-MTR-0.149 

-0.027 

† corrected finite sample bias

Self-reported
       rate

Administrative  
        rate 

0.456 

-0.081 

Figure 2A. Sharp bounds on the ATE for food insecurity as a function of P∗, the unobserved true SNAP participation rate: MTS–MIV and
MTS–MIV–MTR bounds. The online version of this figure is in color.
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sensitivity of the bounds to variation in the true participation
rate.

5.2 Results

Our analytical approach allows us to trace out sharp bounds on
the ATE under different assumptions about selection and mea-
surement error. To do so, we evaluate the bounds as a function
of the unknown SNAP participation rate, P∗, under various as-
sumptions about the selection process. By layering successively
stronger assumptions, our analysis reveals how the strength of

the conclusions varies with the strength of the identifying as-
sumptions. We begin in Section 5.2.1 by focusing on bounding
the impact of SNAP participation on food insecurity. We then
extend the discussion to the three other health outcomes in Sec-
tion 5.2.2.

5.2.1 Food Insecurity. Figure 1 traces out the estimated
Proposition 1 and 2 bounds—that is, the worst-case and MTS
bounds—for the ATE on the food insecurity rate across all val-
ues of P∗ between 0 and 1. The accompanying table highlights
these results for P∗ equal to (a) the NHANES self-reported

P* = P = 0.456           P* = 0.50              P* = 0.70  

   (a)  MTS-MIV,          p.e.   [-0.475,  0.104]   [-0.514,  0.094]   [-0.664,  0.068]  
       arbitrary errors       CI    [-0.529   0.133]   [-0.572   0.122]   [-0.745   0.088] 
                        bias     +0.008   -0.010 +0.010   -0.009      +0.017    -0.006

   (b)  MTS-MIV,          p.e.   [-0.398, -0.061]   [-0.500,  0.005]   [-0.664,  0.068]  
       no false positives      CI    [-0.453  -0.005]   [-0.552   0.075]   [-0.739   0.100] 
                        bias     +0.019   -0.021 +0.022   -0.014      +0.017    -0.010

   (c)  MTS-MIV-MTR,       p.e.   [-0.475, -0.031]   [-0.514, -0.031]   [-0.664, -0.031]  
       arbitrary errors       CI    [-0.529   0.000]   [-0.572   0.000]   [-0.745   0.000] 
                        bias     +0.008   -0.025 +0.010   -0.025      +0.017    -0.025 

   (d)  MTS-MIV-MTR,       p.e.   [-0.398, -0.061]   [-0.500, -0.031]   [-0.664, -0.031]  
       no false positives      CI    [-0.453  -0.009]   [-0.552   0.000]   [-0.739   0.000] 
                        bias     +0.019   -0.027 +0.022   -0.026      +0.017    -0.025 

ATE

0
-0.031

0.068 

Self-reported
       rate

Administrative  
        rate 

0.456 0.700.50 P*
0.600.55 0.65 

 LB: MTS-MIV 
       (or MTS-MIV-MTR) 

no false positives

arbitrary errors

-0.475 

-0.664 

-0.398 

-0.061 

 0.104 

-0.514 

-0.031 

0.094 UB: MTS-MIV

-0.500 

UB: MTS-MIV-MTR

0.005 

Figure 2B. Sharp bounds on the ATE for poor health as a function of P∗, the unobserved true SNAP participation rate: MTS–MIV and
MTS–MIV–MTR bounds. The online version of this figure is in color.
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participation rate of P = 0.456, (b) our preferred estimated true
participation rate of 0.50 based on administrative data from the
USDA, and (c) a higher rate of 0.70 chosen to be consistent with
the participation rate found using the CPS (Cunnyngham 2005).
The solid lines in the figures trace out the estimated arbitrary
error bounds (i.e., Qu = 1) in which there are no restrictions im-
posed on the nature or degree of errors except those implied by
the knowledge of P and P∗ as captured by Equations (8a)–(8c).
The dashed lines display the estimated bounds under the further
restriction of no excess errors: Qu = |P ∗ − P |. Recall that for
the underreporting cases (the most relevant cases in our appli-
cation) in which P∗ lies to the right of P = 0.456, this no excess

errors model is equivalent to no false positive reports. The table
also provides Imbens and Manski (2004) confidence intervals
that cover the true value of the ATE with 90% probability.

As noted above, the worst-case bounds on the ATE if SNAP
receipt is accurately reported (P∗ = P and no excess errors),
have a width of 1 and always include 0. For food insecurity, these
worst-case no error bounds are [−0.445, 0.555] as depicted in
the figure by the solid vertical line at P∗ = P (see also Table 2).
Allowing for classification errors notably increases the width
of these bounds. For example, suppose the true participation
rate remains equal to the self-reported rate of 0.456, but now
one only imposes the assumption of no net reporting errors

P* = P = 0.456           P* = 0.50              P* = 0.70  

   (a)  MTS-MIV,          p.e.   [-0.587,  0.256]   [-0.625,  0.233]   [-0.764,  0.172]  
       arbitrary errors       CI    [-0.652   0.361]   [-0.695   0.329]   [-0.852   0.222] 
                        bias     +0.011   -0.074 +0.013   -0.056      +0.034    -0.020

   (b)  MTS-MIV,          p.e.   [-0.411, -0.033]   [-0.510,  0.057]   [-0.710,  0.102]  
       no false positives      CI    [-0.474   0.033]   [-0.564   0.153]   [-0.772   0.218] 
                        bias     +0.022   -0.072 +0.023   -0.066      +0.034    -0.047

   (c)  MTS-MIV-MTR,       p.e.   [-0.587, -0.053]   [-0.625, -0.053]   [-0.764, -0.053]  
       arbitrary errors       CI    [-0.652   0.000]   [-0.695   0.000]   [-0.852   0.000] 
                        bias     +0.011   -0.045 +0.013   -0.045      +0.034    -0.045

   (d)  MTS-MIV-MTR,       p.e.   [-0.411, -0.053]   [-0.510, -0.053]   [-0.710, -0.053]  
       no false positives      CI    [-0.474   0.000]   [-0.564   0.000]   [-0.772   0.000] 
                        bias     +0.022   -0.073 +0.023   -0.049      +0.034    -0.045 

ATE

0
-0.053

0.102 

0.456 0.700.50 P*
0.600.55 0.65 

LB: MTS-MIV 
       (or MTS-MIV-MTR) 

no false positives

arbitrary errors

-0.587 

-0.710 

-0.411 

-0.033 

 0.256 

-0.625 

-0.053 

0.233 

UB: MTS-MIV

-0.510 

UB: MTS-MIV-MTR

0.057 
0.172 

-0.764 

-0.053 

Self-reported
       rate

Administrative  
        rate 

Figure 2C. Sharp bounds on the ATE for obesity as a function of P∗, the unobserved true SNAP participation rate: MTS–MIV and
MTS–MIV–MTR bounds. The online version of this figure is in color.
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such that the rate of false positives equals the rate of false
negatives. Then, as shown in Figure 1 and the accompanying
table, the ATE bounds on the food insecurity rate expand from
[−0.445, 0.555] to [−0.855, 0.944], with a width of 1.799.
If the true participation rate is 0.50 (the rate consistent with
the USDA administrative data) instead of 0.456, the bounds
change to [−0.900, 0.900] with a width of 1.800. These findings
reveal the important negative result that the ambiguity created
by classification errors can be substantial even if the true and
self-reported rates are similar.

The upper bounds when P∗ is near P, however, are markedly
reduced by introducing the MTS assumption, especially when

combined with the no excess errors assumption (no false-
positives when P ∗ ≥ P ). With P∗ = 0.50, for example, the
no false positives bounds are [−0.489, 0.599], with a width of
1.088. Adding the MTS assumption further reduces the upper
bound to 0.198. Thus, the no false positives assumption de-
creases the ambiguity associated with measurement error from
1.800 to 1.088, a 40% reduction, and the MTS assumption fur-
ther reduces the width of the bound to 0.687, more than 60%
narrower than the width of the worst-case bounds when P∗ =
0.50. While these two assumptions have substantial identify-
ing power in this application, these wide bounds presented in
Figure 1 highlight the difficulty of making strong inferences

P* = P = 0.46             P* = 0.50              P* = 0.70  

   (a)  MTS-MIV,          p.e.   [-0.402,  0.010]   [-0.437,  0.009]   [-0.601,  0.006]  
       arbitrary errors       CI    [-0.460   0.016]   [-0.499   0.014]   [-0.689   0.010] 
                        bias     +0.005   -0.003 +0.005   -0.002      +0.007    -0.002

   (b)  MTS-MIV,          p.e.   [-0.391, -0.032]   [-0.437,  0.009]   [-0.601,  0.006]  
       no false positives      CI    [-0.450   0.006]   [-0.498   0.028]   [-0.688   0.010] 
                        bias     +0.008   -0.006 +0.005   -0.008      +0.007    -0.002

   (c)  MTS-MIV-MTR,       p.e.   [-0.402, -0.018]   [-0.445, -0.016]   [-0.601, -0.018]  
       arbitrary errors       CI    [-0.460   0.000]   [-0.499   0.000]   [-0.689   0.000] 
                        bias     +0.005   -0.004 +0.005   -0.004      +0.007    -0.004

   (d)  MTS-MIV-MTR,       p.e.   [-0.391, -0.034]   [-0.437, -0.018]   [-0.601, -0.018]  
       no false positives      CI    [-0.450   0.000]   [-0.498   0.000]   [-0.688   0.000] 
                        bias     +0.008   -0.005 +0.005   -0.004      +0.007    -0.004 

ATE

0

 -0.018 

0.006 

0.46 0.700.50 P*
0.600.55 0.65 

 (LB not shown)

no false positives

arbitrary errors

-0.032 

-0.018 

 0.010 

-0.016 

UB: MTS-MIV

UB: MTS-MIV-MTR

0.009 

Self-reported
       rate

Administrative  
        rate 

-0.034 

Figure 2D. Sharp bounds on the ATE for anemia as a function of P∗, the unobserved true SNAP participation rate: MTS–MIV and
MTS–MIV–MTR bounds. The online version of this figure is in color.
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in light of the selection and measurement error problems. In
the absence of additional restrictions that address the selection
problem, we cannot rule out the possibility that SNAP has a large
positive or negative impact on the likelihood of poor health.

To narrow the bounds, we assess the identifying power of
the joint MTS–MIV and joint MTS–MIV–MTR assumptions.
These results are traced out in Figure 2(A) and the correspond-
ing table for the most relevant cases in our application in which
P∗ lies between 0.456 and 0.700. In drawing this figure, we
assume that the fraction of misreporting does not vary across
MIV groups. Focusing on the no-false positive classification er-
ror model, we begin by combining the MTS assumption with
our MIV assumption that the probability of good health weakly
increases with family resources, as measured by the ratio of
income to the poverty line. In this joint MTS–MIV model, we
can often sign the ATE as strictly negative without imposing the
MTR assumption. Specifically, Figure 2(A) reveals that we can
identify the ATE to be negative as long as food stamp misre-
porting is confined to no more than about 6% of the households,
ranging from a 12.8% reduction at P∗ = 0.456 to no effect at
P∗ = 0.52. When P∗ = 0.50, the estimates imply that SNAP re-
duces food insecurity by at least 2.7 percentage points, although
this upper bound is not statistically different than zero at the
10% significance level.

Under the joint MTR–MTS–MIV assumption, the ATE is
strictly negative even for large degrees of arbitrary food stamp
misreporting. Under this joint assumption, our estimated bounds
on the ATE vary from [−0.808, −0.081], when P∗ = 0.456, to
[−0.754, −0.081], when P∗ = 0.70. In all cases, the estimates
are statistically different than zero at the 10% significance level.
Thus, under this model, we find that SNAP reduces the food
insecurity rate by at least 8 percentage points and perhaps much
more. These results suggest that SNAP dramatically improves
the likelihood of becoming food secure.

5.2.2 Other Health Outcomes. We also consider what can
be learned about the effects of food stamps on the three
other negative health outcomes: self-reported fair/poor general
health, childhood obesity, and anemia. For brevity, we con-
centrate on results for cases when we impose the MTS–MIV
and MTS–MIV–MTR models. These results are summarized in
Figures 2(B)–2(D).

As above for the case of food insecurity, we can identify
strictly negative ATEs for each health outcome under the joint
MTS–MIV assumption for sufficiently small degrees of food
stamp reporting error. For example, without any errors—that is,
when P∗ = 0.456 with no excess errors—the ATEs for fair/poor
health, obesity, and anemia are identified to be no greater than
−0.061, −0.033, and −0.032, respectively. Identification of the
ATE decays rapidly with P∗ for each of the health outcomes,
however, and each upper bound becomes positive if fewer than
4% of the households might misreport food stamp participa-
tion status (under either arbitrary errors or no false positives).
Still, if the true participation rate is 0.50 (the rate consistent
with the USDA administrative data) under no false positives,
the estimated upper bounds rule out the possibility that SNAP
substantially increases the incidence of these poor health out-
comes. For example, the estimated bounds on the rate of poor
general health is [−0.500, 0.005]. Thus, these results imply that

SNAP may dramatically improve childhood health, as measured
by poor health, obesity, and anemia, with little downside risk
that the program instead has a deleterious average effect.

Finally, to shed additional light on the magnitudes of any
identified beneficial effects of the program, we apply the MTR
assumption that SNAP cannot lead to worse health outcomes.
Under the joint MTS–MIV–MTR model, we estimate strictly
negative (beneficial) and substantial impacts for each health
outcome across all values of P∗ ∈ [0.456, 0.700], even for the
case of arbitrary reporting errors. In particular, at P∗ = 0.50
we find that SNAP reduces the rate of poor general health by
at least 0.031 (from 0.089 to 0.058), obesity by at least 0.053
(from 0.218 to 0.165), and anemia by at least 0.016 (from 0.020
to 0.004).

6. CONCLUSION

The literature assessing the efficacy of SNAP has long puzzled
over its positive associations with various undesirable health-
related outcomes such as food insecurity. These associations are
often ascribed to the self-selection of less healthy households
into SNAP. Identification of the causal impacts of participation
on health status is also confounded by systematic underreport-
ing of food stamp recipiency. In this article, we reconsidered
the impact of SNAP on child food insecurity and other health
outcomes by developing methods that account for both of these
identification problems in a single unifying framework. Within
this framework, we combine information from household self-
reports with administrative data on the size of the SNAP caseload
to derive formal restrictions on the magnitudes and patterns of
household reporting errors. While introducing measurement er-
ror widens Manski’s (1995) classic worst-case selection bounds,
we show how restricting the magnitudes and patterns of errors
can, in some cases, make it easier to sign the ATE than under
the standard implicit assumption of perfectly measured data.
Acknowledging the presence of nonrandom measurement er-
ror need not necessarily hinder inference on the sign of the
ATE.

Our partial identification approach is well-suited for this ap-
plication in which conventional assumptions strong enough to
point-identify the causal impacts are not necessarily credible
and there remains much uncertainty about even the qualita-
tive impacts of SNAP. Using data from the NHANES, we make
transparent how assumptions on the selection and reporting error
processes shape inferences about the causal impacts of SNAP
on health outcomes. The worst-case selection bounds always
include zero, and classification errors can generate substantial
additional uncertainty about the efficacy of SNAP in alleviat-
ing food insecurity and other health outcomes. This ambiguity,
however, is substantially mitigated by applying relatively weak
assumptions on the selection and classification error processes.

Our middle-ground MTS–MIV model allows us to identify
strictly beneficial impacts of SNAP on food insecurity and other
health outcomes as long as the degree of misreported partici-
pation status is not too large. In the absence of measurement
error, the joint MTS–MIV model reveals that SNAP reduces the
prevalence of food insecurity by at least 12.8 percentage points
(28%), from 0.459 to 0.331. The strength of this finding nat-
urally weakens when we allow for misclassified participation
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status. Nevertheless, we can still identify that SNAP reduces the
prevalence of food insecurity by at least 2.7 percentage points
(6.5%), from 0.417 to 0.390, when allowing for errors of omis-
sion in participation status to be consistent with the estimated
true participation rate of P∗ = 0.50. Identification decays rapidly
with the degree of misreporting, however, and confidence inter-
vals for the ATE include 0 unless it can be known that only a
small fraction of households misreport.

Under the stronger joint MTS–MIV–MTR model, which may
be less credible for obesity than the other health outcomes, the
basic conclusion that SNAP improves health outcomes holds
even for large degrees of measurement error. Given that errors
of omission are consistent with P∗ = 0.50, SNAP is estimated

to reduce the prevalence of child food insecurity by at least
8.1 percentage points, poor general health by 3.1 percentage
points, obesity by 5.3 percentage points, and anemia by 1.6
percentage points. These impacts are significantly different from
0 for food insecurity and poor health. Our findings suggest that
at least some of the potentially troubling correlations between
SNAP and poor health outcomes provide a misleading picture
of the true impact of SNAP. The program appears to lead to
at least modest reductions in food insecurity and other poor
health outcomes, with little downside risk that the program has
significant deleterious effects. Our estimated bounds are also
consistent with the possibility that SNAP dramatically improves
the well-being of children in the United States.

APPENDIX A

Table A1. Food insecurity questions in the core food security module

(1) “We worried whether our food would run out before we got money to buy more.” Was that often, sometimes, or never true for you in the
last 12 months?

(2) “The food that we bought just didn’t last and we didn’t have money to get more.” Was that often, sometimes, or never true for you in the
last 12 months?

(3) “We couldn’t afford to eat balanced meals.” Was that often, sometimes, or never true for you in the last 12 months?
(4) “We relied on only a few kinds of low-cost food to feed our children because we were running out of money to buy food.” Was that often,

sometimes, or never true for you in the last 12 months?
(5) In the last 12 months, did you or other adults in the household ever cut the size of your meals or skip meals because there wasn’t enough

money for food? (Yes/No)
(6) “We couldn’t feed our children a balanced meal, because we couldn’t afford that.” Was that often, sometimes, or never true for you in the

last 12 months?
(7) In the last 12 months, did you ever eat less than you felt you should because there wasn’t enough money for food? (Yes/No)
(8) (If yes to Question 5) How often did this happen—almost every month, some months but not every month, or in only 1 or 2 months?
(9) “The children were not eating enough because we just couldn’t afford enough food.” Was that often, sometimes, or never true for you in

the last 12 months?
(10) In the last 12 months, were you ever hungry, but didn’t eat, because you couldn’t afford enough food? (Yes/No)
(11) In the last 12 months, did you lose weight because you didn’t have enough money for food? (Yes/No)
(12) In the last 12 months, did you ever cut the size of any of the children’s meals because there wasn’t enough money for food? (Yes/No)
(13) In the last 12 months did you or other adults in your household ever not eat for a whole day because there wasn’t enough money for

food? (Yes/No)
(14) In the last 12 months, were the children ever hungry but you just couldn’t afford more food? (Yes/No)
(15) (If yes to Question 13) How often did this happen—almost every month, some months but not every month, or in only 1 or 2 months?
(16) In the last 12 months, did any of the children ever skip a meal because there wasn’t enough money for food? (Yes/No)
(17) (If yes to Question 16) How often did this happen—almost every month, some months but not every month, or in only 1 or 2 months?
(18) In the last 12 months did any of the children ever not eat for a whole day because there wasn’t enough money for food? (Yes/No)

NOTE: Responses in bold indicate an affirmative response.
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APPENDIX B

Proof of Proposition 1. Subject to the restrictions in Equations (8)
and (9), the upper bound is found by maximizing (θ−

1 + θ+
0 ) and mini-

mizing (θ−
0 + θ+

1 ), and vice versa for the lower bound.

For � ≥ 0: For the upper bound, first consider the case that
θUB−

1 ≥ �. Then, (θ−
0 + θ+

1 ) is minimized at zero, and Equation (8a)
simplifies to θ−

1 − θ+
0 = �. Given Equations (8a)–(8c), we know

that θ+
0 cannot exceed min{θUB+

0 , θUB−
1 − �} and θ−

1 cannot exceed
min{� + θUB+

0 , θUB−
1 }. From Equation (9), we know that θ−

1 + θ+
0 can-

not exceed Qu. The upper bound follows directly. Second, consider
the case that θUB−

1 < �. From Equation (8b), we know that θ−
1 cannot

exceed θUB−
1 and, to satisfy the restriction in Equation (8a), θ−

0 must
be no less than � − θUB−

1 . As before, θ+
1 is minimized at 0. From

Equation (8c), we know that θ+
0 can exceed 0 but Equation (8a) implies

that that any conjectured increase in the false-positive error rate must
be offset by an equivalent increase in the false-negative error rate. So,
in this case, the upper bound would remain unchanged by increasing
θ+

0 above zero. Thus, we have the upper bound of 2θUB−
1 − � which

can be shown to be no greater than 2θUB+
0 + �.

For the lower bound, first consider the case that θUB−
0 ≥ �. Then

(θ−
1 + θ+

0 ) is minimized at zero, and Equation (8a) simplifies to
θ−

0 − θ+
1 = �. Given (8a)–(8c), we know that θ+

1 cannot exceed
min{θUB+

1 , θUB−
0 − �} and θ−

0 cannot exceed min{θUB+
1 + �, θUB−

0 }.
From Equation (9), we know that θ−

0 + θ+
1 cannot exceed Qu. It fol-

lows that max{−Qu, −2θUB+
1 − �, −2θUB−

0 + �} provides a lower
bound on �. Second, consider the case that θUB−

0 < �. From Equa-
tion (8b), we know that θ−

0 cannot exceed θUB−
0 and, to satisfy the

restriction in Equation (8a), θ−
1 must be no less than � − θUB−

0 . As
before, θ+

0 is minimized at zero. From Equation (8c), we know that
θ+

1 can exceed zero but Equation (8a) implies that any conjectured in-
crease in the false-positive error rate must be offset by an equivalent
increase in the false-negative error. So, in this case, the lower bound
would be unchanged by increasing θ+

1 above zero. Thus, we have the
lower bound of −2θUB−

0 + � which can be shown to be no smaller than
−2θUB+

1 − �.
For � ≤ 0: For the upper bound, first consider the case that

θUB+
0 ≥ −�. Then, (θ−

0 + θ+
1 ) is minimized at zero, and Equation

(8a) simplifies to θ−
1 − θ+

0 = �. Given Equations (8a)–(8c), we know
that θ−

1 cannot exceed min{θUB−
1 , θUB+

0 + �} and θ+
0 cannot exceed

min{θUB−
1 − �, θUB+

0 }. From Equation (9), we know that θ−
1 + θ+

0 can-
not exceed Qu. The upper bound follows directly. Second, consider the
case where θUB+

0 < −�. From Equation (8b), we know that θ+
0 cannot

exceed θUB+
0 and, to satisfy the restriction in Equation (8a), θ+

1 must be
no less than −� − θUB+

0 . As before, θ−
0 is minimized at 0. From Equa-

tion (8c), we know that θ−
1 can exceed 0 but the restriction in Equation

(8a) implies that that any conjectured increase in the false-negative
error rate must be offset by an equivalent increase in the false-positive
error rate. So, in this case, the upper bound would be unchanged by
increasing θ−

1 above 0. Thus, we have the upper bound of 2θUB+
0 + �,

which can be shown to be no greater than 2θUB−
1 − �.

For the lower bound, first consider the case that θUB+
1 ≥ −�.

Then (θ−
1 + θ+

0 ) is minimized at 0 and Equation (8a) simplifies to
θ−

0 − θ+
1 = �. Given (8a)–(8c), we know that θ−

0 cannot exceed
min{θUB−

0 , θUB+
1 + �} and θ+

1 cannot exceed min{θUB−
0 − �, θUB+

1 }.
From Equation (9), we know that (θ−

0 ) + (θ+
1 ) cannot exceed Qu. It

follows that max{−Qu, −2θUB+
1 − �,−2θUB−

0 + �} provides a lower
bound on �. Second, consider the case that θUB+

1 < −�. From Equa-
tion (8b), we know that θ+

1 cannot exceed θUB+
1 and, to satisfy the

restriction in Equation (8a), θ+
0 must be no less than −� − θUB+

1 . As
before, θ−

1 is minimized at zero. From Equation (8c), we know that
θ−

0 can exceed zero but Equation (8a) implies that any conjectured in-
crease in the false-negative error rate must be offset by an equivalent

increase in the false-positive error. So, in this case, the lower bound
would be unchanged by increasing θ−

0 above zero. Thus, we have the
lower bound of −2θUB+

1 − �, which can be shown to be no smaller
than −2θUB−

0 + �.
Proof of Proposition 2. The objective is to maximize θ−

1 and mini-
mize θ+

1 , subject to each conditional probability lying between 0 and 1
as well as the constraints in Equations (8) and (9).

Case (1): When P ∗ < P (H = 1, FS = 1), the first ratio in Equa-
tion (10) exceeds 1 unless θ+

1 is at least as large as θ+∗
1 ≡

P (H = 1, FS = 1) − P ∗. At this value, the first ratio still exceeds
1 unless θ−∗

1 = 0. The upper bound for this case is maximized
at θ+∗

1 and θ−∗
1 , with the difference in Equation (10) reducing

to P (H=0)
P (FS∗=0) . All constraints in Equations (8) and (9) are satis-

fied. Case (2): When P ∗ ≥ P (H = 1, FS = 1), set θ+∗
1 = 0 and re-

call that θ−
1 ≤ min{Qu, P (H = 1, FS = 0), P (FS∗ = 1)} by Equations

(8b) and (9). Also, the first ratio in Equation (10) exceeds 1 unless
θ−

1 ≤ P (FS∗ = 1) − P (H = 1, FS = 1) , which is nonnegative by as-
sumption in Case (2). Thus, set

θ−∗
1 = min{Qu, P (H = 1, FS = 0), P (FS∗ = 1), P (FS∗ = 1)

− P (H = 1, FS = 1)}
= min{P (H = 1, FS = 0), P (FS∗ = 1) − P (H = 1, FS = 1)}.

Again, all of the constraints in Equations (8) and (9) are satisfied.

[Received December 2009. Revised February 2011.]
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